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PREFACE.

THIS volume is mainly concerned with the appli-

cation of electrical theory to current phaenomena,

especially in their magnetic manifestations.

The subject has been greatly developed mathemati-

cally and experimentally in the last few years ; but

while much additional insight has been gained into

the relations between them, the intrinsic nature both

of electricity and magnetism remains yet to be dis-

covered.

As stated in the preface to our first volume, the

electric fluids cannot be regarded as physical realities,

although they are most useful as the basis of a theory

accounting for and to some extent predicting electrical

phaenomena. And as regards the magnetic fluids,

it may be doubted whether their existence would

have been conceived at all if the order of discovery

had been inverted and the magnetic properties of

electric currents had become known to us before,

instead of after, those of the loadstone and so-called

permanent magnets. Not that the Ampere theory
of the electromagnetic constitution of natural magnets
would have been sufficient, inasmuch as it fails to

include and explain many of the phaenomena of in-

duced magnetism.
In this volume we have proceeded on the lines laid
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down by Maxwell, adopting his conception of displace-

ment and displacement currents, but not so as to

exclude reference to other theories.

According to this displacement hypothesis of Max-

well, adopted in a modified form by Helmholtz also,

there is a wave propagation of electric disturbance

through different media with a velocity depending

upon certain measurable electric and magnetic pro-

perties of the media, and it is found that the velocity

as so determined agrees, within no wide limits,' with

the velocity of light in the respective media. Hence

an electromagnetic theory of light has been pro-

pounded, of great beauty and simplicity, and free

from some of the difficulties attaching to the older

undulatory theory founded on the wave propagation

of disturbance through an elastic luminiferous ether.

Until very recently, however, this electric disturb-

ance propagation was hypothetical only and fortified

by no independent experimental evidence; but within

the last two years the researches of Hertz in Germany,
based upon experiments with rapidly oscillating charges

of electricity in finite conductors, experiments which

have been reproduced and developed by Professors

Fitzgerald, Lodge, and others in Great Britain, have

supplied independent and almost demonstrative evi-

dence of the existence of this disturbance propagation,

and thus have invested the Maxwellian hypothesis
with great additional interest.

We trust that the importance of certain portions of

our subject and the advantage of considering them

under different aspects may excuse the detail with



PEEI*ACE. Vll

which they have been treated; this remark applies

especially to the interesting but difficult investigation

of induced currents in sheets and solids treated of in

Chaps. XXII and XXIII.

In this investigation we have restricted our ex-

amples to such as would serve to illustrate general

principles without involving too much analytical com-

plexity, indicating memoirs and papers in which

special cases requiring more elaborate mathematical

treatment have been considered.

In Chap. II, Art. 19 of our first volume, at the

bottom of page 21, there is an error in sign in the

fundamental definition of differentiation with regard

to an axis ; this error is repeated again in Art. 25, and

leads to the omission of the sign factor
( l)

r in the

expression for zonal spherical harmonics, we desire

therefore to notice and correct it.

We also desire to acknowledge a correction by
Dr. J. Nieuwenhuyzen Kruseman, who has pointed

out an error in the latter part of Art. 141. See his

very interesting memoir 'On the potential of the

electric field in the neighbourhood of a spherical bowl

charged or under influence
'

(Phil. Mag., July, 1887).
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CHAPTEE XV.

PRELIMINARY THEOREMS.

ARTICLE 266.] IF be a point in any plane, and Q a point in

the normal through 0, we may say that the direction-cosines of

the normal are those of the vector OQ, suppose /, m, and n, or

those of the vector Q 0, namely /, m, and n.

If we define the direction-cosines of the normal to be those of

OQ, then OQ is called the positive direction of the normal,

QO the negative direction, and Q is on the positive side of the

plane.

267.] If OP and OP be two neighbouring positions of a radius

vector through 0, it is arbitrary whether we consider the area

described to be positive when the radius vector turns from OP to

OP', or when it turns from OP' to OP. But according to the

usual convention, the direction in which positive areas are de-

scribed by the radius vector round in the plane POP' is

determined according to the direction arbitrarily chosen as the

positive direction of the normal to the plane. If, namely, Q be

any point in the normal through on the positive side, then the

radius vector through describes positive areas when its motion

as seen from Q is in the opposite direction to that of the hands

of a watch.

268.] Consider a closed plane curve, and a point passing com-

pletely round it, and a radius vector from the moving point to a

fixed point in the plane of the curve. The algebraic sum,

according to the foregoing convention, of the areas described by
the radius vector during this motion is evidently independent of

the position of in the plane. If it be positive, the motion of

the point round the curve is in the positive direction
;

if it be

negative, the motion of the point is in the negative direction.

t VOL. n. B
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According to this convention the integral \xdy taken round

a closed curve in the plane of xy is positive, and / y dos is nega-

tive. Similarly / zdx is positive, and / xdz negative, \ydz is

positive, and / zdy negative.

If da be any elementary plane area, I, m, n the direction-

cosines of its normal, we have, taking the integrals round its

boundary, fxdy=+nd<r,

I ydx = nd<r,

I zdx = +md(T,

I xdz = md(r,

i

ydz + ldcr
}

%

zdy = Ida.

Let us next consider a curved surface bounded by a closed

curve or curves. It can be divided into an infinite number of

elementary plane areas. Let us choose the positive side of any
one of these. If the surface does not cut itself we thereby

determine the positive side of every other element, and so ma}'

determine the positive side of the surface. In what follows it

will be assumed, unless otherwise stated, that the surface does

not cut itself.

269.] Hence we can define also the positive direction of motion

for a point passing round the bounding curve of any surface,

whether plane or not. For taking an element of the surface part

of whose boundary is the elementary arc PP' of the curve, and

having chosen the positive side of that element, we determine

by our convention the positive direction of the point's motion

along PP', and therefore its positive direction of motion round

the bounding curve of the surface.

270.] If the bounding curve of a plane area be traced out by a

radius vector through a point not in its plane, the solid angle

subtended at by the area may be defined as the smaller portion
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of a spherical'surface of unit radius described about as centre

cut out by the radius vector. It may be defined as positive or

negative according to the motion of the radius vector, namely

positive, if the point of intersection of the radius vector with

the bounding curve moves, as seen from 0, in the opposite direc-

tion to that of the hands of a watch, negative if in the same

direction. If the direction of motion of the point be taken as

positive or negative with reference to the normal according to the

definition in Art. 268, then the solid angle subtended at by
the area is positive or negative according as is on the positive

or negative side of the plane.

The solid angle subtended at by any finite surface is the

sum of the solid angles subtended at by all the elementary
areas into which the surface can be divided. It is, according to

this definition, a single-valued function of the position of 0.

Stokes's Theorem.

271.] Let d(T be an element of a single surface bounded by a

closed curve, ds an element of the curve, I, m, n the direction-cosines

of the normal to the surface at the point #, y^ #, and let P be

any function of SB, y> and z. Then shall the surface integral

m -- n da taken over the surface be equal to the(

line integral / P -=- ds taken round the curve in the 'positive

direction.

For let PQ be the value of P at the centre of inertia of

the surface element da: Through that centre of inertia let

axes be drawn parallel to those of x, y^ and 2, and let #', y', 2'

be the co-ordinates referred to these new axes of a point in the

curve bounding da. Then the value of P at of, y', / is

dx
' '

dy
'

dz

/da/P-j-jds'
taken round this elementary

curve becomes

dP^ /V^jyj.^i /V^Ljy-u dp
o /V^i,/'

ds'

rdscf dP, C ,dtf dP r ,daf ,,
,

dP C ,

v -TJ ds +~^ / tf-r/M+ -ri / /-T7r+ "T2 -

/
z

V dsf dx J ds? dy J ds' dz J
B 2 .
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The first two terms are severally zero because the elementary

curve is closed. The last two terms are equal to n-j-^dv and

dP y

+ m -da- respectively. Hence

dP <ZP N. C dtf-~ - n-~)d<T= I P,ds.
dz dy ) J ds

And since we may regard P as constant over do- the theorem is

proved for the elementary area da- and its bounding curve.

Hence in the case of a finite surface the surface integral

m--- n
-j}d<r

is equal to the sum of all the line integrals

P ds round all the elementary areas into which the surface
(t/s

is divided. But in this summation every part of each line integral

is taken twice, once in the positive and once in the negative

direction, unless it belong to the final bounding curve
;
so that

all the line integrals cancel each other except those relating

to the bounding curve. It follows that, for the whole surface

and its bounding curve,

//o

/

COROLLARY I. The surface integral is zero for any closed

surface.

COROLLARY II. If X, J, Z be any three functions of #, ^, and

2, by applying the theorem to each of them we may obtain an

expression of the form

dZ dT^ ,dX dZ^ ,dY dX
^-- -3-li-Wi-;---T-) + n (-i

--
-T-

dy dz ' \ dz dx / \dx dy

And if further X, Z, and Z be the components of a vector R,

and e be the angle between E and ds, we have

R cos ds./
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272.] Let r be the vector from the point as, y, z to the origin.

Let p be a vector drawn from the origin with direction-cosines

I, m, n, and making with r the angle 0. Let us so choose

the positive side of the plane of r and p as that when seen

from a point in the normal through the origin on the positive

side the shortest way to turn / to coincide with p would be in the

direction of watch-hand movement. Then the direction-cosines

of this normal are

1 nymz 1 Iz nto 1 mx ly

In the normal so drawn let us take a vector whose length is

proportional to 2~> and let its components be denoted by

f, g, 7i. Then we have

^_ ny mz

9y
Iz nx

*.

d

'dx dz
(2)

mx ly /, d d \ 1
h -^

== l^~7
-- m ^~ )~*

r6 v dy dx/ r J

If therefore in (1) we make P = -> and take p parallel to the

positive normal to the surface at the element da, we obtain the

equations'

Similarly, =//^'
(3)

If r be measured to the point f, 77, f instead of to the origin,

the foregoing equations become

x d d \1 .

/= in--- m-T7.)-jV dri d^'r

fl d d ^.l
(7=1 l-^-i 7l-T>)-JJ V d d/r J

(4)
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/ a . d xi
h=(m -j-f.

I )-,V df drj/r

because r*= (f
-

#)
2 + (ij

-
?/)

2 + (f
-

),

r
-r- -
dxr

,,, p^l^l , d 1 r d 1
and therefore -77

-
> -5 > and -r>- are the negatives of -r- -

d 1 d I . ,

-z t and -7-- respectively.
dy r far

273.] If with the same meanings as before of 0,f9 g, Ji we make
cos^*= >

dv dh dg dv dh dq
then shall ""j~ = ^

-- T' ~~~Tc= ^-- 3^5dx dy dz dc, drj a

with corresponding- equations for >
-

, etc.

dy drj

For v = / tf"" a?)

/, d d d \ 1

""V^TZ + ^T" +-5>|-v df d-r] d/ r

dv , d 2 d 2 d 2

/ ^ 2 d 2 d 2
x 1

because (_+_+__)_. =

The remaining equations follow by symmetry.

c?a? dy dz df drj d

by differentiation of (2) and
(4).

274.] If ds be an element of the curve bounding the surface a,

and be, as in Art. 272, the angle between the normal to the

surface at the point a?, y, z, and the vector r from the point

#> ?/,
* to

, 77, then shall
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the surface integral being taken over o-, and the line integral

round the bounding curve.

d
For -

remembering that the direction of the normal at so, y, z, is

independent of f, 77,
and (.

But by Art. 272, ffkd*
=
[jj- ds,

rri tTherefore

/ d p d
d fr cos 6

7 / r dz _ [ r dv
T? / /

d<r= ds -rr~(
dc,J J r J

drj ds J d ds

,
ds.

.dz dy
The expression *"&

"
s } 5F

is the ar-component of the line drawn in the positive direction

perpendicular to the plane of r and ds, and equal in length to

3- , where $ is the angle between r and ds.

275.] We proved in Art. 12 that if u and u' be two func-

tions, both of lower degree than
-|, satisfying the conditions

y-
=

-j

at all points on a closed surface S, and V2u = V2*/ =

at all points outside of S, then u = u' at all points on or outside

of S. It is now necessary for our purpose to extend this pro-

position to any two functions of negative degree without

restriction.

Let be any point within S, r the distance from to any

point in space. Then and are both of lower degree than

1. Therefore by Green's theorem applied to S and infinite

external space,
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That is,

And as this is true for all positions of within S, it follows

necessarily that nu'= at all points on S. For if not, u u'

must have a maximum or minimum value at some point on S,

suppose P. And by making approach sufficiently near to P we
r r ft i

could make the integral / / (uu') -^

-- dS differ from zero.

We have then UM'= at all points on S. Also u u'=.

at all points at an infinite distance. Therefore u u' must be

zero at all points in space outside of S. For if not it must have

a maximum or minimum value at some point outside of S. And
this is impossible by Art. 53, since V2

(n ?/)
= at all points

outside of S.



CHAPTEE XVI.

ON MAGNETIC PHENOMENA*.

ARTICLE 276.] Certain bodies, as, for instance, the iron ore

called load-stone, and pieces of steel which have been subjected

to certain treatment, are found to possess the following pro-

perties, and are called Magnets.

If, near any part of the earth's surface except the Magnetic

Poles, a magnet be suspended so as to turn freely about a vertical

axis, it will in general tend to set itself in a certain azimuth,

and if disturbed from this position it will oscillate about it. An

unmagnetised body has no such tendency, but is in equilibrium

in all azimuths alike.

It is found that the force which acts on the body tends to

cause a certain line in the body, called the Axis of the Magnet,
to become parallel to a certain line in space, called the Direction

of the Magnetic Force.

The direction of the magnetic force is found to be different

at different points of the earth's surface. If the two points in

which the axis meets the outer surface of the magnet be called

the ends of the magnet, and that end which points in a northerly

direction be marked, it is found that the direction in which the

axis of the magnet sets itself in general deviates from the true

meridian to a considerable extent, and that the marked end

points on the whole downwards in the northern hemisphere and

upwards in the southern.

The azimuth of the direction of the magnetic force, measured

from the true North in the westerly direction, is called the

Variation, or the Magnetic Declination. The angle between the

direction of the magnetic force and the horizontal plane is called

the Magnetic Dip. These two angles determine the direction of

* The introductory portion (Arts. 276-282) of this chapter is taken almost

without alteration from Maxwell's 'Electricity and Magnetism,' vol. ii. chap. I.
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the magnetic force, and, when the magnetic intensity is also

known, the magnetic force is completely determined. The deter-

mination of the values of these three elements at different parts

of the earth's surface, the discussion of the manner in which

they vary according to the place and time of observation, and

the investigation of the causes of the magnetic force and its

variations, constitute the science of Terrestrial Magnetism.

277.] Let us now suppose that the axes of several magnets have

been determined, and that the end of each which points north

has been marked. Then, if one of these be freely suspended, that

is in such a way as to be free to turn in all directions about

its centre of gravity, the action of its weight being thereby

eliminated, and another brought near to it, it is found that the

two marked ends repel each other, that a marked and an un-

marked end attract each other, and that two unmarked ends

repel each other.

If the magnets are in the form of long rods or wires, uni-

formly and longitudinally magnetised called bar magnets, it is

found that the greatest manifestation of force occurs when the

end of one magnet is held near the end of the other, and that

the phenomena can be accounted for by supposing that like ends

of the magnet repel each other, that unlike ends attract each

other, and that the intermediate parts of the magnets have no

sensible mutual action.

278.] The ends of a long thin magnet such as those just described

are commonly called its Poles. In the case of an indefinitely

thin magnet, uniformly magnetised throughout its length, the

extremities act as centres of force, and the rest of the magnet

appears devoid of magnetic action. In all actual magnets the

magnetisation deviates from uniformity so that no single points

can be taken as the poles. Coulomb, however, by using long

thin rods magnetised with care, succeeded in establishing the law

of force between two magnetic poles as follows :

The repulsion between two magnetic poles is in the straight line

joining them, and is numerically equal to the product of the

strengths of the poles divided by the square of the distance

between them.
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That is to say, in the case of two ideal bar or needle magnets
in the presence of each other the mechanical action between

them is exactly the same as if at the poles of each there were

placed a charge of electricity, one positive and the other negative,

numerically equal to the strength of the pole.

279.] This law, of course, assumes that the strength of each pole

is measured in terms of a certain unit, the magnitude of which

may be deduced from the terms of the law.

The unit-pole is a pole which points North, and is such that

when placed at unit distance from another unit-pole, it repels it

with unit of force. A pole which points South is reckoned

legative.

If m
l
and m

2 are the strengths of two magnetic poles, if I be

the distance between them, andf the force of repulsion, all ex-

ssed numerically, then

Whence it follows that the dimensions of the concrete unit-pole

are the same as those of the electrostatic unit of electricity,

namely, f as regards length, i as regards time, and \ as regards

mass. See Chap. XVII post.

The accuracy of this law may be considered as having been

established by the experiments of Coulomb with the torsion

balance, and confirmed by the experiments of Gauss and Weber,

and of all observers in magnetic observatories, who are every day

making measurements of magnetic quantities, and who obtain

results which would be inconsistent with each other if the law

of force had been erroneously assumed. It derives additional

support from its consistency with the laws of electromagnetic

phenomena.

280.] It is not possible to obtain an ideally perfect bar magnet
such as we have been considering, and if so obtained it would be

equally impossible to maintain its strength unaltered for any length
of time, for reasons hereafter to be mentioned. If, however, we

imagine such an ideal magnet to exist and its strength to remain

always the same, and call this magnet the magnet of reference,

then all experimental evidence points to the following conclusions.
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(1) That, as has been already implied, if either pole of the

magnet of reference were brought near to the middle point of

any bar magnet no mechanical action would be apparent, and

such action would be feeble at all points near to the middle of

the magnet.

(2) If the bar magnet under investigation were broken into

two or more pieces of any lengths equal or unequal, then each

of the pieces thus obtained would form a short magnet whose

positive and negative poles are at those respective extremities of

each short magnet nearer in the unbroken state to the correspond-

ing poles of the original magnet.

(3) It is impossible by any process whatever to obtain a

magnet whose poles are of unequal strength, and therefore im-

possible to isolate a pole.

The multiplication of magnets by fracture and creation of

mechanical energy is not inconsistent with the conservation of

energy, because after fracture and before separation the adjacent

poles of the several magnets neutralise each other, and the act

of separation involves mechanical work.

Magnetic Theory.

281.] The resemblance mentioned above (Art. 278) between the

mutual action of bar magnets and of bodies charged with equal

and opposite quantities of electricity at the poles of these magnets
could hardly fail to suggest the conception of magnetic matter

or magnetic fluids endowed with properties of mutual action

according to exactly the same laws as the supposed electric fluids
;

and indeed such an hypothesis has proved capable of explaining

some of the phenomena of magnetism as successfully as the two-

fluid hypothesis explains the phenomena of statical electricity.

At the same time such fluids have even less claim to be regarded

as physical realities in the magnetic theory than they have in

the electrical. They are nothing more than mathematical fictions

of great use in the enunciation and systematisation of the laws

of magnetic phenomena.

282.] The two-fluid theory of magnetism assumes the existence

of two magnetic fluids called positive and negative respectively.



283.] MAGNETIC ^THEORY. 13

and attracting or repelling according to exactly the same laws as

govern the actions of the positive and negative electric fluids.

In the magnetic theory, however, there is nothing that corre-

sponds to a body charged with electricity. The molecules of all

substances which are capable of manifesting magnetic action are

supposed to be charged with exactly equal quantities of both

fluids, and it is to the separation of these opposite fluids within

each molecule that the phenomena of magnetisation are ascribed.

Each separate molecule is thus regarded, when magnetised, as

having acquired the property of polarisation, that is to say there

is a certain line moving with the molecule, such that if by

turning the molecule the direction of this line is reversed, then

the magnetic action between this molecule and the surrounding

field is exactly reversed also. The particular mode of separa-

tion of the fluids within each molecule does not enter into con-

sideration, any more than the particular shape of the molecule.

As a very simple case we might suppose the molecules of a sub-

stance to be equal and similar prisms or cylinders, and the sepa-

ration in each to take place by the aggregation of all the positive

fluid at one end, and all the negative fluid at the other, i. e. by

equal positive and negative superficial distributions at opposite

ends. Each molecule would thus become an elementary bar

magnet as above defined, the end on which the positive distribu-.

tion was situated being the positive pole. If a finite prism were

built up of a very great number of these molecules placed end to

end, the positive pole of any one of them being in contact with

the negative pole of the succeeding one, the mechanical action of

equal and opposite contiguous poles of contiguous molecules would

neutralise each other, and there would remain a bar magnet of

finite length, the strength of whose poles was exactly the same

as the strength of the poles of the molecular magnets. This

conception however of the particular shape of the constituent

molecules or of the particular mode of fluid distribution within

each one of them, is not, as above said, essential to the theory.

283.] In Chaps. X and XI, Vol. I, we discussed the properties
of a medium consisting of an infinite number of discrete infini-

tesimal molecules of any shape whatever, each of them containing
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either in solid or superficial distribution exactly equal quantities

of the positive and negative electric fluids, and we proved that if

$ dx dy dz were the algebraic sum of the mass of the fluids within

the elementary volume dxdydz in the neighbourhood of the point

#, y, z in such a medium, and if a-x were equal to the triple integral

%(pdxdi/dz taken over an unit volume throughout which the

distribution of molecules and of the electricity within each mole-

cule is uniform, and the same as it is in the neighbourhood of

the point so, y, z in the actual medium, with similar meanings
for (T

y
and o-g ,

then <rx ,
cr
y ,

<rz are components of a certain vector <r
;

and that if a plane were drawn through #, y, z the direction-

cosines of whose normal were I, m, n, then the algebraical mass

of the fluids within or upon the molecules intersected by
this plane, and situated on the positive side of this plane, is

ltfx + ma-y -f nvz .

The vector a- so obtained we defined as the polarisation of the

medium at the point sc, y, z, and the quantities <rx ,
a-
y ,
and o-3 as

the components of polarisation at that point.

We proved also that if pdxdydz were the algebraical sum of

the electrical fluids within the volume element dxdydz in such a

medium, i. e. that if p were the electric volume density at the

point x, y, z, then
dor

p ~

"t*T *
And that if over any plane in such a medium whose normal

direction-cosines were I, m, n there were superficial electric dis-

tribution, then o~x ,
(r
v ,

(TZ,
and <r must be discontinuous at points

on the plane ;
and that if crx and a-x ,

<r
v and cr^,

crg and cr^
were the

values of these quantities at any point of the plane on opposite

sides of it, then the superficial density of electrical distribution

over the plane at that point would be

284.] If in the medium above described the electric fluids be

replaced by magnetic fluids, we arrive at the conception of a

magnetised mass in the theory we are now developing. In
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conformity with" the usual notation we shall replace the symbols
(rx) <r

y
. and dz by A, B, and C respectively, and the symbol <r

by /. Instead also of the terms polarisation and components of

polarisation as denoted by the aforesaid symbols, we shall em-

ploy the terms magnetisation and components of magnetisation

respectively. It will be understood that we are here treating

of the effects instantaneously produced by a system of polarised

or magnetised molecules, and not of the means by which their

polarisation may be produced, maintained, or destroyed.

285.] If we assume the existence of these polarised or mag-
netised molecules, it follows that there will be a magnetic potential

and magnetic force at every point in the field of a magnetised

mass, each in all respects possessing the properties investigated
in Chap. Ill, Vol. I, and that with the molecular arrangement
and distribution just described, if V be the potential at any

point in the field,

. ,

where r is the distance of the element dxdydz of the mass, or of

its surface element dS from the point f, 77, f at which the poten-

tial is estimated, and the volume and superficial integrations

extend throughout the volume of S and over its surface re-

spectively. The surface-integral ma}r be more accurately written

in the form

^rri(A-A') + m(B-B') + n (C-C') d^ (g)

the summation 2 extending over all the elementary surfaces at

which there is discontinuity in the values of A, ,
and C, and

the quantities I, m, n being direction-cosines of the normal of

such element in each case
;
the simpler form first written con-

templating the case of a single magnet with continuous magnet-
isation within its volume and surrounded by a non-magnetised
medium.

286.] Restricting ourselves to case (l), and integrating each

term for #, y, and z respectively, we obtain the equation
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If the coordinates of the point at which V is required be
, 77,

we may express the equation in the form

If be the angle between r and the resultant magnetisation

at a?, y, #, we have

according as we consider r to be drawn from f, 77, f to a?, y, ,
or

from #, y, to f, 77, respectively.

287.] The components of the magnetic force at the point f, 77,

dV (IV , r/F
are r-r> --

=
,
and --r^-, and they are usually denoted bya

77
r/

<;

the symbols a, /3, y respectively, so that we have

with corresponding equations for /3 and y.

288.] From the expression (1) for the potential T
7
,
we see that

if A, /?, C be constant throughout a magnetised mass,

-//-
and V depends upon the superficial magnetisation only. In

this case the magnitude and direction of magnetisation are the

same at every point throughout the mass. If the mass be

cylindrical with its generating lines parallel to the direction of

magnetisation, the quantity IA + mB -f nC will be zero at all

points on the curved surface, and will be equal to + /and /at

the two flat ends respectively. In this case let r
t
denote the

distance of the point at which the potential is to be found from

a point in the flat end for which IA + mB + nC = /, r
2
its distance

from a point in the other flat end. Then if we denote by dS
l
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and dS
2 elementary areas of the flat ends respectively,

If, further, the dimensions of the flat ends be small compared

with TJ and r
2 ,

this assumes the form m(---
),

where

/Y
TI TZ

m= IdS. Such a body has then all the properties of a bar

magnet, as described in Art. 277
;
and if it be broken into any

number of cylindrical parts by sections parallel to the flat ends,

each part will separately possess the same properties, so that

the phenomena described above are explained by this hypo-

thesis.

In this case each end of the bar is called a magnetic pole, one

end the positive and the other the negative pole. Also #&, or

/ dS, is called the strength of the pole. And if h be the

length of the magnet, mh is called the moment of the magnet.
/ is called the intensity of magnetisation. It is the magnetic

moment divided by the volume of the magnet.

289.] Again, if we take the expression for the potential of a

magnetised mass at the point , r/, f as given by the equation

/"/Y= -
JJJ

and suppose the direction of magnetisation to be uniform at every

point, we obtain the equation

d d d )Idxdydz+m-r- + n-^{ -^
,

d drj d^} r

where / is the magnetic intensity at each point, and /, m, and n

are the direction-cosines of the direction of /.

If Fj denote the potential at the point , rj, C of an electrical

distribution through the volume occupied by the magnetised sub-

stance and in which the density at a?, y, z is /, the above equation
is equivalent to ,-.

where i is the line through f, r), f parallel to the given direction of

VOL. II. C
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magnetisation. If the magnetisation be uniform throughout in

intensity as well as direction, the equation becomes

diJJJ r di

where F" is the potential at f, rj, of a mass of uniform density

unity occupying the volume of the given substance.

290.] If therefore we know the potential of any given electrical

distribution at any point, either uniform or varying according to

any law, we can at once by mere differentiation determine the

potential at that point of a corresponding magnetic distribution

of given intensity and uniform direction.

For example, the potential of a sphere (rad. a) of density unity,

at the point , rj, distant r from the centre as origin, is

- if P be external to the sphere,

and 2 TT (a
2--

)
if P be within the sphere.

Therefore the potential of a sphere of uniform magnetisation /

parallel to the axis of x is

T 4-7T as
.. .

I
-3

for an external point,

and / - f for an internal point.

And the magnetic force has for its components in the former

case

and in the latter case 4-rr
T

l 1
--

0~~ ' "l ^

respectively.

291.] Again, the potential F~ of an ellipsoid of uniform density

unity at any internal point , 77, f referred to the principal axes

as axes of co-ordinates is known to be given by the equation

where L, M, N are certain known functions of the semi-axes, 0, #,

and c. Therefore the potential of an ellipsoidal mass with uniform
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magnetisation I parallel to the line i whose direction-cosines are

I, m, n at the internal point f, r/,
is

or

where A, .Z?, and C are the components of magnetisation at each

point of the mass.

292.] We now proceed to consider certain particular cases of

magnetisation, one of which, namely that of a uniform bar

magnet, has already been noticed.

An Elementary Magnet.

We have seen that the potential at the point f, 77,
due to a

magnetic mass may be expressed in the form
JJj

I dxdydz,

where I is the resultant magnetisation, r the vector from #, yy z to

f, 77, and the angle between I and r. If the dimensions of the

magnet be infinitesimal, this may be put in the form I8k ^- >

when S is the transverse section, h the length of the magnet in

direction of /.

The quantity IS is called the strength of the pole, and ISh the

moment of the magnet.
Bar magnets of uniform magnetisation may be regarded as

elementary magnets, so far as relates to points in the field whose

distance from them is great compared with their linear dimen-

sions.

293.] Definitions. A line either straight or curved drawnthrough

any magnetised mass, so that its tangent coincides at every point

with the direction of the resultant magnetisation at the point, is

called a line of magnetisation.

A tubular surface constructed in any magnetised mass, so that

the line of magnetisation at every point on the surface lies on

the surface, is called a tube of magnetisation. And when the

transverse section of the tube is indefinitely small, it is called an

elementary title of magnetisation*

C 2
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If throughout the space bounded by any closed surface S within

a magnetised mass the distribution be such that

^ +^ + ^ = (A)dx dy dz

at every point, and therefore the integral

rrrtdA L dB do\,
Ww+w.+x****

taken throughout the space is zero, it follows that

//
taken over 8 is zero, I, m, n being the direction-cosines of the

normal to S.

If S be formed of a tube of magnetisation and two transverse

sections S
1
and S

2 ,
then since lA + mB+ nC=0 at each point on

S except points on 8 or 8
2i it follows that if I

I
be the resultant

magnetisation on S13 and I
2 on S

2 ,
measured in both cases out-

wards from S,

ff **%**'*

A magnetic distribution satisfying the condition (A) is called

A Magnetic Solenoid.

294.] A magnetised mass in which the distribution is solenoidal

bounded by an elementary tube of magnetisation, is called a

simple magnetic solenoid. Since T
t the potential at the point

(., 77, f of any magnetised mass, is given by the equation

=///
dx dy dz,

if we replace the volume element dxdydz by Sdh, where 8 is the

transverse section of the tube perpendicular to its axis at the

point whose distance measured along the axis of the tube from a

fixed point in the axis is ^, we have

The product IS at any point of the solenoid is called the strength



295-] PARTICULAR FORM& OF MAGNETS. 21

of the solenoid, and is by Art. 293 uniform throughout its

length.

The potential therefore becomes

r
l
and r

2 being the distances of the ends of the solenoid from the

point considered
;
or writing m for IS, it is ----

r
l r2

The uniform bar magnet already considered is a particular case

of the simple magnetic solenoid, and it follows from what is here

proved that the same magnetic effects would be manifested by
the bar, whether the magnetisation were uniform or not, provided
it were solenoidal.

295.] When a magnetic mass is bounded by an elementary
tube of magnetisation, but the distribution is not solenoidal, it

is called a complex magnetic solenoid. We have, as before, for

the potential 7 at the point P the equation

flSdr r<*rV = / -3- -77- ah = /
dh.

J r* dh J r*dh

In this case m is a function of ^, and the equation becomes

r dh

A complex magnetic solenoid may also be found by the super-

position of elementary tubes of magnetisation in a mass of

solenoidal distribution, touching each other, but of unequal

lengths, so that the extremities of each elementary tube are on

the surface of the solenoid. If a filament of such a mass be taken

with its surface touching some tube of magnetisation at every

point, and with transverse section very small, it is called a com-

plex magnetic solenoid.

The expression for 7 evidently becomes as before

/
-

-j=- dh,r
i

r
z J r dh

and may be regarded as arising from the poles of the solenoid

together with a distribution of imaginary magnetic matter of

linear density jj- along the axis of the solenoid.
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296.] If the distribution of magnetisation in any magnetic
mass be such that all the lines of magnetisation can be cut ortho-

gonally by a system of surfaces, we know that the components of

magnetisation. A, B, C, must satisfy the equation of condition,

dC* ,dC dA. (dA dB}
dZ

~
dj/ 3 ^ ""^ W ""

fa )

"

at every point. When this condition is satisfied, the mass

between any two of the surfaces may be divided into elementary

portions, each bounded by a tube of magnetisation, and two

surfaces which cut the tube and all the lines of magnetisation

within the tube at right angles, the distance between the trans-

verse surfaces measured along a normal to either of them at every

point being indefinitely small. A magnetic mass bounded by two

surfaces satisfying this condition is called a magnetic shell, the

normal distance between the surfaces at any point is called the

thickness of the shell at the point, and the product of this thick-

ness into the resultant magnetisation at the point is called the

strength of the shell at that point. When the strength of the shell

is uniform throughout, it is called a simple magnetic shell, other-

wise a complex magnetic shell.

297.] A simple magnetic shell may therefore be otherwise de-

fined as a thin shell of magnetised matter in which the magneti-
sation is everywhere normal to the surface, and its intensity at

any point multiplied by the thickness of the shell at that point is

uniform throughout. The product thus found is the strength of

the shell. If it be denoted by 0, and if
, m, n be the direction-

cosines of the normal to the shell, h its thickness, evidently
Ah=

l(f),
Bh= m<l), Ch= ncf) ) Z&=$. If, the arrangement being in

other respects the same, the above-mentioned product is not

uniform throughout, that is if the strength varies from point
to point, it constitutes a complex magnetic shell. A complex

magnetic shell may be conceived as made up of simple magnetic
shells superposed and overlapping one another, in the same way
as a complex solenoid may be conceived as composed of over-

lapping simple solenoids.

298.] To find the potential at any point P (, ?;, f)*of a simple
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magnetic shell.
*

The potential V at P due to any magnetised
mass is, as above shown, given by the equation

rrr T cose ,V = I -3- dx dy dz,
%J %J \J

where / is the resultant magnetisation at the point #, y, z of the

mass, r the distance from #, y> z to P, and 6 the angle between

the direction of I and r. If we replace the volume-element

dx dy dz by its equivalent hdS> where dS is an element of one of

the transverse surfaces of the shell, and k the thickness of the

shell at dS, we have

where
(/>

denotes the strength of the shell. Evidently from the

interpretation above given to cos 0, this integral will be positive

or negative according as the face of the shell presented to

be that of positive or negative magnetisation.

The integral / / %- dS is the solid angle subtended by the

shell at 0. The side of the shell on which is positive magneti-

sation, or towards which the magnetisation is measured, is the

positive side of the surface (Art. 268).

299.] If therefore we denote by o> the solid angle subtended by
the shell at the point in question, V $to ;

where the sign is

determined as just now mentioned. As P moves from a point

close to the shell on one face round the boundary of the shell to a

point close to the shell on the opposite face, V passes from 27T0

to + 27T0 or from + 2 77$ to 27i(/> according as the passage is

from the negative to the positive or from the positive to the

negative face of the shell
;
and if the passage be through the

shell the same increase or decrease by 47r< takes place in the

value of V on passing from a point on one face to a very near

point on the opposite face, but this result does not imply dis-

continuity in the value of Vt inasmuch as the thickness of the

shell, although small, is finite.
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300.] The potential of a magnetic shell at any point not in its

substance being
1 <// ^-dcr, it follows that the ^-component

of force at the point , rj, is

. d

ds df r ds

r3 ds r

by Art. 274, with corresponding expressions for /3 and y.

301.] Let us write

**=*

V r ds

Then also f = m - n
l- dS

Similarly

dH dG
and a = -=-- -TTT

302.] Again, let the point f, r;, f be on another surface S' not

cutting the shell, bounded by a closed curve
;
let I', m'y

n' be the

direction-cosines of the normal to $'.
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Then / / {
I'a + w'/3+ n'y }

da-'

the integrals being taken round the bounding curve of the

surface ^.

303.] If the distribution of magnetisation throughout any mass

be such that it may be divided into simple magnetic shells each of

which is either closed or terminates in the surface of the magnet,
the magnetisation is said to be lamellar.

In lamellar magnetisation there exists a function $ of the

coordinates such that

A _ d$ T?
d(

f> r<
d$A = - -

r /} = j (J = .

dx dy dz

Fig. 44.

For if a curve of any form be drawn through such a mass, and

if it cut two consecutive shell faces, 8 and $", in the points P and

F as in the figure, and if the coordinates of these points

be #, ^, z and x + da, y + dy, z + dz, and if di denote the thickness

of the shell which is parallel to the resultant magnetisation, we

have A , B . C .

di = dx + -

dy + dz,

or

Now /rfi is the increase of the sum of the strengths of all the

shells traversed by the curve from a fixed point in it, due to the
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element PP' of the curve, such increase being- reckoned positive

when we proceed along the curve in the direction of magnetisa-

tion. If this sum be called <p, it is clear that with the supposed

constitution of the magnet $ is independent of the form of the

curve from the fixed point to P, and is a function of #, y, z only.

Therefore Adx+Bdy+Cdz = d<t>,

A d(j) d(f> d$
or A = > JJ = j G = -r-

ax ay dz

The function $ is called the potential of magnetisation. It must

be carefully distinguished from the magnetic potential.

304.] To find the potential at any point of any lamellarly mag-
netised substance.

If f> *7> C be ^ne coordinates of the point and A, B, C the

components of magnetisation at the point x, y^ z in the sub-

stance, and V the required potential, we know that

where T \/(# f)
2 + (y ??)

2
4-(2 C)

2
?

an(l the integration is

taken throughout the mass.

In this case

Ul = -r } ^= -j ty = -
cte a?/ dz

where < is the potential of magnetisation.

Therefore "by Green's theorem

r-flii4-
the symbols having their ordinary signification.

If 6 be the angle between the normal to dS measured out-

wards and the line r drawn from dS to f, 77, f, the equation

becomes / COs d rrr. _ 72
1 _

V=JJ--r-.dS-JJJ<t>V*-dxdydz.
If

5 ^j C be without the mass, y2- is everywhere zero, and

the equation becomes

r2

If the point , 77, be within the mass, then the equation

for /^becomes
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'

r=//*^+4,W ,

where (0) is the value of < at
, T;, f

The double integral / / -^^ d$ *s generally represented by

12. The values of 12 for two points close to the surface S, one

just within and the other just without the mass, clearly differ

by 47T ($), where (0) is the value of $ within the mass close to

the point ;
whence it follows that the value of V is continuous

on crossing the surface, as it should be by Chap. Ill, inasmuch

as it is the potential of matter of finite density.

The Energy of a Magnetic System.

305.] It is proved in Vol. I, Art. 166, that the potential energy

of an electric system is given by the integral \\ \\Vpdxdydz,

where V is the potential of the system, and p the volume density
of electricity, at the point #,y, z, the triple integral being re-

placed by the double integral \l\Vffd8 for surfaces of superficial

electrification. By reasoning in all respects similar to that used

in obtaining the above-mentioned result, we obtain for the

potential energy of any magnetic system, so far as concerns

the magnetic forces alone, the expression

i dB dC

the volume integral extending over the substance of the mag-
netised bodies and the surface integral over their bounding
surfaces. This is the work done in constructing the system

against the magnetic forces. In an actual magnetised body it

may be the case that other intermolecular forces are called into

play in constructing the magnet. The above expression does

not include work done against such forces.

Again, the relative potential energy of one portion of an
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electric field with reference to the other portion is / / / Vpdxdydz,

where p is the volume density of the first, and V the potential

of the second portion at the point as, y> z. Similarly the relative

potential energy of one system of magnetised matter in the field

of another system is

in which A, B, and C relate to the first and V to the second

system.

This expression is equivalent to

It is this relative potential with which we shall be mainly con-

cerned in the following investigations.

306.] On the potential energy of a magnetised mass in a field

of uniform force.

If X, 7, Z be the components of the force, W the energy

required, it follows that

If we denote the integrals / UAdxdydz^ // \Bdxdydz, and

/ / Wdxdydz by IK, mK, and nK respectively, the above ex-

pression becomes

W =
-JT/jfY^Xf

m Y+ nZT) dx dy dz.

If, further, P+ m* + n*= l, the quantity K is called the mag-
netic moment of the magnet, and the line whose direction-cosines

are I, m, n is called the axis of the magnet.

If R denote the constant force, and e the angle between -Fand

the axis of the magnet, the potential energy W is given by

W = -RKco8.

Any region on the earth's surface is sensibly a field of uniform

magnetic force. If < and Q be the azimuth and horizontal
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inclination of the axis of the magnet, and 8 and f the cor-

responding quantities for the magnetic force, then the axis of z

being vertical and that of x in the meridian,

X = R cos f cos 5, Y = R cos f sin 8, Z = R sin f ,

/ = cos cos <, w = cos sin $, w = sin 0,

and therefore W = KR { cos f cos cos
(< 6) + sin { sin

} .

If therefore the magnet be suspended by its centre of inertia,

so as to be free to turn about that point, the generalised com-

ponent of force tending to increase $, or the moment of the

force tending to turn the magnet round a vertical axis, is

rLW
-

> or KR'cQs f cos sin
(< 8) ;

and similarly the moment of the force tending to increase the

inclination of the axis to the horizontal plane is

ftW
> or KR {sinf cos0 cos f sin cos

(< 8)}.du

307.] To find the magnetic potential energy of any lamellarly

magnetised substance in a magnetic field.

If W be the potential energy required,

= /T<
j? dS-JJfo

V2 Vdx dy dz,

</> being the potential of magnetisation at the point #, y, z of the

mass, and V the potential of the field at that point.

If the potential energy required be relative to a field of

magnetisation entirely without the mass, then V 2 V 0, and the

equation becomes
r

4?<Mi

or W = I \<t

where a, /3, y are the components of force due to the field at the
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element dS, and /, m, n are the direction-cosines of the normal to

the element.

If the mass be bounded by a tube of magnetisation and the

transverse surfaces S and $
2 , each of them everywhere at right

angles, to lines of magnetisation,

TF= (^ /J^ + ^ft +^y^^
the surface integrals being taken over S1

and S2 respectively and

the normals being measured in both cases from S^ to Sy
If the surfaces S

1 and S
2 be very near to each other so that

the mass constitutes a uniform magnetic shell of normal thick-

ness i,

where 4> is the strength of the shell, and

If the field be that of another uniform magnetic shell of

strength 4>', we know from Art. 301 that

where

F=v[
l

"*f, G'=V^ds>, H'-
J r ds J r ds J r ds

the integrals being taken round the contour of the shell <!>',

therefore

ds ds' ds ds'

cos ,
dsds ,

r

where e is the angle between the elements ds and ds'.

If the energy required be that of the lamellarly magnetised

mass in its own field, then we have by Art. 304,

dx dy dy dz dz '

,d(j)
2

/^<K 2
\ j j j+ (jp + tto))**<h/

d*
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And in the case of a uniform shell of strength 3> this becomes as

above

the former of the two double integrals being taken for each pair

of elements of the contour of the shell.

These two terms are of the same order of magnitude. The

energy therefore is not in this case represented by the integral

The whole energy of the mass placed in the given external

field is Cr^fdV , cZflx , /Y/V2 , .

+(K +*dd + ** *******

308.] On the potential energy of a given magnetised mass in

the field of an elementary magnet.
If x^y^z be the middle point of the axis of the elementary

magnet, M its moment, 6 the angle between its axis and the

line r drawn from #, y, z to the point f, 77, f in the magnetic mass,

we know from Art. 298 above that the potential V of the

.' '. McosO
elementary magnet at

, 77, <;
is

^ , or

r3

/, m, n, being direction-cosines of the axis of the elementary

magnet, and M its moment.

If this axis be denoted by the symbol h-^ the last expression

is M-rr(-) in the notation of Vol. I, chap. II; therefore

If therefore W be the potential energy of the whole mag-
netised mass in the field of the elementary magnet,
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A, B, and C being the components of magnetisation of the mass

at f, rj,
and the integration being taken throughout the mass.

If the magnetised mass be also an elementary magnet we may
regard it as consisting of the single element ddrjd{, which

may also be written as k a, where k is the length of the secondary

elementary magnet and a its transverse section, so that W is

determined by the equation

drj

or
elf

where A, /x, v are the direction-cosines of the axis, and / the

intensity of magnetisation, of the second magnet.
Now //fca=Jf2 the moment of the second magnet, and

/ d d d \ d
(A.-F + jOi + ^^>) = TTv d dt] d' dh

2

if hz be a line through f, T;, ^ coincident with the second axis.

Therefore W= M
l
M

z 4~ 4- ( -)* '

If ju1>2 be the cosine of the angle between the two axes and

AJ, A
2
be the cosines of the angles they make respectively with

r, we get

And from this equation we may determine the force on either

magnet in any direction and the couples round any given axis

arising from their mutual action by the ordinary methods of

generalised coordinates.



CHAPTER XVII.

MAGNETIC INDUCTION AND INDUCED MAGNETISM.

ARTICLE 309.] In Art. 191, we proved that when an infinite

plane is situated in a uniform medium of polarised molecules,

whose polarisation normal to the plane is n-, the average force at

any point on the plane arising from the molecules intersected by
the plane is 4 TTO-.

If, therefore, a plane element dS be drawn through any point

P of a magnetic mass, large in comparison with the superficial

dimensions of a magnetised molecule, but so small that the

polarisation of the mass is sensibly the same as that at P all

over dS, the force at P normal to dS arising from the magne-
tised molecules intersected by dS will be 47r<r, where <r is the

magnetic polarisation normal to dS at P, or in the notation now

adopted the force is

and the flux of force over dS is

Now, if a, /3, y be the components of the total magnetic force

at P, the total flux of force over dS is (la+ mfi + ny)dS.
Hence it follows that the flux of force over dS arising from

the magnetism in the field when the molecules intersected by
dS are removed is

The force whose flux is thus determined is called the magnetic

induction at P normal to dS. Its components parallel to the axes

of reference are

They are generally denoted by the symbols a, b, and c re-

VOL. IT. D
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spectively, and are called the components of magnetic induction

at P.

310.] If any closed surface S be drawn in space, the total flux

of the magnetic induction through S is zero. For the quantity

of magnetic matter within S is

Therefore, by Art. 42, the total flux of the magnetic force

through 8, or -

j
I

is equal to -4-7T /
j

Therefore

Since / / {la + mb + nc}dS =

for all possible closed surfaces, it follows that

da db dc _
-= -f- -= f- -j

=
dx dy dz

at every point.

It is proved in Art. 191, above referred to, that if a small

cylinder be taken whose base is dS and height very small in

comparison with the linear magnitude of dS, then the average
force within this cylinder normal to dS arising from the included

magnetic molecules is 4770-, or in the magnetic notation

Whence it follows that if a crevasse be formed by emptying
this cylinder of the included molecules, the average force within

the cylinder normal to dS arising from, the rest of the field is

in other words, this force is the magnetic induction as above

defined.
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It will be observed that the magnetic induction components

satisfy the no-convergence condition

da db dc

T + T + T =
'ax ay dz

but that the magnetic force components a, /3, y do not generally

do so
;
on the other hand, a, /3, and y are always derived from

a potential, but a, b, and c are not so, unless the components of

magnetisation A, B, and C are so derived.

The magnetic induction and magnetic force are the same in

all regions devoid of magnetic matter.

311.] Since the flux of magnetic induction is zero for any
closed surface whatever, this flux must be the same through all

surfaces bounded by the same closed curve, and therefore must

be equal to a line integral taken round the curve.

Let I, m, n be direction-cosines of the normal at any point P
of a surface 8 bounded by the closed curve #, and let a} b, c be

the components of magnetic induction at P. Then, if F, G, H
be vector functions of the coordinates f, ry, f of any point in S

which satisfy the conditions

_dff dG dF dH _dG dF-~"~' -~ ~"~'
we know, by Art. 271, that the line integral

j(
F
Ts
+0^ +H^ ds

taken round the curve 8 is equal to the surface integral

The quantities F, G, H determined by the above written

equations are called the components of the Vector potential of

magnetic induction, and sometimes also the components of the

Magnetic momentum.

312.] In Arts. 285, 286 we have found the expression for the

ordinary or scalar potential V of any given magnetic field, and

we now proceed to do the same for the components Ft G, H of the

vector potential. This involves the solution of the simultaneous

differential equations

D 2
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dH da dV dF dH dV

dj~d{
= ~d* ' d{~d* "dr,

4

d& dF dV

^-^ =
-rfc

The solution is

where r is the distance between the point f, rj, f at which

F, G, H are to be found and the element dxdydz^ and the

integrals are taken over all space.

For remembering that

d 1 d 1

T? ~ = 3--a T dx r

with similar relations for 77 and y, f and ^, we have with these

values of F, G, and If,

da d rrr d i , d rrr . d i ,

TZ^-T B-rr~ dxdydz -=- / / / A - dxdydzd drjJJJ dr drjJJJ drjr

-

dr\

Also, by Art. 286, if F* be the scalar magnetic potential,

dv

Therefore

dH da dv d rrr n di, . d rrr n di,
--- T7r+-r?- = T- /// B-- dxdydz -77. / / / B -dxdydz
d-n dC *f *vJjf ^f" ^fjJJ drir

Here the integrals in the right-hand member are extended

throughout all space, including the point from which r is

measured.

We may consider them as divided into two parts, (i) for all

space outside of an infinitely small sphere described about the
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point in question as centre, (2) for the space within that small

sphere. Then in forming the integral (i) for the external

space we may differentiate under the integral sign; and this

causes the right-hand member to vanish, because in this case,

the point from which r is measured not being included in the

limits of integration, V 2 - = for every point. The external

space therefore gives

^_^ + <*r =07 7 > I 7 f ^^ V *

drj d dq

Secondly, for the space within the infinitely small sphere we

may, if A> B, C be continuous functions, put them outside of

the sign of integration as constants. Then the first two lines

of the right-hand member of our equation vanish by symmetry :

and the third line becomes 4TrA. Hence, the integration for

the space within the small sphere gives

dH_dG dV
dif] d d

And combining the two results we have for all space

dH dG dV
j ~T[

+
-Jr.
~ 477^>

dH dG
or z-rr = a+ ^TTA = a.

arj a

dF dH
Similarly,

_ __ = 6,

dG_dF =

313.] If A, B, and C are discontinuous at the point con-

sidered, we may obtain the same result as follows

B ^t- A ^)- dxdvd*

in which the double integral is over every surface of discontinuity

of A and B, and throughout the triple integral B and A are con-

tinuous. Treating G and also V in the same manner, we obtain
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dH dG dV d CriB-vnA. d fA
1 TJ- + TF = T~ / /

*" 77- / /
'

c?J df d drjJJ ^ ^Cv/J

iB-vnA. d TnA-lC -

dS
r

lA+mB+ nC
dS

d rrri,dc JA-
dlJJJ r% -

if

The integral taken throughout the space outside of the small

sphere enclosing the point considered is zero by Art. 312,

because we may perform the differentiations under the integral

sign. When we integrate throughout the small sphere the

triple integrals in the second member vanish, because the

quantities under the integral sign are finite. Of the double in-

tegrals the first represents the force in y, due to a distribution

of density IBmA over the surface of discontinuity passing

through the point considered. That is, 47rm(lB mA).

Treating the other double integrals in the same way, we find

for the sum of the three

Therefore, as before,

dH da dV~ + =

or =
?T7 <^C

&c. = &c.

314.] When the magnetisation is lamellar A, J3, and C are

derivable from a potential 0, and therefore in this case a> d, and

c are so likewise.

Referring to Art. 304, we see that in such a mass the quantity
in that Article called fi, or

r^ ~a

dS,

is the potential of magnetic induction, and that the components
of this induction are
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In this case

rrr(d<i_d$ \<

JJJ \dydz dz'dy]

m- n
)dz dy' r

or =

The quantities denoted by F, G, H in Art. 301, are the com-

ments of vector potential for a uniform magnetic shell, and,

there stated, for such a shell

idy

le line integration being taken round the shells contour.

These results might have been deduced from the expressions

for F, G, and .3"just found for any lamellar mass.

Of Induced Magnetism.

315.] Hitherto we have treated of magnets and magnetic

lolecules in their mechanical relations only, considering mag-
letisation as an invariable quantity without regard to the

leans by which it can be produced, altered, or destroyed. In

iture no such thing as an invariably magnetised body exists,

[agnetisation is always changing, and in particular the magnet-
ition of any substance generally changes with the state of

ie magnetic field in which the substance is placed. Magnet-
ion is said fco be induced in it by variation of the field,

renerally, a piece of iron tends to assume magnetisation if

)riginally unmagnetised, or additional magnetisation if partially

lagnetised, in a direction opposite to that of the field, that is,

such a direction as to diminish the magnetic potential of the

ield. If the field were one of electric instead of magnetic force,

the magnetisable substance a conductor, it would become

)larised in that direction, and the polarization would be pro-
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portional to the inducing force. In Poisson's theory of induced

magnetism this is the action which ensues in the molecules of

magnetisable masses when brought into any magnetic field.

The molecules become polarised to a degree proportioned to the

magnetic force. Hence, it follows that the mathematical treat-

ment of such a magnetisable medium would exactly resemble

that of the dielectric medium considered above in Chapters X
and XI, the magnetisable molecules taking the place of the small

conductors of that chapter. So that if a, /3, y were the com-

ponents of total magnetic force of the field at any point, we

should have an additional magnetisation in the neighbourhood

of that point arising from induction whose components were, in

the notation of that chapter, Q a, Q(3, and Q y respectively, the

symbol K being generally used for Q in Poisson's notation l
.

The quantity 1 + 4 -n K is, therefore, in all respects analogous

to that represented by K or 1 + 4 TT Q in the chapters referred

to, and it is in Poisson's notation generally denoted by //.

Further, A, B, and C, the components of induced magnetisa-

tion, are respectively equal to xa, */3, and *y.

It follows from the results arrived at in the aforesaid chapters,

that the magnetic potential at any point in a magnetisable mass,

in any magnetic field, is - of the potential at the same point in

air or vacuum, and therefore that in comparing two media with

different values of /u, the intensities of the fields arising from

similar magnetic systems vary inversely as /u, that is, a, /3, and

y, the forces derived from magnetised molecules, vary inversely

as ju.
On the other hand, the vector whose components are

juo, /u/3, /xy is always independent of /A.

When the magnetisation of the mass arises entirely from

induction, the last mentioned vector is the magnetic induction,

and in this case the magnetic induction at any point in any
medium due to any given magnetic distribution is independent
of /u, and whatever be the changes of medium, the flux of

1 It is assumed in the text that we are dealing with iron, by far the most im-

portant of magnetisable substances. In certain substances induced magnetism
is of the opposite sign to that stated in the text. Such substances are called

diamagnetic. Iron, and substances which behave like it are paramagnetic.
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magnetic induction over every closed surface is zero, and the

magnitudes F, G, H, are independent of p.

In all cases the flux of the vector /xa, /x/3, /my over any closed

surface is equal to the algebraic sum of the magnetism within

the surface.

316.] If a homogeneous mass without magnetisation, but

capable of being magnetised by induction, be placed in a mag-
netic field, the magnetisation which it assumes is, according to

this theory, lamellar and solenoidal.

For let V be the magnetic potential, including as well that

of the field as that of the induced magnetism. Then we have

at every point in the mass

dV
A = fx-T-jr dx

dVB = -MT~>r
dy

n dV
C = -)Lt

dz

And therefore since the mass is homogeneous and
ju, constant,

A
9 B, C are derived from a potential M F, and the magnetisa-

tion is lamellar. Again, if p be the density of magnetic matter

within the mass, V2 V+ 4?rp = 0. Also, as shown above,

dA dB dC

or -

whence it follows that p = 0, and

dA dB dC_ Q
dx dy dz

or the magnetisation is solenoidal.

A case of a lamellar mass is conceivable in which the force,

due to the mutual attraction of the faces of every magnetic

shell into which the substance is divided, is always equal and

opposite to the separating force to which the magnetisation is

due, so that a = 0, /3
= 0, y = at every point. According

to the experiments of Thalen (Maxwell, 430) this condition is
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very nearly reached by soft iron, for which -- = 32, and

therefore
//,
= 128 TT+ 1.

317.] On this theory it follows that to any problem in in-

duced magnetism there corresponds a problem in specific inductive

capacity, and any such problem may be investigated on the

principles developed in Chap. XI, with the substitution of
/ut

for

the symbol K of that Chapter, where /x
= 1 + 4 TTK.

If V be the known potential at any point of the given mag-
netism in the field, and V that of the induced magnetism, and

we confine our attention to the case of isotropic media, the

equations for the determination of the unknown quantity V in

terms of the given quantity V are of the form

d dV dV d dV dV d ,dV dV

throughout regions wherein ju is either invariable or continuously

variable, and

over surfaces separating the media at which
//, changes discon-

tinuously from
/ut

to //, where p and o- are the volume and

superficial densities of any given fixed magnetism in the neigh-

bourhood of the point. In the case of a single magnetisable
mass bounded by a given surface and placed in air or a medium

for which p is unity, and in a given external magnetic field,

and if there be no fixed magnetism in the mass, the above

equations are reduced to

V2 F' = 0,

and /4
*.
(F+70+^<7+70 = 0.

The last equation becomes, by the substitution of 1 + 477 K

f r//5 dV' dV' dV __
' dv dv' dv

because -
-j = 0,

dv dv

and it is more generally written in this form.
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318.] For all cases of concentric spherical boundaries it is

easy to determine V in suitable spherical harmonic functions,

when V has been so expressed, with the common spherical centre

as origin. The particular case of a sphere with magnetic per-

meability JA, surrounded by air in a field of uniform magnetic
force F, parallel to a?, is specially treated in Chap. XI above

mentioned.

If in the results there obtained we write /u for K
t
we get for

the resulting magnetic potential V in the space outside the

sphere

and for the potential V
l
in the sphere

And for the superficial magnetisation of the sphere at any point

_ jn- a?
"~ ' *

The method may be extended to a mass bounded by the

>
ellipsoid

cc i/ %?

a?
+

&*"
+

c
2
= 1?

surrounded by air and in a field of constant force F.

For if < denote the integral

r d\

L 7p
where A is a function of a?, ^, z determined by the equation

* f *
-i m

2 i \ 72_i \ 2_i_ X V '

we know that x is the ^-component at a?, y, ^ of the attrac-
(JuGL

tion of a mass of density unity bounded by the ellipsoid, and

therefore it satisfies the conditions of vanishing at infinity, and

at all external points.
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If $ denote the value of
<j>
when A. = 0, that is to say, for

any point on the ellipsoid, it follows that the function

-jda?

satisfies the above conditions, and is equal to x at the surface

of the ellipsoid. Also at the surface,

d (*&? x x ( x d 11 d z d ) d(b= -jj-
1

J-5J- 1_ TX .

1_ us
t _L.

az
dty^l a? dx b'* dy tfdz ) da

2

da?~

_ ivx tax ( x dA. y d\ z d\} d d$
a? d(j) \a? dx IP dy c

2 dz\d\ da?

da2 '
da

da?

where w is the perpendicular from the centre on the tangent

plane at x, y, z.

AI
d d<l> I 1 ,

Also -~ = - -rr- when X = 0.
d\ da? 2 a?bc

And from (1), where X = 0,

d\2x d\ 2 d\ 2z

(nr,

_]L \

da? \ VTX IPX 1===== --__..... (2)
dfa } a? a? d<$>Q
- o / UUL 7
da?

' da2

Therefore we obtain a solution by assuming for the potential

V of the external space

and for the potential, Vl ,
of the internal space

where A is a constant to be determined.

Again, on the surface

dV dV.---
ju

^ = 0.
dv dv
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The last equation gives us, by means of (2),

F A

or

which determines A.

When a = 6 = c, ^> = - -L-
;

da? 3 a3 '

the elKpsoid then becomes a sphere, and

as before.

The superficial magnetisation is

dv

If the given field had been one of constant force whose com-

ponents were F, G, ff, then the internal field would also have

been one of constant force whose components were

-F ~G -H
r-; ) . and

And the superficial magnetism at any point would be

F x
|

G
y_
2

H

319.] We may apply a similar treatment to the case of a

shell bounded by concentric spherical surfaces with radii a and
,

and situated in air in a field of uniform force F.

Let F, F', and V" be the potentials in the external space,

in the substance of the shell, and within the hollow respectively ;

then it is clear that
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where Q is a constant, will at all points satisfy the condition

V 2 F=0.
Also 7 at infinity becomes Fx+ Q, and V and V" are every-

where finite.

If A = C(l
-

-3),
and D = ^(l

-
^),

the values of the

potential will be everywhere continuous.

The surface conditions require that

dV dV' dV' dV'
,

and w -;
=

,
-- -
drr=a drr

whence we get

or eliminating and reducing,

Also

Therefore

And the hollow is a field of uniform magnetic force whose

value is

320.] A similar method may be applied to the case of a shell



320.] INDUCED MAGNETISM.

bounded by concentric and confocal ellipsoidal surfaces surrounded

by air in a field of uniform force parallel to one of the axes.

Let the equations of the outer and inner ellipsoids respect-

ively be

^*+lb+-* Sil >
and T^T- + TT-T- + T^~T = *>

a2 I
2 c2 a2

A, ft
2

A, c2 A,

and let $ and $' denote the integrals

d\

and r
J\

dk

and $ and $' the corresponding integrals for A = 0.

The value of A for any point x, y} z in the respective integrals

being determined by the equations

x* y* z
2

a?
2

y* z2

=
1, and -= - + ^ r+ ;

= !

It will be observed that

id therefore that at any point in space $ = (//, provided that

forming < we measure A from the outer, and in forming </>'

re measure A from the inner ellipsoid.

Then the values of the aforesaid potentials F, F"', and V" for

the external space, the shells substance, and the hollow will be

n by the following equations

V=-Fx I-

V" = Dx,
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where d(j>'

J7A=C

da2 I

with the superficial conditions at the outer and inner surfaces

dV dV' dV' dV"
- =

IJL

- and jx -= = -r
dv dv dv dv

At the outer surface

dV Fxtff I

dv"

where w is the perpendicular from the centre on the tangent

plane at #, y, z of the outer surface. Substituting in the first of

the superficial equations and dividing by ^ we obtain a linear

equation in the constants. .

-.y,,

Similarly, we should find that at the inner surface -^ and -

, dv dv

are each divisible by -^ , where w
f
is the perpendicular from

the centre on the tangent plane at the point x, y, z of that surface,

whence we should get a second linear equation these two equa-

tions in A) , C, D combined with the two given above give a

complete solution of the problem.

321.] The theory of induced magnetism given above does

not adequately explain the phenomena presented by soft iron or

other rnagnetisable substances when placed in a magnetic field.

According to the theory, the intensity of magnetisation induced

should be proportional to the force, and so capable of increase

without limit. And the magnetisation should immediately dis-
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appear on removal of the force. Neither of these conditions is

fulfilled in practice. It is found that the magnetisation actually

assumed by soft iron tends, as the inducing force is increased,

to a definite limit, and that it does not immediately or entirely

disappear on removal of the force. It is found also that if the

force pass through a complete cycle the magnetisation is always
retarded in phase, as a consequence of which work is done in the

cycle. Other theories have been invented to explain the actual

phenomena, of which the best known is that of Weber, dis-

cussed by Maxwell, Chap. VI, Vol. II. The reader may also

consult the works in footnote below *. It is not our purpose to

dwell on this branch of the subject, which belongs rather to

treatises on the physical properties of iron.

*
Warburg, Wiedemanns Annalen XIII, p. 141

; Dr. Hopkinson, Phil. Trans.,

Vol. CLXXVI, part II, p. 455 ; Professor Ewing, ibid., p. 523 ;
Lord Kayleigh,

Phil. Mag., Vol. XXII, p. 175; Mr. Bosanquet, ibid., Vol. XIX, pp. 57, 73,

333 ; Vol. XXII, p. 500.

VOL. II.



CHAPTER XVIII.

MUTUAL RELATIONS OF MAGNETS AND ELECTRIC CURRENTS.

ARTICLE 322.] WE now return to the consideration of the

system of two uniform magnetic shells of strengths $, </>'
re-

spectively ; and, until otherwise stated, it will be understood

that we are dealing with a medium in which the magnetic per-

meability is unity. As above shown, the potential energy of

mutual action of the two shells, that is the work which would

be done in constructing the shell < against the forces exerted

by the shell $' is

where a', b', c' are the components of magnetic induction, or,

which is here the same thing, magnetic force, due to the shell $',

and the integration is over the shell <. The surface integral

represents the flux of magnetic induction of the shell <ff through
the shell <p, or, as we may otherwise express it, the number of

lines of magnetic induction of the shell $' which pass through
the shell $.

The expression

(la + mb'+ nc') dS

admits of being put in several other forms of which we shall

have occasion to make use
;
viz.

where e is the angle between ds and ds
r

, taken round the boun-

dary of both shells. We shall denote the integral

cos e , , , , ,

dsds by M.
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Also

round the boundary of the shell $, where F', G', Hf
are the com-

ponents of vector potential of magnetic induction due to the

shell $'. It appears from the last expressions that the quantity

of work in question is independent of the form of the surface of

either shell if the bounding curve be given.

If the shells be rigidly magnetised, and if they be capable of

relative motion without change of shape, they will so move as

to diminish the quantity < <'M, that is to increase or diminish

M, according as and $' have the same or opposite signs.

i Exactly in the same way if there be many magnetic shells, or

magnetised bodies, in the field, a rigidly magnetised shell of

invariable shape will, if free to move without change of shape,

so move as to increase the flux of magnetic induction due to the

field through its contour.

Evidently any such diminution of the potential energy has

its equivalent in kinetic energy of visible motion of the shells,

or in external work done.

323.] It was discovered by Oersted that the field in the neigh-

bourhood of a closed electric current is a magnetic field. The

definition of this field, usually accepted as the result of experi-

ments, is that the magnetic field due to a uniform magnetic
shell at any point not within its substance is the same as that

due to a certain closed electric current round the bounding curve

of the shell. The direction of the current is the positive di-

rection as defined in Art. 269, taking for the positive normal to

the shells surface a line drawn from the negative towards the

positive face of the shell. The strength of the current is pro-

portional to that of the shell. When we come to treat of the

units of measurement, we shall see that in a certain system,
called the electromagnetic system, the strength of the shell is

numerically equal to that of the current.

324.] An infinite straight line may be regarded as the edge of

a plane magnetic shell, every other part of the boundary of which

is infinitely distant. According to the law of equivalence above

E 2



52 OEKSTED'S LAW. [324.

stated, such a shell produces the same magnetic field as an

electric current in the infinite straight line. Let a small bar

magnet be brought into the field of the infinite shell. Such a

magnet may be regarded as a magnetic shell, or aggregate of

parallel magnetic shells. We might then form the integral

'cos 6 ,
dsds

,

for the infinite straight line with the boundary of the shell or

shells composing the magnet in any given position. The bar

magnet, if free to move, would tend so to place itself as to

make this integral a maximum, and, according to the law of

equivalence above stated, it will behave in the same way when

for the infinite shell we substitute an electric current in the

infinite line. Let us take the direction of the current for axis

of z
}
and a plane through C, the centre of the magnet, for that

of xy, the origin being at the intersection of this plane with

the infinite straight line. Then, first, let the axis of the magnet
be constrained to lie in a radius drawn from in the plane of

xy> but be free to rotate about an axis coinciding with that of

z. In this case the integral

cos e
,

dsds = 0,
f

whatever be the length CO, and whatever angle it makes with

a fixed plane through the axis of z. The magnet therefore

will be acted upon by no couple tending to turn it round the

axis of z. It is found that this is in fact the case.

Secondly, let the centre of the magnet be fixed, and let it be

free to turn in a plane perpendicular to the current. In this

case the integral is a maximum when the positive pole points

towards the right of a man so standing that the current flows

from his head to his feet and facing the magnet. It is found

that the magnet does tend so to place itself. The experiment

might therefore be regarded as confirming the law of equivalence

above stated.

The experiment can also be interpreted in a somewhat dif-

ferent way. The magnet may be regarded as consisting of a
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positive and a negative pole. And the current as exerting a

force on the positive pole in the tangent to a -circle drawn

through the pole round the origin as centre in a plane per-

pendicular to the current, in the direction above indicated, and,

cateris paribus, an equal and opposite force on the negative pole.

Since in the first case there is no resultant couple tending to

move the magnet as a whole round the origin, it follows that

the moment of the force acting on the positive pole round the

axis is equal and opposite to that acting on the negative pole

for every position of the magnet. Whence it is inferred that

the force on a pole due to the current in the direction of the

tangent varies inversely as the distance of the pole from the

current. For a magnet of invariable shape the experiment
admits indifferently of either interpretation.

325.] As the magnetic field due to a closed electric current is

the same as that due to the equivalent magnetic shell, it follows

that the mechanical effect of the field on the conductors carrying
the current is the same as its mechanical effect on the shell.

That is, if the electric current i be maintained constant, the

circuit, if rigid, tends to move so as to increase or diminish the

coefficient If, that is the flux of magnetic induction through it,

exactly as the equivalent shell would do if rigidly magnetised.
If q be any generalised coordinate on which the value of

M
9
or

depends, the mechanical force tending to increase q in a system
of magnetic shell and electric current (the magnetisation of the

shell and the electric current being both constant, and the

shape of shell and circuit invariable) is icf) -7-. And there-

fore if the system move with i and
</>

constant under its own
mutual forces so as to make q become q + 5 q, it acquires kinetic

energy of visible motion of the shell or conductors or both, or

does work, equal to i<f) -y S^.

In the corresponding case of two shells we said that this kinetic
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energy, or work done, was equivalent to the diminution of the

potential energy of position of the two shells caused by the

motion. In the case of circuit and shell now under considera-

tion, it is true that the forces are derived from i<j>M as from

a potential. Nevertheless, to ascribe to the system potential

energy of position would not be a complete account of the phe-

nomena. Because, as we shall see later, the motion involves an

increased expenditure of chemical energy in the battery to main-

tain the current constant over and above what would have been

necessary for this purpose had the system remained at rest. And
the external work done by the system has its exact equivalent

in the additional chemical energy spent in the battery.

326.] If for the two shells we substitute the two equivalent

electric circuits with currents i and i', their mutual mechanical

action, assuming the currents to be maintained constant, is the

same as that of the shells. They tend to move so as to increase

the quantity
., /Tcose , ..,
i' n dadr> or n'M.

Any variation of ii'M has its equivalent in external work

done or kinetic energy of visible motion acquired by the con-

ductors. But, as we shall see later, the motion of the conductors

with constant currents involves in this case an increased expendi-

ture of chemical energy in each of the two circuits equal to the

external work done. So that in the whole chemical energy is

drawn upon to twice the amount of external work done in

addition to the heat generated by resistance in the circuits.

327.] The equivalence of electric currents and the corresponding

magnetic shells affords a measure of electric quantity differing

from that employed in Part I, Chap. IV. For instance, two

infinite parallel magnetic shells bounded by two parallel straight

lines attract each other if magnetised in the same direction. And
therefore two infinite parallel straight currents, if in the same

direction, attract each other with a force proportional to the

product of their intensities. Hence we might define the unit of

electricity theoretically as the quantity which must pass through
a section of either current in unit time, in order that the currents
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being at unit distance apart the force on unit length of either

may be unit force. See Chap. XX.

328.] If any closed curve S be drawn in the field of a mag-
netic shell, the line integral of magnetic force round S must be

zero, whether S cut the shell or not, because the force is derived

from a single valued potential. If, however, the curve cut the

shell once, and so embrace the bounding curve of the shell, we

may take two points P and P\ in the curve infinitely near one

another but on opposite sides of the shell, and the potential at P
will be 2 77 <, and 2 TT $ at P', where

</>
is the strength of the

shell. Hence the work done by the magnetic force on a unit

magnetic pole in passing from P to P* always outside of the

shell is 4 770, and in passing from P
f

toP through the shell 4 TT 0.

If now for the magnetic shell we substitute the equivalent

closed electric current i, we see that the line integral of magnetic

force on a unit pole round a closed curve S, not embracing the

current, is the same as in the former case, and therefore zero.

But if the closed curve S embrace the current, inasmuch as no

part of S now corresponds to the space between the faces of the

shell, the magnetic force is at all points of S in the same

direction round S
9
and its line integral on a unit pole round S

must be + 4-Tr?', or 4-ni, according to the direction taken.

If the electric current i were an invariable property of the

circuit, this result would be contrary to the conservation of

energy. But in fact the electric current can only be maintained

by a continuous expenditure of energy in a battery or otherwise,

the amount of which per unit of time is altered during any
time variation of the magnetic field in which the circuit finds

itself; and we shall see later that the passage of a magnetic

pole round the closed curve S embracing the current must, if the

current be maintained constant, involve the expenditure of an

amount of chemical energy in the battery equal to Ini or

+ 4 TT i as the case may be, over and above what would otherwise

have been expended in maintaining the constant current i

against the resistance of the circuit.

329.] It thus appears that the magnetic potential due to a

closed constant current i, if defined with reference to mechanical
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forces only, may have any one of an infinite number of values

differing- from one another by 4iri. It is the work done in

bringing a unit pole from an infinite distance to the point con-

sidered by any path arbitrarily chosen, and differs by 4?n for

every time that this path embraces the current.

In the case of the infinite straight current already treated,

the potential is 4? tan" 1
-, where the plane of as, y is perpen-

dicular to the current and the origin in the current, and we

pass from the axis of x to that ofy by turning in the positive

direction, the current being in the direction of negative z.

330.] The effect of variation of the magnetic permeability /z

between one uniform medium and another will be considered in

Chapter XIX. It is sufficient here to point out that the line

integral of magnetic force taken round a closed current % in the

positive direction is 4tri
3
whatever be the nature of the medium.

Whence it follows from the relation between magnetic force and

magnetic induction in a field of magnetisable matter (Art. 315),

that the line integral of magnetic induction round the same

closed current is 4irpi.

331.] Now let / denote the current i referred to unit of area,

so that if a be the transverse section of the tube through which

the current i flows, la = i.

Let n, v, w be the components of /. Then we have

T dxI = u. &c.
ds

Let 7', ?/, v', w' have similar meanings for the current i'. Then

..,cose _ ,
tt -dsds

faj^ j^fy fajj
.cose , ,, ,ds dsf ds ds' dsds' _= la la dsds = la I a dsds

r r

uur
4- wf+ ww'= ads ads.

And therefore

.., /YCOSC , .
, r rrrrcuu'+w'+ww' .

1 1 //////"
~ dxdydz dxdydz

taken over both currents.
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Now
, /-/-COB*

.

n'
II

dsds'

is the mechanical work which would be done in bringing the

two circuits with constant currents i, i' from an infinite dis-

tance to their actual position. Therefore, also,

'uu'+ w'+ww' . ,/,/,,
dxdydzdx dy dz

represents this same amount of mechanical work.

332.] We should obtain consistent results, so far as closed

circuits with constant currents are concerned, if we assumed that

the mechanical work done in bringing the two elementary currents

udxdydz, u'dx'dy'dz'

from an infinite distance to their actual position is

dxdydz dtfdy'dz',

and so on for every pair of parallel elementary currents, but

that between two mutually perpendicular elements no work is

done. Or, which is the same thing, we should obtain consistent

results so far as closed circuits are concerned, if we assumed

the following law of force between elementary currents, viz.

that two parallel elementary currents if in the same direction

attract, and if in opposite directions repel, each other with a

force varying directly as the product of their intensities, and

inversely as the square of the distance between them, but that

mutually perpendicular elementary currents have no mutual

action.

333.] We have found

'uu'+ vv + iowf

-Mir dxdydz dx'dy'dz'

to be the amount of mechanical work required to bring two

closed circuits with constant currents i, i' from an infinite dis-

tance to their actual position. Evidently, the work done in

the case of three or more closed circuits will be the sum of

a number of expressions of this form for each pair of circuits.

Now, any single closed current may be regarded as the limit
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of a number of similar and parallel closed currents made to

coincide with each other, and on that principle we might cal-

culate the mechanical work required to construct it. For

is the mutual potential energy of two masses of volume density

u and u' respectively, and is finite if u and ?/ be finite, even if

the two masses occupy the same space. If, therefore, 2, u^ v, w,

the currents referred to unit area, be finite, the mechanical
<o

work done in bringing n closed circuits, each with current -

from an infinite distance to coincide with one another is finite.

Further, it consists of - - terms, each of the form

and therefore, when n is infinite, it is independent of n. We
will denote the limiting value of this expression for a given
circuit or closed curve when n is infinite by ^Li

2
.

The whole work done in constructing the closed current i will

include, in addition to the above terms, n other terms,

each representing the work done in creating the closed current

- in its own field. We cannot assert that the expressionn

^Li
z
represents the whole work done in creating the current,

without asserting that the sum of these n terms vanishes when

n is infinite, compared with that of the other -^ terms,

an assertion which may be precarious.

If this assumption can be made, the whole mechanical work

done in constructing a system of two closed circuits, is

Now, .Z/!
and Z

2
are essentially positive, and it is not difficult

to shew that L^L^M*.
It follows, therefore, that the mechanical work done in con-
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structing the system of two closed circuits with constant currents

is essentially negative.

We may call the above expression the potential energy of

the two circuits, provided it be always understood that it re-

lates to mechanical work only.

334.] In the case of a uniform magnetic shell of strength $, we

saw (Art. 307) that the potential self-energy of the shell is not

2
/Ycose ,

-T//
dsds >

but is that quantity increased by

and we know that the potential energy of any magnetic system
is essentially positive. In fact, since $ = Idv> where dv is the

thickness of the shell, the latter term is preponderant, and the

potential energy of two such shells may be written

where X
x
and A

2
are no longer the limiting values of M for two

shells whose contours coincide. The quantity within the bracket

is in this case essentially positive.

Of the Vector Potential of Closed Electric Currents.

335.] The quantity . ridx
</> / -j-ds
^J rds

round the boundary of a magnetic shell < is, as we know, the

^-component of the vector potential of magnetic induction of

the shell.

Similarly,

i /
-

-j- ds
J r ds

is called the ^-component of vector potential of the current i, or

more generally

/ / / -
dxdydz, III' dxdydz,

~ dxdydz
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are called the #, y, and z components of the vector potential

of i, the integrals being taken over the whole space occupied

by i, and if there were any number of closed currents in the

field, the same integrals taken over the whole space occupied

by those currents, are called the a?, y, and z components of the

vector potential of the whole system, and are denoted as before

by F, G, and H respectively. This is on the assumption that

//,
= 1 . For it will be shown later, that if ju^ 1

, we must take

=
fj.

-
dxdydz, &c.

336.] Recurring to the two-current field, and supposing that

= 1, the quantity Llt or

/r
cose

dsds',
JJ

taken for every pair of elements in the circuit of i
l9 is the flux

of magnetic induction of unit current in that circuit across any
surface bounded by that circuit, or, as for brevity we shall say,

across that circuit, and L^ is the similar flux for the current ^.

Therefore

round the circuit of i19 where F19 G19 11^ are the components of

vector potential at any point of that circuit arising from the

current in it.

L
2 and L

2
i
2 have similar meanings with reference to the

current *8 ,

The quantity M, or

cose ,
dsds

,

is the flux of magnetic induction across \ of unit current in i
2 ,

or the flux across i
2 of unit current in il} and Mi

2
is similarly

the flux across ^ of i
2
in the second circuit, and Mi^ is the flux

across i
2
of i

:
in the first circuit*

Therefore

round i
19 where F^, G^, H^ are components of vector poten-
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tial at any point in ilt arising from ?
2

in the second circuit,

with a similar meaning mutatis mutandis for Mi^ .

Now the quantity

is equal to

* {*i(M

It is therefore equal to

dx ^dy ^dz\ _ T/^dx ~dy Trdz

where the first integral is taken round ^ ,
and F, G. and H in

it are the components of vector potential of the whole field at

every point in ^ ,
with similar meanings for the second integral.

The result may be written as

r4i
'
"

ds

taken over both the circuits.

Replacing i by /a, &c., the expression may be written

2

and since

= rrr

ff=
rrr

the expression may also be written as

where the sextuple integral extends over the whole field. As

above stated, if /x ^ 1, F, G, H and the final expression must

each be multiplied by ju.

337.] The quantities I, G, H of the last Article satisfy the

condition

-*- + T- + ^~ =dx dy dz

at every point in a field of closed currents such as we are now

considering.
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For in such a field, the condition of continuity necessitates the

equation

T + T- + :r =ax ay dz

at all points where u, v, w vary continuously, and the correspond-

ing equation

over all surfaces of discontinuous variation of u, v, w.

Now

F= p fff- dx'dy'dz*, where r = V(x-x'f + (y-yj + (z-z'f ;

whence -j- = }j.
u' -

(
-
) dx'dy'dzfdx

The 2 indicating the summation of the corresponding surface

integrals over all the surfaces of discontinuous variation of u,

and the triple integral being taken over all space of continuous

variation of the same quantity.

Therefore

by the aforesaid equations of continuity.

338.] If a, b, c are the components of magnetic induction at

every point in the field, we know that

dH d& dF dH dG dFa=--- -= 0=- ---
> c = ----

;

dy dz dz dx dx ay

whence we get

^_i6 = _v2^ + -.r + + v
dy dz dx ^dx dy dz '

dF dG dH
But - + - + - = 0,

dx dy dz

dc db
.'. ----- =

dy dz
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. .1 , da dc
Similarly, 3-- -=-

dz dx

db da---
dx dy

If S be a closed surface bounded by the curve $, it follows

from these equations that

fra~

or the integral of the magnetic induction round any closed

curve s is equal to the flux of current over a surface bounded

by S multiplied by 4irfjL.

In other words, it is the expression of the fact mentioned

above, that the line integral of magnetic induction round a

closed current i in any field is equal to 4 IT pi.

It is in this respect that the expressions for the potential

energy of a field of two shells

differs from that for the two equivalent currents, or

The former gives a potential at every point in space, but the

latter only at such points as are free from currents.

The potential energy for a field of any number of closed

currents is, by an obvious extension of the above reasoning,

equal to
l

-

/ / / (Fu+ Gv+ Hw)dxdydz,
*JJJ

where F, G, H are the components of vector potential at any

point arising from the whole field, or as before to

'uu'+ w' + ww' , ,,,,,,
dxdydz dtfdy dz*,

-Iff!'
over the whole field.

339.] Since, as we have seen,

da db dc __
dx dy dz

at all points, it follows that the magnetic induction forms closed
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tubes throughout all space, and that for any such tube the flux

of induction through an orthogonal section is constant. Such

an induction tube may be called a magnetic circuit.

At every point we have the equations a /ua, &c., so that

the magnetic induction is connected with the magnetic force

by the same formal relation as the electric current with the

electromotive force.

If i be the aggregate of all closed or infinite electric currents

embracing an induction tube or magnetic circuit, 4vi is the

magnetic force in the circuit.

If A denote the magnetic induction through a section of the

tube, -r- is, by analogy to Ohm's law, called the magnetic re-
ji.

sistance of the circuit.



CHAPTER XIX.

INDUCTIVE ACTION OF CURRENTS AND MAGNETS.

ARTICLE 340.] IT has been established by Oersted's experiments
that the magnetic field due to any uniform magnetic shell is

the same at any point not within the substance of the shell as

the magnetic field due to a certain closed electric current coin-

ciding with the boundary of the shell. The strength of this

current in electro-magnetic units is, if the magnetic permeability
be unity, equal to the strength of the shell, and the direction

of the current is the positive direction, determined by taking
for the positive normal to the shell's surface a normal drawn

from the negative to the positive face of the shell (Art. 267).

We shall speak of the current and shell as mutually equivalent.

It was observed by Faraday that if a closed circuit, with or

without electromotive force of its own, be moved in the field of

a magnet, a current is induced in it
;
or the current already

existing in it is increased or diminished during the motion,

notwithstanding that both the strength of the battery and the

resistance of the circuit be unaltered. This induced current is

reversed in direction if the motion be reversed, and increases

with the velocity of the motion. It disappears rapidly by
the resistance if the motion cease. There is then an electro-

motive force in the circuit due to the motion, which we may
call the electromotiveforce of induction.

The same effect is of course produced by moving the magnet

through the field of the circuit, and therefore also by variation

of the strength of the magnet, because any such variation may
be brought about by bringing a new magnet into the field to

coincide with the existing magnet. It is produced by variation

of the magnetic field in which the circuit is placed. On the

other hand, the behaviour of a closed current is not affected by
VOL. II. F
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the nature of the magnetic field in which it is placed, if there

be no time variation of that field. From these facts, combined

with those of Oersted, Helmholz and Thomson deduced the

laws of induction between mag-nets and closed electric currents

by a method founded on the conservation of energy.

341.] If a closed circuit with current / be disconnected from

the battery, and the current allowed to decay in its own field, that

is, not influenced by external induction, a certain quantity of heat

is generated in the circuit during the decay. The circuit in

virtue of the current in it has a certain intrinsic energy, which

can at any time be got in the form of heat by disconnecting the

wires from the battery. Let H denote this quantity of energy

for the current i. Let i be the current at any instant after dis-

connecting. Then the heat developed in time dt at that instant

is R i
2
dt, R denoting the resistance of the circuit, and since this

can only be obtained at the expense of the intrinsic energy of

the circuit, we have

^ = - Ri*, H = rRtfdt.
dt Jo

For a given circuit the intrinsic energy is a function of i. It

is the same in whichever direction through the circuit the

current passes, and therefore contains only even powers of i.

We shall therefore assume H= J Li 2
,
where L is a coefficient

depending only on the form of the circuit, which we assume for

the present to be invariable.

This gives L*T-= -**.
dt

di R .

or = -'
and if 7 be the initial current

and
/'

*/>'.

This intrinsic energy is independent of the nature of the mag-
netic field in which the decay takes place, so long as that field

remains invariable with the time
;
but any time variation of the
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ield would give rise to induced currents in the circuit according
to Faraday's law, and would therefore alter the rate of decay of

the current. If after the current has ceased the circuit be con-

nected again with the battery, and the original current / re-

established, the intrinsic energy is restored to the circuit
;
and

this takes place at the expense of the battery. It follows that

the chemical energy spent in the battery during the establish-

ment of the current /in a constant magnetic field exceeds the heat

generated in the circuit during the same process by the intrinsic

energy of the circuit with the current /; and therefore including
both processes, namely the decay of the current from / to zero,

and its re-establishment, the field being in each case invariable

during the variation of the current, the whole chemical energy

spent is equivalent to the heat generated in -the circuit.

342.] Now let there be any magnetic field, and as w^ane

considering a theoretical case only, let it be due to a umfotm

magnetic shell of strength $, which we can maintain coireljgmt //
or vary at pleasure. In this field let there be a circuit connected^

with a battery ;
and we shall suppose that either by varyin^C^^

the electromotive force of the battery, or by suitably adjusting

the resistance, we can maintain the current constant, or make it

vary in any way, notwithstanding the effect of induction in any
motion of the circuit.

Let now $, the strength of the shell, be constant, and let the

circuit move with constant current / in obedience to the mutual

attractive or repulsive forces between the shell and circuit from

an initial position A to another position B. A certain amount

of work, W, is done during this motion ly the mutual forces.

The circuit having arrived at B, let the wires be disconnected

from the battery, and the current allowed to decay by resistance.

Then let the wires, still disconnected, be moved back from B to

A without current. This last-named motion may be effected

without doing any work 1
. Then let the wires be reconnected,

1 For although a current will be established inductively in the wires moving in

the magnetic field, yet by diminishing without limit the velocity of the motion
we can, owing to resistance, diminish without limit the current at every instant

during the motion, and therefore the work done against the electromagnetic
forces.
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and the current I restored with the circuit in its original posi-

tion at A. The system has thus performed a complete cycle,

in which external work has been done by it, and heat has

been generated. By the conservation of energy the chemical

energy spent in the battery must be equivalent to W, together

with all the heat generated in the circuit from first to last

throughout the cycle.

But during the latter part of the cycle from the instant of

disconnecting at B to the complete reestablishment of the

current / at A, we have to do only with the decay and re-

storation of the current, and therefore the chemical energy spent

is, as we have seen, equivalent to the heat generated.

It follows that the chemical energy spent during the motion

with 7 constant from A to B is equivalent to W, together with

the heat generated during that motion, that is to

W + f
B
RPdt.

JA

343.] We infer now that Faraday's electromotive force of in-

duction caused by the motion of the circuit through the magnetic

field, is in such direction that the current due to it would, if it

existed alone, resist the motion, that is, it is a force in the opposite

direction to / which causes the motion, that is, a force tending
to diminish /. Let this electromotive force be W. Then in

order to maintain / constant during the motion, we have to

increase the electromotive force of the battery by E'. We may
suppose, without altering 7, the number of cells increased in the

proportion E+ E':E. Then the chemical energy spent in the

battery with current / per unit of time is (E+ 25')I, that is,

R Iz
-\-ff I\ and the chemical energy spent in the motion from

Aiollis
f'*r*JA

We have then

fRPdt + W = fRPdt + /

W = /Jfor

therefore - = E'L
at
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But by Oersted's Law
dW r^dM
-dT

= T^ J

W being the work done ly the forces.

Hence ^'7=7

T?>and E =
ut

id the electromotive force of induction, or -E', is <=
(it

344.] Similar results are of course obtained by moving the

>nstant shell while the circuit remains at rest. And if the shell

brought up from an infinite distance with 1 and $ constant,

te work done by the magnetic force due to the current is

. Now any variation of the strength of the shell, as

from to (f) + d(f), is the same thing as bringing a shell of

strength dQ from an infinite distance to coincide with the

original shell. The work done in that process by the magnetic
force of the circuit is therefore IMdcf) ;

and this requires the

expenditure in the battery of additional chemical energy IMd(f>,

to maintain / constant. We have, then in this case E'I=.IMd($>,

or E'=Md<}). And generally if $ and J/both vary,

*&+iA
dt dt

and the electromotive force of induction is
j-

345.] If we were to perform the cycle of Art. 342 in the reverse

direction, disconnecting at A, reconnecting at B, and moving
with constant current I from B to A, we should have to spend
external work in overcoming the mutual forces of the circuit

and shell, instead of gaining work as in the former case. In this

case If or (M(j>) is negative, or we have in order to main-
ctt

tain I constant to diminish the force of the battery. So long as

E' is less in absolute magnitude than E, the chemical energy

spent, or (E+&)19
is less than El, that is, less than RP. The
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external work which we do against the forces, or / IfydM, is

converted into heat, and the chemical energy of the battery is

saved to the like extent. If E/
be greater in absolute magnitude

than E) the current / cannot be maintained constant unless the

battery be reversed, in which case the chemical processes may be

reversed, as in the case of an accumulator. In such a case the

external work done is equivalent to the heat generated plus the

chemical energy gained by the reversal of the processes. In all

these cases ifH be heat generated, C chemical energy spent, and

JF mechanical work done by the forces of the system, C=H+ W,

where W
t
and in case of an accumulator C, may be negative.

346.] It appears from the investigation of Chap. XVII that,

when the circuit and shell move under the influence of their

own mutual attractive or repulsive forces, /< =j- is positive.

And therefore the electromotive force due to the motion, or

$ 57- , would, if it existed alone, produce a current in the

opposite direction to /, that is a current tending to resist the

motion. This law is called Lenz's law. It appears here as a

result of the Conservation of Energy. This also appears at

once from Faraday's experiments. For suppose a closed circuit

without battery to be moved in any direction through the field

of a constant magnet. An electric current is induced in it, which

on cessation of the motion decays, and heat is generated. This

heat can only be accounted for as the equivalent of mechanical

work done during the motion. That is, the induced current

must be such as to resist the motion by which it was induced.

347.] Secondly, let < be again constant, and let the circuit

move as before under the influence of the mutual attraction or

repulsion of the circuit and shell
;
but instead of maintaining the

current constant against the electromotive force due to the motion

by increasing the strength of the battery, as in the former case,

let the current be allowed to diminish. And let us so adjust the

battery as that, i being the current at any instant, E shall be

equal to Hi, or Ei=-Ri2
.
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In this case the chemical energy spent is all consumed in

heating the circuit, and the mechanical work done by the forces

cannot be done at the expense of chemical energy. It is done at

the expense of the intrinsic energy of the system.

For the intrinsic energy at A is \LI'
2

. At any other point B in

the supposed course the current i is less than /, and the intrinsic

energy is \L i
2

. The difference between these quantities of

energy, or \L{I2
i
2
}, is the equivalent of the mechanical work

gained, that is, \L {I
2

i
2
} lifydM.

Making / i = di, we find for the relation between i and M
during this process

Lidi + itydM = 0,

or Ldi+ $dM = 0.

We might call this process an adiabatic process by analogy to

Thermodynamics. As in the first case we may make < vary
instead of M, and ifM and both vary Ldi -f d(M<f>) 0.

348.] Thirdly, we may maintain U, the original electromotive

force of the battery constant, that is E = HI, where / is the

current with the circuit at rest. Let i be the current at any
instant, then the chemical energy spent per unit of time is Ei

t

and the heat generated is Ri2
. We have in this case,

that is, i 4- (M<p) = -Li^+Ei-RP,
cit ut

or

We may combine our results into one formula as follows.

The energy drawn from the battery per unit of time over and

above the equivalent of the heat generated is

If E be the electromotive force of the battery



72 THERMODYNAMIC ANALOGY. [349.

Again, the whole energy drawn from the battery, in excess of

the heat generated while the system of the circuit and shell

goes through any series of changes whatever, is

If the current be initially zero and finally /, this becomes

f

The mechanical work done against the forces is \i

The whole work, chemical and mechanical, is \LI2
.

349.] In order to illustrate the interdependence of chemical

and mechanical work in the changes of the system, we will make

our circuit perform a cycle analogous to that through which in

treatises on Thermodynamics the working substance is made to

pass in the working of a perfect heat engine. It will be under-

stood that our apparatus is as purely theoretical as the perfect

heat engine. Let the shell $ be maintained constant. Let M
l

be the initial value of M, and (first process) let the circuit move

from M=ML to M=M2 with constant current i, the electro-

motive force of the battery being suitably adjusted. The

mechanical work done by the forces (which is done, as we have

seen, at the expense of chemical energy) in this process is

Mi

M 3

Fig. 45-

The second process shall be adiabatic as explained in Art. 347,

that is, such that Ldi + $dM= 0, and shall continue from M=M%
tolf=lf3 . The mechanical work done ly the system at the

expense of its intrinsic energy is in this process

fi<bdM = -

= L(i*-i'*),

if i' be the current when the circuit reaches
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The third process shall be with constant current i from

M=MZ to J/= J/4 , where M is so chosen that the circuit can

pass by a second adiabatic process from J/4 to M
l

. The me-

chanical work done by the forces in this process is 2$(J/4 1Q.
The fourth process shall be adiabatic from M=M to M=Mlt

The mechanical work done in it is \L(i
f<i

i
2

),
and is equal and

opposite to that done during the second process.

We have then for the whole mechanical work done by the

system at the expense of chemical energy in the complete cycle

Now by the relation

= 0,

in the second and fourth processes we have

whence M^-MZ
= M^-MZ

.

And therefore the whole mechanical work done by the system at

the expense of chemical energy is

or {M^i-M^i), if i-i'=

Here M^i M^i is the work that would be gained if *'=().

If 5Q denote a small quantity of chemical energy spent by
the battery in excess of the heat generated during the process,

bQ = id{
And, as before,

We thus see that, comparing our cycle with the ordinary cycle

of Thermodynamics, i corresponds to temperature, Li + M$ to the

thermodynamic function, M corresponds to volume, and i$ to

pressure, and instead of the heat of the reservoir we have the

chemical energy of the battery as the source from which useful

work is derived.

Case of two circuits.

350.] Let us now substitute for our magnetic shell of strength
< the equivalent electric current. Let this current be denoted
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by *
2 ,

and that in the original circuit hy i
lt Also let L and I/.2

be the values of the constant coefficient L for the original and sub-

stituted circuits respectively. The action of the substituted circuit

on the original circuit being the same as that of the shell, we

have for the chemical energy spent in the original battery, over

and above heat generated, li-^d {L^-}- Mi2 }, by replacing i and

$ in the formula of Art. 348, by ^ and i
2

.

But by the same reasoning the chemical energy spent in the

battery of the substituted circuit must exceed the equivalent of

heat generated in that circuit by

And the whole expenditure of chemical energy in excess of heat

in the two circuits is

fad {L^ + Mii} +fad {L^ + MiJ,

that is, -^Ltf + MiJi+ ^Ljf+fijidM.

Also the mechanical work done against the forces is

li^dM.

Therefore the whole work, chemical and mechanical, required

to construct the system of two circuits in the given position is,

in addition to the equivalent of heat generated,

This expression we define to be the energy of the system. It is

a property of the system, depending only on the values of ^ and

i2 ,
and the coefficients I/

lt I/2 ,
and M, that is, the forms of the

circuits and their relative position, and is independent of the

mode or route by which the system was brought into its actual

position, that is, of its past history. It is equivalent to the heat

which would be generated in the system during the decay of

the two currents in one another's field, were they simultaneously

disconnected, and the circuits kept at rest.

The corresponding expression for the energy of two magnetic
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shells is (Art. 334) J A^2
Hi^i2+ \ A

2 ^
2

,
where i A^ 2

is the

work required to construct the shell i^ in its own field.

351.] If the two circuits move under the influence of their

own mutual forces we have in the first circuit

Zjtj-f-Jtft,
= constant,

or LI cH
l + d(Mi2)=O s provided the battery in the first circuit be

so adjusted that E
l
i
1
=P

1
i
L

2
during- any variation of the current.

And, in any case, this relation must hold for any small variations

from a position of rest.

This gives the ordinary laws of induction in the first circuit

due (i) due to variation of the current ?
2 ,
M being constant,

or (2) due to motion of the circuit i
2 with constant current ; viz.

T
dii- M di

*
Jj* = Jxl ~r >

l
dt dt

T di, . dM
or *J 'iy

in the two cases respectively.

If there be initially no current in the first circuit, as for

instance, if it be without battery, the current instantaneously

induced in it by a sudden generation of the current i
2 ,

in the

second circuit should theoretically be
y-

i
2

. In this case the

current i
lt as it comes into existence, by its inductive effect

diminishes the current in the second circuit, and the electro-

motive force of the battery in that circuit being supposed con-

stant, the chemical energy spent per unit time in the battery

during the creation of the induced current, or Ez
i
z ^

exceeds

R
2

i
2
2

,
the heat generated per unit time in that circuit. The

additional energy spent in the battery supplies the energy \ Ll
i
:
2

of the induced current.

The law of induction between two closed circuits in the

absence of resistance may be expressed as follows. Given ^

suddenly created, make the energy of the system,

minimum, and i
z is determined.

352.] The cycle of Art. 349 can be performed with two circuits
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as well as with circuit and shell. For let i
2
be maintained constant

in the second circuit while the first circuit performs the cycle.

The mechanical work done at the expense of chemical energy con-

sumed in the first circuit is the same as if the circuit iz were a

magnetic shell. The chemical energy spent in the second cir-

cuit over and above the equivalent of heat generated in it is

i.2 I }, and vanishes for the complete cycle.

353.] We have hitherto supposed the coefficients L^ L2 con-

stant, that is, we have treated the circuits as rigid. But the

circuits may be flexible, or flexible and extensible. In either case

L is variable, and any variation of the form of either circuit

causes M to vary, although the form of the other circuit may be

unaltered.

Suppose the form of the second circuit to be constant, and

the current in it, i2i to be also constant, then we shall have, as in

the cases already treated,

fit-Bit ^-{L^+MiJ.

And, as in the preceding cases, we may so adjust the battery

as that either E shall be constant, or ^ constant, or El
= JR^.

Now we have seen that Mi
2

is proportional to the number of

lines of magnetic induction of the second circuit that pass

through the first circuit. The effect of the second circuit on

the first, if flexible, is to cause any element of it so to move as

to take in as many of these lines as possible, that is, each

element of the first circuit will tend to move across them in

direction at right angles to itself. In like manner we may
assume that the effect of the first circuit on itself is to cause

every element to move across the lines of magnetic induction

due to the circuit itself.

In any case, if the circuit move or alter its shape in obedience

to the forces of the system which act upon it, mechanical work

is done by it, and this is supplied either at the expense of the

energy of the system (if the batteries be so adjusted as only to

compensate for the energy converted into heat) or at the ex-

pense of the batteries if the currents be constant. All cases are
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included in the formula

E-Ri =
^-t (L

if only one circuit vary, or

or --
=

if both currents vary.

354.] If there be three closed circuits each with its own battery,

and if M
12 denote the value of / / - ds

1
ds2 round the first

and second circuit in direction of the currents, while 3/13 andM2%

have corresponding values for the other two pairs of circuits,

the chemical energy spent in excess of the heat generated is

dM
23 ,

+ / i&dMn + i^dM^ + / i
2
i
3

and the mechanical work done against the forces is

-j i^dM^-J i^dM^-j
i
2
i
s
dM2y

And therefore the energy of the system, or the sum of the

chemical and mechanical work required to construct it in its

actual state and position, over and and above the equivalent of

heat generated, is

and so on for any number of closed circuits.

And for this we may further substitute the general form

uu , , ,ax ay dz dx ay az

or \l U(Fu + Gv+ Hw)dxdydz.
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Rotation of a conductor in a magnetic field.

355.] Let there be a uniform field of magnetic force F, and a

wire forming* a closed plane curve of area a rotating with angular

velocity o> round an axis in its plane at right angles to F. The

flux of magnetic induction through the curve is then aFcosat,

time being measured from an epoch when the plane of the curve

is at right angles to F. We have then, to determine the current

i in the wire, the equation

Out

where R is the resistance, and L the self-induction, of the wire.

This gives

^ =
ff2

a
..
a

-

(R sin (tit-o)L cos
cot).

-p

Let f = tan a. Then this becomes
(*>L

di <JaF
and = - - sin (co t + a) ;

dt
(R* + a>

2 2

)*

and the electromotive force is Ri+ It~, that is a>aF&aia>t.
ttu

The induction through the curve is maximum when co t 2 n TT.

The current is maximum when

at = 2n+ ITT a.

The current is retarded in phase by TT a. And it is owing
to this retardation of phase that work is done in the complete

cycle. For the mechanical work done is
J
id (M<f>), where M$

is the induction through the circuit, that is

-- **

smu>tcos(wt + a)dt;
VRt + tftfJ

and this becomes in a complete cycle, integrating from 2 TT to 0,

a?F2R
or TTO) ._ sin a.

The work is all converted into heat in the wire.
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Compare the corresponding
1 effect when soft iron is magnetised

by a force varying- in a cycle. Professor Ewing in Phil. Trans.

vol. clxxvi. part 2 ;
Lord Rayleigh, Phil. Mag. vol. xxii.

P- 175-

356.] In Arts. 342-348 we supposed the magnetisation of our

shell to be varied, if at all, only by causes independent of the

current. The variations in the magnetic field may however be

due to the electric currents themselves, if, for instance, there be

in the field magnetisable matter which, on creation of the cur-

rents, becomes magnetised by induction. In any such case, if E
be the energy of the same system of currents in a field devoid of

magnetisable matter, and if W be the energy of the induced

magnetisation in its own field, the total energy will be E+ W.

That is, the process of magnetisation tends to check the currents,

and increases the draw upon the batteries necessary to maintain

the currents, by the quantity W.

Concerning the coefficient of magnetic permeability.

357.] If R be the resultant mag-netic force at any point due

to a closed current or system of closed currents in vacuo, we

have

^dy dz J \dz dx / \dx dy /

If we integrate this through all space within an infinitely

distant surface S, we obtain, since the surface integral vanishes,

dF dG dH
+ ---h = everywhere,dx dy dz

That is, since

and V2^=-47rw, &c.,

= \fW(Fu +

= E, the energy of the system
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358.] The above expression denotes the energy of the system
in vacuo, or in a standard medium in which the magnetic per-

meability IJL
is unity. Now let a system of molecules capable of

becoming magnetised by induction be scattered through the

field, so as to form a uniform medium with
/u,

for coefficient of

magnetic permeability. The molecules will become magnetised

by induction, and the energy of the same system of currents in

the altered medium will be E+ W> where ^is the energy of the

induced magnetisation.

In order to determine W, let us define the nature of the

uniform medium as follows. If a plane of unit area be taken

perpendicular to 7, it will intersect certain of the molecules.

Let QR be the quantity of magnetic matter on the intersected

molecules which lies on the positive side of the plane per unit of

area. Then ^ = 1 + 4 TT by Chap. XI. And the energy of

magnetisation is J QR 2
per unit of volume. Hence the whole

energy of the currents in the altered medium is given by

E'= --

=
(1 + 47r<)) f/T-

1
- R zdxdxds

It follows that, comparing one uniform medium with another

with similar currents, the electromagnetic forces on elementary

currents vary directly as p. And if they are expressed in terms

of J?
1

, G, 77, we must make

&c.

as in Arts. 334, 335.

359.] The system of induced magnetisation is solenoidal by
Art. 316. And in the field of electric currents the solenoids are

all closed, and exert zero force at all points. And therefore the

magnetic force on a unit pole due to the system of currents is

independent of ^ as appears from Art. 330.

360.] But if for a closed current we substitute the corresponding

magnetic shell of strength <, the solenoids, in other respects un-

altered, are no longer closed, but begin and end in the shell.
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The magnetic force is no longer zero, but is the same as that

due to a magnetic shell representing the solenoids, namely a

magnetic shell formed on the original shell with reversed sign

and strength
-

<f>.
The force due to the original and induced

systems together is the same as would be caused by a shell of

strength <f>+
- -

<, that is
, occupying the place of the

fx //,

original shell. Comparing one uniform medium with another,

the magnetic forces due to similar systems of natural magnets

vary inversely as ju.

Also the energy vanes inversely as /x.

We see further that comparing one uniform medium with

another, cateris paribus, the law of equivalence between an

electric current and a magnetic shell is expressed by the equation

VOL. n.



CHAPTER XX.

OF SYSTEMS OE MEASUBEMENT.

I. The Electrostatic Units of Electricity.

ARTICLE 361.] IN Chaps. IV, V, treating of Statical Electricity,

we found that the repulsive force between two electrical masses of

ee'
like kind, e and /, at the distance r apart, is

^.
This law

assumes the definition of unit of electricity to be that two

such units placed at unit distance apart repel each other with

unit force.

According to this definition, the quantity of electricity which

answers the description of the unit depends on the units of

length, mass and time employed. In mathematical language,

the unit of electricity has dimensions in length, mass and time.

If we denote the unit of length by L, that of mass by M, and

that of time by T, we know that force measured statically is of

dimensions
-^-. Therefore, if e be the unit of electricity so

defined,
- has dimensions -

; or, as it is usual to express it,

L2

and e :

362.] We found it necessary subsequently to modify the state-

ment that the repulsive force between e and e' at distance r is

ee'

-y, because it depends, c&teris paribus^ on the nature of the

medium in which e and / are placed.

If K be the specific inductive capacity of the medium, we
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/

found, in Chap. XI, the force to be
-==-^

. The quantity K thus

affects the magnitude of the unit, because if in a medium where

K = 1 , e and / at distance r produce any given force, we must

in another medium, in order to produce the same force at the

same distance, use e *J~jL and e' </K. But K does not affect the

dimensions of the unit. It is in this relation a mere numerical

factor of zero dimensions.

We must then complete our definition thus. The electrostatic

unit of electricity is such a quantity that two electrostatic units

placed at unit distance apart in a medium for which K = I repel

each other with unit force. We shall denote the unit so defined

II. Of the Electromagnetic Unit of Electricity.

363.] Let there be two infinite parallel wires carrying cur-

rents i and i' at distance r apart. The force of attraction on

length a of one of them is au..Zii
f
-=- I

, in which
drJo Jr* + a?

expression p. denotes the magnetic permeability of the medium.

Let em be that quantity of electricity which, according to the usual

conception of a current, must flow through a section of either wire

in unit time, in order that, the parallel currents being at unit

distance apart in a medium where /x
= 1

,
the force on unit length

of either current may be unit force. Then we may take em so

defined as the unit of electricity. It is called the electromagnetic

unit, or the unit in electromagnetic measure. The quantity /u is

here of zero dimensions, for the same reason as K in case of the

ii'-=ielectrostatic unit. Hence aii'-=i = is of the dimen-

ML
sions of force, -=^-. Therefore ii' has dimensions

-^-.
But i

e e z

has the same dimensions as
-^-.

Therefore -~ has dimensions

.

364.] We have thus obtained by independent methods two

distinct quantities of electricity. e
e
and em ,

either of which may be

G 2,
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taken for the unit. The numerical value of the ratio which they

bear to one another depends on the units of length and time em-

ployed. Since e
e
is of dimensions M^L% T~l

,
and e.m of dimensions

e

,
it follows that is of dimensions -

,
that is, of

dimensions -, or the unit of velocity. Now the number by

which any given physical velocity, as for instance that of light,

is expressed varies inversely as the unit of velocity, and there-

&

fore varies directly as --
e
e

e
It is found that the ratio determined by experiments in air

e
e

is equal, or very nearly equal, to the velocity of light in air. If

that velocity be denoted by v, that is if it be v units of velocity,

then whatever units of length and time be employed, em = ve
e

.

This fact is the foundation of the Electromagnetic Theory of

Light as discovered by Maxwell.

365.] If the experiments be made in any other medium than

air, the magnitude of e
e is, as we have seen, altered : e

e
becomes

e VK. Similarly em becomes ^= . Hence, if v be the value of

e *T
the ratio as determined in air, where K = 1 and p = 1

,
its

e
e

general value will be - In all media within the range of

** en
experiment fj,

is nearly equal to unity. Hence the ratio varies

1
6

nearly as . It is found that the velocity of light in different

/K j

media varies accurately or very nearly as ~7= '

Of the Dimensions ofK in Electromagnetic Measure.

366.] We have seen that -^ represents a force, or has dimen-
Tl/TT

^

sions -=-. In the electrostatic system, where e = []yftl$T~
l
],

this requires that K shall be numerical, i. e. of zero dimensions.

But if for e we write em , the electromagnetic unit, whose dimen-
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sions are 3I*L
9
we must, in order that the same two forces

may always bear to each other the same ratio whatever be the

units of length and time, attribute dimensions to K. In this

ee' ML
case

-=-g
has dimensions -^-, and ee has dimensions ML. Hence

2*2
1

K has dimensions
-^ in the electromagnetic system.

In like manner, //,
in the electromagnetic system has zero

dimensions, but expressed in the electrostatic system it has

^2
dimensions

Of the Dimensions of </>
the Strength of a Magnetic Shell.

367.] A uniform magnetic shell of strength $ and unit area

is as regards its action at points not within its substance

equivalent to a certain current i round the boundary of the shell

multiplied by the factor p which denotes the magnetic permea-

bility of the medium. As this equivalence is independent of the

units of length, mass and time, < must have the same dimensions

p
as [LI. Now in electromagnetic measure i has dimensions -

,
or

M^I/*T~ l
,
and ju is of zero dimensions. Hence $ in electro-

magnetic measure has dimensions M^L%T~l
. The dimensions

of the components of magnetisation J, _Z?,
and (7, are those of -?

>

that is M^L~^T~ l in electromagnetic measure.

Of the Dimensions of a Hypothetical Magnetic Pole,

or Magnetism.

368.] Let m denote a quantity of imaginary magnetic matter

forming the positive face of the shell of strength <. Then, m

being given, < varies directly as the thickness and inversely as

the area of the shell.
(/>
must therefore have the same dimen-

sions as -7-, and since d> has dimensions M^L?T~ l
,
those of m are

We might have obtained this result otherwise, starting, as in
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Chapter XVI, from the assumption that magnetic matter repels

like matter with a force varying- inversely as the square of the

distance, from which it follows that m must have the dimensions

M? L%T~l for the same reason as the electrostatic unit of elec-

tricity.

We can now find the dimensions of the unit of magnetic
matter in the electrostatic system, a point about which there

was at one time some controversy, as follows. In order to ex-

press the equivalence of current and shell in any system of

units we have,

is of the same dimensions as pL J.

In the electrostatic system e = M*L?T- 1
,
and /u

= ^ whence

m in electrostatic measure, or as we shall call it m
e ,

has dimen-

sions M* 1$. Were there only one medium in nature we should

have written
f-y]

= FJ > and there would be room for Clausius'

contention that m
e
= [M*L*T-*].

369.] We can also determine the dimensions of m
e by a different

method, as follows. The force between a shell of strength $ and

a circuit with current i is

. d

It has the same dimensions as $i, that is, dimensions

me
r
m e

IT' or
[jjl^frJ'

This must hold in any system, and therefore in the electrostatic

system, in which e = \M^L^T~
Y
\ ;

and therefore m
e
=

[if*Z/*],

as before.

When the electric unit is determined by the electrostatic

conditions above mentioned, all the functions of it are said to be

expressed in the electrostatic system. And when it is deter-

mined from the force between two currents, the functions are

said to be expressed in electromagnetic units, and we shall

denote the system selected by the suffixes e and m respectively.
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370.] Thus, the following- magnitudes present themselves for

consideration.

(1) The electric mass ee or em .

(2) magnetic mass me or mm .

(3) electric current ie or im .

(4) component of current per unit of area ue or u,,n) with v

and w.

(5) electromotive force at a point Pe or Pm ,
with Q and R.

(6) line integral of electromotive force Ee or Em .

(7) vector potential Fe or Fmt with 6? and H.

(8) magnetic induction ae or am ,
with 6 and c.

(9) magnetic force ae or a^, with /3 and y.

(10) electric displacement fe or/m ,
with g and A.

(11) electric densities, solid) pe and pm ,

and superficial ) <re and <rm .

(12) components of magnetisation A e or 4m ,
with B and (7.

(13) ,,
electric potential \f/e or

\j/m .

(14) magnetic potential !2e or 12m .

(15) conductivity (inverse of resistance) Ce or Cm .

(16) specific inductive capacity Ke or ^m .

(17) ,, magnetic permeability /xe or
jj,m .

371.] The connection between the dimensions of these quanti-

ties in the two systems is determined by the considerations

referred to above. For instance, we have the equation

mi - mi ML . ,= force or = -=^- in both systems.
Jj j

Also, since i is measured by the amount of electricity passing

over the section of the current in unit of time, we have i

' =
-^

1 (*

as the equation of unit dimensions, and therefore -r- =
Now by the above-mentioned equation

rn^e
T

^m^m
and

WVe
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Therefore ^ = ^ and ^ =~
em T me T

Taking therefore our magnitudes in the above order, we have

c-r > --J5-r

l = =
, because ^e ee= Em em = Energy =

( 7 \ J-H-
J^

"
e.

~
L

/\ ^ ^i *- && FA F
(8) = = , because = -^ -r- -~-

am ee L am L L

, x ae W>m * L
(9)

= = = , because aeme
= ammm

a e 1

and =
um 3m

ML

+ * em T ML*
(13)

- = =
-, because

\js e
. ee = \j/m . em = Energy = -

(14)
-~- = =

-~j, because lenie = lm m,m = Energy.
tH ***'6

Z2
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372.] Having thus determined the ratios of the units of these

several magnitudes in the two systems, it will suffice to deter-

mine the dimensions of each in either system, as follows :

We have shewn that e
e
= M*L%T~\ therefore

HfT /77 -2

P, = - = [*- 2"'], Pa = [Jf*i 2-"],

I
-.*,. j~* i 9 t

'
?n

1

MLT-*

Pm =



CHAPTER XXI.

THE GENERAL EQUATIONS OF THE ELECTROMAGNETIC

FIELD.

ARTICLE 373.] IN Chapter XVIII we investigated the electro-

magnetic properties of a field of electric currents, based upon
the experimental law of Oersted, namely the equivalence of

mechanical action of a closed circuit and magnetic shell suitably

related to each other.

In Chapter XIX we described certain electromotive actions,

first discovered by Faraday, in the case of circuits in a variable

magnetic field, the variation of the field arising either from

changes in the intensities of the currents or the configurations

and positions of the circuits
; and, reasoning from these experi-

mental data, we investigated the laws of such electromotive

forces, generally denominated inductive electromotive forces.

Maxwell was the first to consider the whole subject from

another and more strictly dynamical point of view, and to shew

how the same results appear to be deducible from the aforesaid

law of Oersted by merely mechanical considerations.

We know that the production of any current field depends

upon a supply of energy from some external source, as for

instance, from chemical combination in the case of battery
excited currents. When there is freedom of motion in any of

the circuits a part of the energy thus derived is converted into

mechanical kinetic energy, and whether there be such visible

motion or not, some portion of this derived energy is converted

into molecular kinetic energy or heat, the amount of this heat

conversion, or dissipated energy, being dependent, by laws already

explained, upon the intensities of the currents and the material

composition of the conductors.

But, in addition to all this, it is observed that if in a current

field, whether the parts be at rest or in motion, the battery con-
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nexions are at any instant broken, the current manifestations do

not immediately cease, the electromagnetic actions are not im-

mediately suspended, and heat continues for a sensible interval

of time to be generated in the conducting circuits.

374.] Now, as Maxwell says, capacity for performing work is

nothing else than energy in whatever way it arises, and there-

fore we conclude that in a current field there is a certain amount

of energy in excess, and independent, of the energy D which has

been converted into heat in the circuits, and of any purely

mechanical energy which may exist in the circuits themselves, if

these are in motion. We assume this energy to be electric energy,

partly kinetic, Te ,
and partly potential W> so that the total energy

in the current field, in addition to any material kinetic energy
of the circuits, is the sum of three distinct parts, being equal to

Te + W + D,

375.] We know from Chapter XI, Vol. I, that W depends

upon the specific inductive capacity K in different parts of the

field and vanishes with K, also that D depends upon the re-

sistance R in the circuits and vanishes with R.

For the present we will assume that we are dealing with

a field throughout which both K and R are infinitely small,

and therefore W and D evanescent, so that the total energy
that would remain in the field if the battery connexions were

at any instant severed would be T
e ,

or T
e
increased by any

material kinetic energy of visible motion, supposing such to

exist
;
this T

e
is assumed to be a function

(f>(i,q) of the current

intensities
(i)

and the coordinates of configuration (q) where the

form of has to be determined.

376.] Now, if in any dynamical system a force F
q

is observed

to exist, which tends to increase any generalised coordinate of

position (q), we infer that the potential energy of that system
would be less and the kinetic energy greater in the (q + bq)

configuration than in the (q) configuration by Fq
b q.

If, therefore, in any current field we observe such an electro-

magnetic force, we infer that if, after breaking the battery

mnexions, the circuits were transferred from the q to the
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q + bq configuration, and the same currents were then re-

established in the q + bq configuration, the total electrokinetic

energy would be increased by Fq bq, in other words, that in a

field of two circuits the draw upon the batteries requisite to

create the current intensities i in the (q + bq) configuration the

same as they were in the (q) configuration, must be increased by

.7^, i.e. that
d(f)

dj
= F-

If the transference of the currents were effected by the un-

checked action of the force 7^, that is without breaking the

connexions, the intensities remaining the same, an additional

Fqbq of material kinetic energy of the circuits would ensue,

making the total draw upon the batteries in this case 2F
q bq.

The energy of the whole field, in fact, being supposed to consist

of the potential energy of uncombined chemical elements in the

batteries, and the electrokinetic energy and mechanical kinetic

energy of the field, the rate of conversion of one into the other

in the actual passage from the q to the q-\- dq configuration is

2F
q ,
and this is equally divided between mechanical and electro-

kinetic energy.

377.] If the field consists of two closed circuits, and if q be

one of the coordinates determining the relative position of these

circuits, each supposed to be rigid, we know from the Oersted

law of equivalence of action between currents and magnetic
shells that

where ^ and i
2 are the current intensities in the circuits, and

M=
II

-
dsds', the double integration being taken round

both circuits in the direction of the currents.

Hence we infer that in this case

dTe . . dM

or =
where q' is a coordinate defining the shape of either circuit, sup-

posing it to be flexible.
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378.] To determine \j/, we observe that i^M is either the

product of i
l
into the flux of magnetic induction of i

2 across any
surface bounded by i

lt or the product of i
2 into the flux of

magnetic induction of ^ across any surface bounded by i (the

positive direction of such fluxes being estimated by rules already

given), or it is half the sum of such products, and therefore

that T
e)

so far as it is a function of the coordinates q, of relative

position of the circuits, is half the sum of such products.

Hence we infer, although not with the same certainty as in

the former case, that so far as T
e

is a function of one of the q'

coordinates determining the shape of the ^ circuit, that is, so far

as T
e depends upon the i circuit supposed to exist alone in the

field, its value would be one half the product of ^ into the flux

of magnetic induction of ^ across any surface bounded by iv

and similarly for ?'
2 ,

or that

where L
l
and L2 are respectively equal to

/* /* *^

- ds
2
ds

2 ,
the integrals being taken round the separate

circuits, and that the complete value of T
e
is

Ln .

or \ {
i
l (Zj i, + J/z

2) + i
2 (Z2

i
z + Mi^) }

.

379.] This expression for T
e

is the negative of

Art. 333 for the potential energy in a field of two curre

and it is, as was there proved, equal to

where p^ and _p2
are the fluxes of magnetic induction of the

field over any surfaces bounded by the i and ?
2

circuits re-

spectively. These quantities are sometimes called the ?'
x
and ^'

2

dT
components of momentum of the field, and are equal to -^

dT l

and -~
respectively.

The expression for T
e may, as was shown in the aforesaid

chapter, be also written as
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ds ds

or e
= i

fff(
Fu + Gv + Hw ] dxdydz,

the notation being the same as therein explained.

380.] If the circuits, being- themselves flexible and free to

move, be in connexion with batteries, and if E and U
2
be the

electromotive forces in the respective circuits, we know that the

draws upon the respective batteries in time dt are E^dt and

E
2 i^dt respectively.

But in this case there is generally an increase of electro-

dT
kinetic energy in the same time equal to ~dt, and of mechan-

dT
ical kinetic energy equal to j^dt.

77" 7"

The former of these is equal to T. (-iL
* + Mi g + -^ i

2
2

)
. dt ,

clt ^2 2

and the latter is equal to ^F
q
-~

dt, where F
q

is the electro-

magnetic force corresponding to a (q) coordinate of configu-

ration, and 2 indicates summation extending to all such co-

ordinates in the system.

If q be a coordinate of relative position of the two circuits,

-=
do

be a coordinate of form of each circuit regarded as flexible, but

assuming each to be rigid, we know that F
q

is ^ i
a
-=

,
and if q

alone in the field, we know that F
q

is
j-

> and therefore

Therefore the total increase of kinetic energy in the field electric

and mechanical is

1 d , /i* dL, dM i<? dL
- -

(,V+2^s+X,,)*+(| ^
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And therefore the total draw upon the batteries per unit time is

Equating this to the known total draw per unit time, or

=
*ijt

(LA + MiJ + i
2
~

(L, i
2 + J/y .

Now E
l
and E% must be such functions of i

19 i
2 ,

and the

coefficients defining the circuits, that on interchanging- these

quantities in the expression for E19 the expression for K2
must

result and conversely, whence it follows from the last written

equation that the two following equations must be true, viz.

381.] In most of the ordinary cases of current fields which

present themselves for investigation the quantity Wt
or the

potential electric energy existing in the field is inappreciable

in comparison with T
e
the electro-kinetic energy, or in other

words, no appreciable error results from neglecting K. It is

quite otherwise, however, with R the dissipation coefficient.

This is always of sensible magnitude, so that for all except

purely ideal circuits the correct expressions for the electromotive

forces in the two current field are

v _ dP\ , 7? ,-

1
~~

~dt
l 1?

when the potential energy or W is neglected.

From the Oersted law of the equivalence of action of a

uniform magnetic shell, and its equivalent current upon any
other shell or current, we infer that if a closed circuit with

current i were situated in the field of a magnetic shell whose

magnetisation is always uniform, though with either constant or
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variable strength $, the electromotive force E in the circuit

required to maintain i would be expressed by the equation

382.] If the circuit connexions with the batteries were de-

stroyed, the above written equations would become

- (L& + Jf*
a ) +R^ = or R^ = - - (L& + Mi,),

and -(L^ + MiJ +E^ = or R^ = -- (Za t, + Jf^);

whence from the analogy of the equation Ri = E in a steady

current, the quantities ~=r (Ll
i + Mi2)

and (I/
2

^'
2 +M^)dt dt

are said to be the electromotive forces in the circuits arising

from induction
;

this use of the term electromotive force is

analogous to the use of the term centrifugal force in ordinary

mechanics.

If only one circuit ^ existed in the field, the equation for the

electromotive force in it would be

and if there were no battery connexion this would give

R
l
i
l
= _

(Zjt'j);

whence it follows that the coexistence of the second circuit
2 in-

creases the electromotive force in the circuit of ^ by --r- (^fr'2),
j

Civ

or in the case of a shell by =r (M<$).
/I 7

The quantities
--

-(Mi.2) and j-(M(f)) are therefore re-
clt dt

garded as the inductive electromotive force of the current or shell

upon the current i^.

383.] Maxwell has arrived at the same expression for the

electromotive force of induction in the case of two closed circuits,

but from a much more exhaustive and accurate investigation.

He gives in the first place an account of Felici's investigations
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on Faraday's Laws of Induction^ from which it appears that two

closed circuits A and X possess the reciprocal property that the

induction of A on X is equal to that of X on A. In this con-

sists the distinction between the case of two closed circuits and

that of a circuit in the field of a magnetic shell.

Again, whereas it has been assumed by us that the electro-

magnetic force between circuits carrying currents is the same

whether the circuits are in rest or motion, i. e. that, when the

intensities of the currents are given, the electromagnetic force

is a function of the coordinates q only and not of their time

variations, Maxwell justifies this assumption by the results of

experiments especially conducted for that purpose.

He then assumes that the current intensity, called by us i
t
is

the time variation y of a coordinate of electric position y.

And he regards his electromotive forces as forces producing
or tending to produce changes in y and y in the same way
as impressed mechanical forces tend to produce changes in q

and q.

On these hypotheses he investigates the field of two currents

by the application of the Lagrangean equations for ordinary

dynamics, assuming, as in our first case, an ideal field in which

both R and K are zero.

The total electrokinetic energy Te
of such a field is a homo-

geneous quadratic function of the fs and qs with coefficients

functions of the y'a and q's.

He shews, as will readily be admitted, that the y's or

electrical coordinates cannot enter into the expression.

He also shews, from the experimental fact that the electro-

magnetic forces are independent of the qs, that the expression

for T must be of the form T
e + Tm ,

where T
e

is a homogeneous

quadratic function of the ^'s, and Tm is a homogeneous quad-
ratic function of the qs.

384.] Suppose then that, the field being at rest, all me-

chanical or visible motion is prevented by the application of

the requisite generalised component of force (f'q

f

) corresponding
to each generalised coordinate q, where F is therefore equal
and opposite to the electromagnetic force F

q
.

VOL. II. H
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The only part of the kinetic energy Tis electrokinetic or T
e

.

Therefore the Lagrangean equation

!/^N-^-0
dt\d^ dg~

becomes in this case

whence, by the reasoning above employed, we arrive at the

equation r ,

Therefore, when there is mechanical motion, we have

where Tm is a quadratic function of the <f
s with coefficients

functions of the q's, or in Maxwell's notation

If, then, the system free to move were acted on by any electro-

motive forces Y1 and Y2 ,
we should have

l^L^-y fL^L^-y-
didy dy

"
15 dt dy2 dy

=

dT .

or, since -7- is zero,

+ My,) = 7
2 ;

i. e. in our notation

These results indicate, as previously shewn, the existence of

inductive forces in the two circuits equal to
-^

(Mi2)
and

-

(Mi^ respectively.

385.] The total draw upon the batteries per unit of time is,

as we know, E-^
i + $2 h
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That is to say, it is

d
fLtf , ,,. .

,
Z,tA

,

. dM
_(_^. +^2+_|) + V2 __,

dT
e

dTm
or _<L+-^,dt dt

where Tm is the mechanical work done by the electromagnetic

force.

If the change in the system were such that the current in-

tensities remained constant, this would become

"''*^r
2 ^r

If we introduce the resistances E x
and R 2 but continue to

neglect Tm ,
our equations become as before

386.] Suppose therefore that we have two closed circuits C^

and C.2 of resistances E
l
and 7?

2
in any field. Let C

t be called

the primary and C
2 the secondary circuit, and let there be no

impressed electromotive force in C
2

.

Our equations give

0, ..... (1)

or RI I i
2
dt+ Z2

1'
2+ Mi{

= constant ;

.-. sJ'i2
dt = (Li

i
1\+(MiJ)<l-(L^\-(Mil\,. . . (2)

JO

where the sufiixes and 1 indicate values at the beginning and

end of the time t.

From the equation (1) we have, supposing C2
to be rigid,

or i
2
= e

supposing i
2 to be zero at the commencement of the time.

n 2,
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If the variation
-j (^h) vanish after a short portion of the

interval t, so that at the end of the time t the magnitude of i.2

becomes inappreciable, then (2) becomes

rt

The quantity /
i
2
dt is called the integral induced current, and

^o

its magnitude depends upon the difference of the initial and final

values of Mi^
If, for instance, the two circuits be in fixed position, and a

sensibly instantaneous current i^ be suddenly excited in C: and

then maintained constant, we have

And if the current in L^ remaining constant the value of M
vary, then /

B.J ,* =(*.-.,)<,
J
o

If the circuits consisted of long straight parallel wires, or of

circular wires such as would result from sections of the same

cylinder, it is easily seen that the induced current in C
2

is

such as would resist the motion of C^ .

This is a particular case of Lenz's law mentioned in Chapter
XIX.

387.] By reasoning precisely as in the case of the two circuit

fields, we get for a field of any number of such circuits

ds ds ds

where the integration is extended round all the circuits, and F
9

G, II are the components of vector potential of the whole field

at any point of any circuit.

In a field of two closed currents \ and i
2 ,

it has been proved

that the inductive electromotive force in the circuit of \ is

equal to --
jj- ,

where pl
is the i component of momentum of

dT
the field, and is equal to L^ + Mi^ or ~ .

di-i
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If there be any number of closed currents it may be shewn, by
precisely the same reasoning as in the case of two currents, that

the inductive electromotive force in the circuit of any one of

them, as i, is > where p = Li + 1,Mi' or -jr
a

,
that is, that the

d dT
inductive electromotive force is 7- -=^

at di

In the case of two closed currents, i
t and i

2 ,
it was shewn that

/7 71

-jr
or L^ + Mi^ was equal to the flux of magnetic induction

ClT-t

through any closed surface S, bounded by the circuit of i
l ,

that is

to say, to the surface integral / / [la+ mb + nc}dS, where a, b, c

are the components of magnetic induction of the whole field at

any point of S, or to the line integral

round the circuit of ^ , where F, G, H are the components of

vector potential of the whole field at any point of that circuit.

So by reasoning in all respects the same, it may be shewn

that whatever be the number of closed currents in the field,

dT
Li+lZMi' or -~* is equal to either of the above expressions,

in which 0, b, c or F, G, H refer to the whole field.

388.] We proceed now to the investigation of expressions for

the electromotive force in a closed circuit, either at rest or in

motion, in a varying magnetic field.

First suppose the circuit to be at rest.

We have seen that the total electromotive force in any closed

circuit is -77, where

and the integration is taken round the complete circuit.

That is to say, if <r be the total resistance in the complete
circuit calculated on the principles enunciated in Chap. XIII,

the current i in the circuit will be given by the equation
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dx

If at each, point of the circuit there were an electromotive

force with components P, Q, R, and if
o-j

were the resistance per

unit length in the circuit at that point, we should have

i being the same at each point of the circuit and equal to the

value given by equation (A).

The magnitude Oj_
varies generally from point to point of the

circuit, hence we infer that

=-(f

From this equation it follows that P', Q', .$' are derivatives of

some function
\jf,

which satisfies the condition that

dF dx
dG_ dy dHdz d$

dt 'ds
+

dt "ds
+

~dt"ds
+

ds

-i

is constant throughout the circuit, and therefore that the most

general forms of the expressions for the components of the

electromotive force at any point of the circuit are given by
the equations

389], In the next place, suppose that the circuit is not at rest,

but is varying in form, or position, or both, from time to time.

Consider any element ds of this changing circuit. The electro-

motive force of induction in ds may be regarded as the sum of

two parts which may be separately calculated, viz.

(i) that arising from the intrinsic variation of the surround-

ing field and which would exist if the element ds were at rest ;

(a) that arising from the motion of ds.

The first has for its components the magnitudes
dJF dG dH~
dt' ~W ~

dt'
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or more generally,

^_^i _^_^t __^_^i"
dt dx'

"
dt dy'

"
dt dz'

7 f 7C1 /7 7T

where r- > -r- > and -r- are the time variations of the F, G, H
at at at

of the whole surrounding field (including the remainder of the

circuit) at ds.

390.] To calculate the second, we observe that it must be the

same as if ds were itself at rest, and the remaining field un-

changed in all other respects, moved in a space animated with

the reversed motion of ds.

Hence, if #, y> z were the component translational velocities

of ds, and e^ ,
o>
2 ,

o>3 its component rotational velocities, the time

variations of F, 6r, and H, referred to axes fixed relatively to the

element and instantaneously coinciding with those of reference,

would be, for F,
dF . dF dF
-j-x + y + * + a>,0-o>a Zr,dx dy dz

with similar expressions for G and H, since F, G, H are com-

ponents of a vector.

Therefore the components P, Q, R of the electromotive force

in ds arising both from the variation of the field and the motion

of ds are given by the equations,

. dF . dF .
dF

,

dF d^-P = x -T-+2/-5- +z-T-+c>s
-<>

2
# + -j- + -

dx dy dz dt dx

with similar equations for Q and R.

dF dG dF dff
Since --- = c and --- = b, we get

dy dx dz dx

dF dG dH dF d\f

dF dG dH dG d\jf-Q = x- +y- +Z-J
-- az + cx + u

l
H-<

zF+ + -f-
dy

y
dy dy dt dy

dF dG dH dH d^-R = x- +y +z--- bx + ay+^F-^G+ -=- + -f-dz y dz dz dt dz

391.] The electromotive force round the circuit, or
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becomes in this case, since the continuity of the circuit requires

that

dx dz dy dy dx dz dz dy dx
- = 0)

2
--- ^sT"' -J-

= 6>a li
--

^i -T > T"^ 60!^-- *> ~T~ >2 3 3 " ' 2

And the part under the integral sign in the last term being
a complete differential the term itself vanishes.

For closed circuits, therefore, from which alone our experi-

mental evidence is derived, it is indifferent whether we take for

P, Q, R the values obtained above, or those given by the simpler

equations,
_

.
dF d^ da d^p cylz-^-- -j^, Q = az ex--=-- ~ 9

dt dx dt dy
dff d

and these simpler expressions are most usually adopted.

392.] We proceed now to determine the electromagnetic

action on a closed circuit or any element of such a circuit in

any magnetic field.

By Art. 326 we know that, if a closed circuit with current

of intensity i be situated in a magnetic field, the total increase

of material kinetic energy corresponding to any variation in

the form and position of the circuit is equal to the corresponding

variation in the integral

ds ds ds

that is to say to

.

^ g __+ + ~
' f

V^^"
+ ^^" + ~~

fdFdx dG dy dH d
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The coefficient of 8x under the above integral sign may be

written

df^dx dF^dy dF^dz / dy ,<fe\

dx ds dy ds dz ds ^ ds ds'

dF / dy dz\
or T- + (

c/- 6 :r)'ds ^ as ds/

with similar modifications in the coefficients of dy and dz.

Therefore the total variation of the integral becomes, since

dx d dy d dz d
d = da:, b-f- = --by, g --^
ds ds ds ds ds ds

And this for the closed circuit is equivalent to

or the total increase of the material kinetic energy for any

change in form and position of the circuit is the same as if

each element ds were acted on by the force whose compo-
nents are

. / dy 7 dz \ , . / dz dx \ 7 . /_ dx dy\,
i(c-^--b )ds, i(a-c--)ds, t(b--- a-^)ds.^ ds ds' ^ ds ds^ ^ dy ds /

If we include the term

remembering that from the continuity of the circuit

= -,
ds ds ds

where 60, 6$, b\j/ are angular displacements of the element ds

round the axes, the total increase of the kinetic energy may be

written



106 ELECTROMAGNETIC FORCE. [393.

dy ,d\* fdO dz dx^^T---ds

dH dx dy\. ]

-r- + b-r a-r)$zt
ds ds ds/ )

.{fdF dy ,d
M(T- + C -/-&:T
(\ds ds ds/ \ds ds ds

that is to say it is the same as if each element ds were acted

on by the last mentioned force together with another whose

components are
dfl dff dff

'** ''** ''**
and also a moment whose components are

./^dy ^dz\ , ,/^.dz -rr dx\ T ./^dx r,dy\ ,

i(H-2--G--}ds, i(F-r H)ds, i(O-r F-f-)d8.^ ds ds ' ^ ds ds J ^ ds ds /

Since /. ^ r.d^, T^^^i-=- ds, i-ds, t-ds
J dx J ds J ds

separately vanish for a closed circuit, the component forces on

the whole circuit are the same whichever view be adopted.

Also, since the total moment round the axis of z on the second

hypothesis is equal to

/.
( dF dG ^dy ^dx / dy . dz^M^-^+^-^ + K^-^)

/ dz

. T dz \ / dz dx
,e.to

it follows that this is equal to the total moment round the same

axis of the forces existing- on the first hypothesis, and similarly

for the moments round x and y

393.] It appears therefore that in dealing with a complete

rigid circuit we may take indifferently for the action on each

element either the component forces obtained in the second

instance with the corresponding moments, or the component
forces given by the simpler expressions
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./ dy ,dz\s ./ dz
i(c^- -6 )bs, i(a--- c

,V ds ds/ V ds ds' ^ ds ds

with moments zero.

So long- as experiments are conducted with rigid circuits it is

impossible to decide between the two results, but certain experi-

ments on flexible circuits have been interpreted as pointing to

the conclusion that the electromagnetic action on each element

is a single force perpendicular to the element, and therefore

that it is given by the component forces last written.

394.] In these investigations we have supposed that we were

dealing with circuits in linear conductors (like copper wires)

either rigid or flexible, and have determined the electromotive

forces and electromagnetic actions on each element from the

condition that such forces and actions shall be consistent with

certain known experimental results when the whole circuit is

considered.

If, instead of a single linear circuit, or an aggregate of de-

tached linear circuits, we had to deal with a continuous con-

ducting mass, we should infer that at each point of such a

mass there is an electromotive force whose components are the

P, Q, R determined by the preceding investigation, and there-

fore that elementary currents will be set up within the substance,

such that if u, v, w were their components and <r the resistance

ferred to unit of area at any point,

<ru = P, (TV = Q, <rw = fi.

If u, v, w satisfy the condition

du dv dw__I__ l __ Q
dx dy dz

at each point, we may divide the whole mass into closed circuits

of appropriate transverse section a from point to point, and

such that la is the same throughout each circuit, where

But la corresponds to the i

considered, and
. dx dx

ds ds

of the linear circuits hitherto

-d8 = I^-ad8 = udxdydz, &c.
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Therefore each volume element dxdydz of the substance is

subject to electromagnetic action either represented by forces

X, Y, Z and moments I/, M, Nt where

X
f ff W /J 7f rl W

= \u ---t-v---\-w -
}-(cv

L = (HvGfw)dxdydz,

&c.,

or by forces perpendicular to the element and the magnetic in-

duction, Viz. ^ . 7 \ 7 7 7A = (cvbw)dxdydz,

with similar values for Y and Z.

395.] These results have only been strictly established for a

field of closed currents. Maxwell, indeed, maintains that with

the extended meaning of current described, Art. 263, every
current in nature is a closed current, and, whether this be

conceded or not, it seems clear that in any field the displace-

ment current, if it exist, should be included with the conduc-

tion current in estimating the phenomena.
In point of fact, most substances in nature are neither perfect

conductors nor perfect insulators, the large majority combine

both properties, and therefore admit, as explained in the article

above mentioned, both of conduction and of displacement in

different degrees.

If P, (J),
and R are the components of electromotive force

at any point of such a substance, there will be, supposing the

substance to be isotropic like glass or resin, an electric dis-

placement at that point, whose components f, g^ and k are

K K K
P, Q, and R respectively, K being a scalar quantity

called the dielectric inductive capacity ;
when the substance is

seolotropic like a crystal, the relations between displacement and

force are more complicated.

Hence the total components of current u, v, w will, in ordinary

substances, be determined (as shewn in Chap. XIV) by the

equations
df dq dh
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where p, q, r are the components of the true conduction current,

and are determined in accordance with Ohm's law by the equa-

tions P = CP, q = CQ, r = CE,

C being- what is called the *

conductivity
'

of the substance, and

the reciprocal of or the specific resistance per unit of area.

396.] The quantitiesft g, and h are in fact connected with p,

q, and r by the equations

TT

The ratio -^ will vary according to the nature of the sub-
G

stance, from zero in perfect conductors to infinity in perfect

insulators.

This remark is not inconsistent with the statement that in

electrostatical questions we pass to the perfect conducting limit

by making K infinite. The apparent inconsistency is due to the

different units employed in the two cases, as has been already

shown.

The recognition of the displacement components f, g, h with

their time differentials/,^, h necessitates the introduction of the

electric potential energy W, hitherto omitted for the sake of sim-

plicity, in the investigation of the inductive forces of the field.

If we regard, as above, /, g, h as possessing the properties of a

ic current, it will follow that the component inductive electro-

motive forces of the field are still of the form --
> -_- ,

dH
-j-r

when the u, v, and w in the expressions for Ft G, H are

composed of the conduction and displacement component cur-

rents, or arej+/, q+gt
r + h respectively.

The dissipation D or heat conversion depends only upon p, q, r,

and the potential energy W only upon /, g, h, the former being,

in fact, rrr / r

JJJ (]*&+?*
and the latter being
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397.] The magnetic force and magnetic induction are iden-

tical at all points where there is no magnetisable matter.

If there be such matter (the magnetisation being due only to

induction) then, as we know from Chap. XVII, the components

0, #, c of magnetic induction are connected with the components

a, /3, y of magnetic force by the equations

a = pa, b = p(3, c = \iy,

were
fx,

is a scalar quantity called the magnetic permeability.

In this case we have

dc db da dc db da
-=-- = 47r/xw,

--- = 47r/uv,
---

dy dz dz dx dx dy

For in this case

where a', /3', y arise from the magnetic action of the currents in

the field, and therefore satisfy the equations

dy d/3' do! dy dp do!
-^-- -

7-=4'7m, .
-- -= = 477V,

---
dy dz dz dx dx dy

as proved above.

And a", /3", y" arise from the induced magnetism, and there-

fore satisfy the equations

-^LY---^ da" -
dy dz dz dx dx dy

The reciprocal (-) in the current field is analogous to the

coefficient K in the electrostatic field.

As the general value of the electric potential in the latter is

expressed by the equation
i

=

so the general value of the ^-component of the vector potential

is expressed by the equation

^udxdydzF =
r

with similar values for G and ff, and the components of

magnetic induction are

dff dG
a = > &c.,

dz dy
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those of magnetic force being

1 / dH dG^
-( j y-) 1 &c -

x v 'j
ay dz

398.] So long as we are dealing with an infinite field through-

out which fM has the same value at every point, the equations as

above written are sufficient, but if the value of ju changes dis-

continuously over any surface or surfaces, the values of F, G, H
will not be completely expressed by the equations

and the like.

We will still suppose that there is no fixed magnetism in the

field, but only such as arises from the induction in magnetisable

matter.

The magnetic force a, (3, y at any point may be regarded as

composed of two forces, (1), (04, filt yj arising solely from the

currents; and (2), (a2 , 2> y2) arising from the induced mag-
netisation.

Similarly, the magnetic induction (, , c) is composed of

(alt blt c
t)

and (a2 ,
b
2 ,

c
2),

and the vector potential (F, G, H) is

composed of (Flt G19 HJ and (F2 ,
G

2 ,
ff

z)

And as above
dc db dc, db,--- = --1 _i =
dy dz dy dz

&c., &c.

Therefore, since

dG
l dF, _dF, dff,

C-, ::
-

5 J D-i ^
~~*

7 i

dx dy dz dx

^-V 2^=47r^ (I), where J
l
= d

-/l +^ + ^.dx dx dy dz

If over any surface /x changes suddenly from /x to f/, and the

same letters with and without the accents represent correspond-

ing quantities on the /x and // sides of the surface,

But a, = a/, whence = -7 > and similarly for #-, and
M f*
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/ and c/. These conditions together with equations (I) are

satisfied by the assumption

The difference of the magnetic forces (a2 , /32 , y2)
and (a2', /32', y2')

in the direction of the normal on opposite sides of the surface is

where 4irA=- a and nA'- a' &c., &c.
V- /*

Therefore

a/ = a
2 + ^

a/
-r = +... &c.

Also =
5

/* f*

(II)

Hence F, G, H at any point of the field are to be determined

from the equations

where jP
x , ^j, Z^ are determined as above, and F2 ,

G2 ,
H

2
are

determined from the equations

together with the three superficial equations corresponding

to (II).

399.] The total energy E in any field of electric currents in

which there is no material motion consists of three parts :

(1) The electrokinetic energy Te
which is equal, as we have

shewn, to
\ rr r

IjJJ {Fu+ Gv+ Hw}dxdydz.

(2) The dissipated energy or heat D, which is equal to

fff\f*
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(3) The potential energy of electrical distribution W> which,

supposing the field to be isotropic, is equal to

Now since F =

and that

Therefore

dTe

~dT

i

fff
"*****> it follows that

u = FU
du

~"
''

dF ^,du

dH

Also

Since o-p = P, a-q = Q, err = R.

dW 4

-iff
Since / = P, g

Whence, by addition, we get

c dy

where S is a surface bounding the whole field.

But the first of these terms is clearly zero, and the second is

so also provided the currents be all closed, in virtue of the

equation du dv dw
T- + T- + T- =dx dy dz

VOL. II.



114 ENERGY OF THE FIELD. [400.

f dE dTe dD dW
Therefore = + - + - = 0.

dt dt dt dt

400.] If there be material motion in the field, then we know
dT

that the time variation =-^ must be increased by the quantity
(Jit

{
P'u + Q'v +Kw] dxdydz,

where P', Q,', R' are the additions to be made to P, Q, R

arising from the motion of the element.

Now if we are dealing with a field of closed circuits, we know

tff{

is equal to r dp dx dg dy dH dz^
J

l

\~dt'd~s
+

dt'di
+ Wfo) '

where the line integral refers to any one of the closed circuits.

Also if q be a generalised coordinate of form or position of the

. ., dF dF da . . dG . dH
circuit, -j- = 2 -=--- and similarly for -=- and -=

dt dq dt dt dt

But in this case there is, as above proved, material kinetic

energy Tm , such that

dTm __ C.(dF_
dx dG dy dH

dz^~~ +'+' 8

///'

, dF dG dH ,.
where -= > -7- > -r have the last mentioned values.

02 eft d

Whence it follows that

dTm _
dt

And we get as before

dE __dTe
dD dW dTm __ #

^r
==

"^r
+ ^r +

"5r
+
"sr

* As shown above, Art. 391,

fff \
P'

u +^ + R'w
]
dxdV dz in a field of closed circuits

=fff \(cy bz)u + (az ex} v + (bx ay}w }
dx dy dx.

Also, by Art. 392,

u av}z} dxdydz,
whence the result as in the text.
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401.] The expression Te
for the electrokinetic energy, or

Ifffl
&H + GV+Hw} dxdydz,

differs, as shown above (Art. 357), from the integral

only by a surface integral over a surface infinitely distant, and

therefore either volume integral may be taken to express the

electrokinetic ejiergy over the whole of space.

If, with Maxwell, we regard this electrokinetic energy as local-

ised in regions of magnetic force (a, b, c) rather than those of

currents (u, v
y w), then in dealing with a finite space we shall

take the electrokinetic energy to be

throughout this space, and the time variation of this integral

will be the time variation of the electrokinetic energy T6
within

the space.

The dissipated energy or heat we regard as expressed locally

by the equation

D =

where the integral is taken as before over the given space.

Similarly, the potential energy or W we regard as expressed

locally by the equation

w = T
With these assumptions it may be proved that the total variation

per unit of time of E, or

Te+D+W+Tm ,

within the space bounded by a closed surface S is equal to the

surface integral

where P, Q, R are the components of the electromotive force at



116 ELECTEOMOTIVE FORCE IN MOVING CONDUCTOR. [402.

each point of S independent of the motion of the element at

that point *.

402.] In the case of a substance in a varying magnetic field

where there is no material motion we have seen that P, Q, R, the

components of electromotive force at any point, are determined

by the equations

p ___<W_d o-^ -^- 7?-_^_^i
~~dt~"dx'

^ =
~dt dy* W dz'

mu e dP dQ dR
Therefore -f-^ + - = - V2 \k

dx dy dz

dF dG dH
since + + - = 0.

dx dy dz

But we also know that

whence it follows that

4*^ dg_
dh.

K \dx
^

dy
^
dz)

Now if p be volume density of electric distribution in the field

at the point considered, we know that

# dg_ d_h_
dx

+
dy

"*"

dz
~ P '

and therefore p = -V2

^.K
Whence it follows that ^ is the potential of the free electricity

in the field.

403.] Again, if there be material motion in the field we have

proved, Art. 389, that

.dF .da .dH dF d^-P = x- + y + z~-- cy + bz + a)
s
G-<*>

2H+- + -=,
dx * dx dz dt dx

with similar expressions for Q and R.

If the substance be of invariable form we know that w
1 ,

co
2 ,

o>3

have the same values throughout, and also that

* This proposition was first demonstrated byProfessorPoynting, D.Sc., F.R.S.,
in a paper published in the Transactions of the Royal Society of London for 1884.
It being proved, as above, that the time variation of the energy within a closed
surface is expressible as a surface integral over that surface, Professor Poynting
assumes that the flow of energy through each surface element is the argument of

that surface integral. This theory, with many interesting consequences, has met
with general acceptance.
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dy
0)

3
= dx dx dz

lerefore

j 0>
2
= = ,

dy dz dx
dx dii dz_ __ J == _ __ A
dx dy dz

dz dy= = --
p-

dy dz

thence, attending to the equations

V2 = 4?rv = ---
-7-jax dz

re get

----
>

dy dx

dP d$ +dR_
dx

+
dy

+
dz

"

as before, and
\j/

is in this case also the potential of electrical

distribution.

If we adopt the shorter and more usual formulae

dF d^

we get

where

Since P, Q,

quantities

&c.,

dP_ dQ dR
dx dy dz

V=Fx+ Gy+ Hz.

R in the two expressions differ only by the
J if ,7 I /

-/-> -

respectively, it is indifferent which
dy dz

forms are employed in the case of closed currents, only it is

important to remember that in the one case the ^ is the poten-
tial of free electricity, and in the other case that it differs from

that potential by the quantity \}/' or

Fx + Gy+Hz.
NOTE. The field equations arrived at in this Chapter are those principally in

use, and which will be employed in subsequent pages. Many other relations might
have been obtained

;
see especially some very interesting papers on Electromagnetic

Waves by Mr. Oliver Heaviside in the Phil. Mag. 1887-1889.



CHAPTEE XXII.

THEORY OP INDUCED CUEEENTS ON CONDUCTING SUEFACES.

ARTICLE 404.] IN Chapter XIX we considered the case of in-

duction of electric currents in linear closed conducting circuits.

If an electric current be generated in one circuit by a battery,

we find that simultaneously a current, called the induced current,

is generated in any other closed conducting circuit in the field.

Similar phenomena of induction present themselves if instead

of linear conductors we have in the field solid conductors or

hollow conducting shells of any shape. The problem now pre-

sents itself, to determine the laws of this induction,

405.] In Maxwell's view, as already stated, the total current

at any point consists of (i) the true conduction current whose

components are denoted by jo, q, r, and (2) the displacement

current whose components are /, g> k. And all currents as thus

conceived are closed currents, so that

du dv dw
T + J- + T- =ax ay az

universally, if u = p +/, v = q+g, w = r + L
Again, if P, Q, R be components of electromotive force,

p = CP, q=CQ r = CK,

__^^P -_^_^Q i K_d]i
'^rdt

9 9~^W -4irdt'

if C be the conductivity, K the specific inductive capacity, of the

medium.

In the present investigation we regard space as sharply divided

into conducting and non-conducting space, C being infinitely

greater than K in the former, and zero in the latter. Also the

K in dielectric space is inappreciable compared with C in con-

ductors, being proportional to =
,
where V is the velocity of

light in the dielectric.
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It follows that in forming Fy G, H, the components of vector

potential of the currents by the equations

F = fx / / / - dxdydz, &c.,

we may neglect all the displacement currents /, g, h as con-

taining the very small factor K, unless the time variations of the

electromotive force are comparable in rapidity with the vibrations

K dP
which constitute light. If that be the case /, or

, may
be appreciable although K be inappreciable.

We may then in calculating F, (?, H> on which magnetic

phenomena depend, treat the conduction currents as the only

currents, and as alone satisfying the equation of continuity

du dv dw
fa
+
dj
+
~fa-

with its corresponding superficial equations. (See note at end.)

406.] A distribution of electricity on the surface of a con-

ductor is on this theory to be regarded as the terminal polarisa-

tion of the dielectric. The displacement currents will generally

cause the superficial distributions and their statical potential to

vary. Now the variation of the statical potential depends on

the number of electrostatic units of electricity which pass through

unit area in unit time. It, and the forces derived from it, will

therefore generally be appreciable, and have to be considered in

our investigations, although the magnetic effect of the same dis-

placement currents, which depends on the number of electro-

magnetic units, is inappreciable.

407.] Induced currents are always decaying by resistance : and

any conclusions reached on the hypothesis of there being no re-

sistance cannot of course correspond to actual phenomena. But

the currents are undergoing variation from two causes, (i) by

induction, (2) by resistance, and for mathematical purposes we

shall, where necessary, assume resistance to be zero, in order to

calculate the time variation of induced currents due to induction

alone.
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Of Current Sheets and Shells and Superficial Currents.

408.] Any surface in a field of electric currents to which the

resultant current is everywhere tangential shall be defined to be

a current sheet. The space between two current sheets very near

each other shall be called a current shell, and the perpendicular

distance between the two sheets its thickness.

If at any point P on a current shell a line be drawn on the

sheet at right angles to the current, and da be an element of

that line, h the thickness of the shell at P, then the ratio which

the quantity of electricity crossing the area hda per unit of time

bears in the limit to da is called the superficial current at P, or

the current per unit of length. We will, where necessary for dis-

tinction, denote by u v
t ,
w

s
the components of the superficial

current, retaining M, v, w for the component currents per unit of

area.

Of the Current Function.

409.] If we take for a current sheet the plane of xy> the con-

dition of continuity becomes, as is easily seen,

du8 ,dv8 _
~7 1 7 *"
dx ay

If that be satisfied at every point, there must exist a function

d>, of x and y> such that n8
= -^ , and v, = ^ This is

dv doc
called the current function.

More generally, if the condition' of continuity be satisfied for

any current shell, there exists a function, $, of x
9 y> and #, called

the current function, such that at each point on the shell

d<b dd>
u8
= n -~ m-j-i

dy dz

. dcj) d<j>
v8
= l -~--n 2Jjdz dx

dd> _ dd)
w m Ll _L,

dx dy

which satisfy both conditions, Iu
8 + mv

8+ nw
8
= 0, and, as will be

seen, the condition of continuity.
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For if the currents form a shell between two neighbouring

surfaces, S = c and S = c -f- do, the resultant current per unit of

area must be inversely proportional to the perpendicular dis-

dc
tance between these surfaces, that is, directly proportional to -r-

Again, if the condition of continuity be satisfied there must exist

a function, <J>, such that

u= dd& _^^?,
dz dy dy dz

-^^?__^?^?"~

dx dz dz dx

_(Md3> _dSd$>
dy dx dx dy

so that the resultant current is along the intersection of two

surfaces <J> = constant and S = constant.

These values of u, v, w satisfy the condition of continuity

du dv dw
dx

+
dy

+
~dz~

'

dS dc dS de dS dc
Now = l-r , = m, - = n

ax h dy h dz h

And writing $ for $>dc we have for the components of super-

currents
dm d<b

ut
= hu = n ~- m -^ >

dy dz

. d$ d<j>
vs
= I

v--n -f-,dz dx

d<b , dd>
w8
= m~-^l -^->dx dy

The function <, if given at every point on a surface, completely
determines the currents at every point. Evidently, for a closed

surface, $ + C determines the same currents as <, if C be any

arbitrary constant over the surface in question.

Of the Vector Potential of a Current Shell.

410.] If r be the distance from the element dS of the shell to

the point P, we have for the components of vector potential

at P,
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If the surface S be closed, we have by Art. 271,

d d \
(^> JCYn tm

]
d/o = 0, <fec.

dy dz ' r

And therefore
//(

so that .F, (r, 7? are linear function of the $'s with coefficient

functions of the coordinates. Evidently the same is true of the

derived functions -=- > > &c.
ax dy

COROLLARY. The vector potential due to any spherical cur-

rent sheet is tangential to any spherical surface concentric with

the sheet. For, taking the centre for origin, let a?, y, z refer to a

point on the sheet, a?', y, / to a point on the concentric surface ;

and let 2 -

and therefore x'F+y'G+ z'H = 0, which proves the statement.

The Energy of a System of Current Sheets.

411.] The energy of any system of current sheets can be put

in the form rT2^= / /

l(Fu8 + Gvs + HwB}dxdydz

extended over all the currents. But for every current sheet,

u
f>

vs> ws are subject to the condition Iu
8 + mv

8 + nws
= 0. The
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expression contains therefore more variables than it has degrees

of freedom, and it becomes desirable to transform it, by substi-

tuting <, the current function, as the independent variable.

Given any system of current sheets, let us apply the theorem

of Art. 271, using the function F$ for P of that article. That

the first integral being round the bounding curve of each surface

and the second over all the surfaces. That is,

Treating Gcf) and H(f> in the corresponding way, we obtain

The first member is equal to 2 T.

We will now suppose all the surfaces closed. Then the second

term of the right-hand member vanishes, and therefore for any

system of closed current sheets,

Also if H be the magnetic potential and /*= 1,

d(^__dH_<m d^__^__^ d ^_^_15
dz dy dx dx dz dy dy dx

~~
dz

Therefore

dv

412.] It is necessary now to show that is continuous through

t.ny

current sheet. For this purpose it is sufficient to take the

angent plane at any point for the plane of #, y. We then have

dl d 12 dF dG
dv dz dy dx
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F = /YT" dxdydz, G = f
f/|

that is, .F and G are the potentials of imaginary matter of

densities u and v respectively. Therefore by the general theory
J T7I 3 /~1

of potential functions, -= and -=
, corresponding to tangential

IF dG
components of force, must be continuous, although and

-j-

may be discontinuous, at the surface. Therefore -= is con-
CvV

tinuous. It will be observed that T is expressible as a quadratic

function of the $'s with coefficients functions of the space coor-

. dH dG
dinates. For at every point ~j~

> ~r >
&c -j are expressible as

J

linear functions of the fis, and therefore
-y

is so expressible.

Comparison with Magnetic Shells.

413.] The vector potential due to a magnetic shell of strength
< over a closed surface $, < being taken as positive when the

positive face is outward, has for components

iyff

which are the same as the components of vector potential of a

current sheet with current function
</>

over the same surface.

It follows that the components of magnetic force or magnetic
induction due to the magnetic shell at any point not within the

substance of the shell are the same as those at the same point
due to the current sheet. And therefore the magnetic potential of

the magnetic shell differs from that of the current sheet by some

constant at all points external to the shell
;
and by some, but

not necessarily the same, constant at all points in the enclosed

space.



4 1 5.] MAGNETIC SCREEN. 125

414.] The magnetic potential due to any shell of uniform

strength $ over a closed surface S is zero at all external points,

and 47T0 at all internal points. Such a shell corresponds to

no system of electric currents. The magnetic potential due to

any system of currents on S is the work done in bringing a

unit magnetic pole from an infinite distance to the point con-

sidered, and may (Art. 329) have any one of an infinite series of

values differing by a constant according to the route chosen for

the pole. It is not necessary for our purpose to define this

magnetic potential, as we are concerned only with its first

differential coefficients, which are unambiguous. It would not,

however, be difficult so to define it as that the magnetic potential

due to the currents shall be equal to that due to the corresponding

system of shells at all points in external space.

415.] If S be any closed surface, X2 the magnetic potential due

to any arbitrary magnetic system outside of S, there exists a de-

terminate distribution of magnetic shells on S, whose magnetic

potential is equal to Ii at all points within S.

For let q be the density of a distribution of matter over S

whose potential has the value Q at all points on S. That

determines q, and the potential of the q distribution is equal to

1 at all points within S.

Let be that function of #, y> and z of negative degree,

which satisfies the condition V 2
< = at all points external to

S, and the condition -=^ = q (the normal being measured in-
clv

wards) at all points on S. This function is possible and deter-

minate by Art. 275. Then <, so determined, is the strength

of the required shell on $, being taken as positive when the

positive face is outwards.

For let 12 be the magnetic potential of the system of shells on

5 whose strength is $. Let r be the distance from any point P
within S. Then at P

the normal dv being measured inwards.
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But since P is within S
t
V2

(-)
= at all points in the

external space. Also V 2
$ = at all points in the external space.

Therefore by Green's theorem applied to S and external space,

And therefore

n / i J l

I I 1 CKp
/ I 5

JJ r <*J>

--//!

416.] COROLLARY. There exists a determinate system of currents

on any closed surface S, whose magnetic potential, together with

that due to an arbitrary magnetic system outside of S, has some

constant value at all points on or within S, namely, the system
of currents whose current function is $, where $ is the function

found by the method of the last article. We shall call this

system of currents the magnetic screen on 8 to the external

magnetic system.

It will be easily seen that we might reverse the problem, and

find a system of currents on 8 whose potential together with

that of an internal magnetic system should have the value zero

throughout the infinite external space.

Example. Let 8 be a sphere of radius a. Then the- value

of 12 on 8 may be expressed in spherical surface harmonics,

including generally a constant term.

Then at any point on or within 8

also a=-l =-A -2A nYn .
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Therefore, by Art. 66,

^! = _A__
1

22^14,7..
dr 4-na lira

And therefore in external space, at any point distant r from the

centre,

and on S

,
4irr 47T w+ 1

^
The constant term ~ corresponds to a constant magnetic

shell over S, which has potential A at all points within S,

and cannot be represented by any system of electric currents

on S. For every other term / / YndS= ;
and therefore we may

take for the current function of the currents forming the mag-
netic screen .

from which the current at any point can be determined by

expressing Yn in terms of the usual surface coordinates.

417.] Before entering on the consideration of the general

problem of induction on surfaces, we will treat a simple case, that

namely in which we have a conducting spherical shell S, and

electric currents are generated wholly on an external spherical

surface S concentric with S.

Let WQ, VQ, w be the components of the given currents on S
,

u, v, w those of the induced currents on S, F ,
6r

,
ff the com-

ponents of vector potential of the given currents, F, G, H those

of the induced currents. Let
,
a be the radii of $ and S

respectively. Then the electrokinetic energy of the whole

system is given by the equation

_ rrr(

-JJJ I +(H + H) (WQ + w) ) dxdyds,

extended over all the currents both original and induced.

As the effect of induction alone apart from resistance, the

induced currents would come into existence according to the law
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dt du

= V at all points on S,
dt dv

d dT--=0
dt dw

with the condition that induced currents can exist only in the shell.

If we take the common centre of the spheres for origin, this

condition is
y *

f\m ^.
z- <u j^. w^o

a a a

at each point in the shell.

It will be found in this case that if we determine u, v, w by
7 7 m

using the equations -j- -j-
= 0, &c., without regard to the con-

dt du

dition, the values so found, in fact, satisfy the condition, and

correspond to a system of closed superficial currents on S. They
are therefore the solution of the problem.

dT d dT
Since -=- = F, &c., by making =

0, &c., unconditionally,

we obtain =-9 + -=- = 0, &c. 5
and therefore since the motion is

dt dt

from rest,

at all points on S.

Then the currents uQ) #
,
WQ have a current function $, which

can be expressed in a series of spherical harmonics referred to

the common centre of the spheres. It is sufficient to treat one

harmonic term in this expression. Let therefore be a solid

harmonic of order n. Then, taking the centre for origin, u^ VQ ,

W
Q
are the values on S of the functions,

z dd) i/ dd)
U ~~

~a
Q dy

~~
a dz

'

x d(f) z dfy
V ~~

a dz
~~

a dx
'

11 dd) x d(p
"~

a

And therefore u0) v
,
w are spherical harmonics of order n.

"~
a dx a dy
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Suppose on 8
,
UQ = BnYn ;

then on 8, FQ
=

J

r (-) Bn Yn ,

by Art. 66.

And therefore

and therefore on

Similarly

Hence we see that u, v, w are symmetrical with respect to

^O' v
o
wo5 and since U^V^WQ constitute a system of closed

currents on the outer sphere, u, v, w constitute a system of

closed currents on S.

418.] In the general case, the equations
-~ + = 0, &c.,
dt dt

will determine a system of values for ^, #, w on $, which do not

satisfy the condition lu+ mv + nw 0. We must therefore have

recourse to another method of solution *.

A General Solution.

Let there be certain surfaces S19 S2 , ... Sr on which 0, the

current function, is given as a function of the time at each

point, constituting a given varying magnetic field ;
and certain

* It may be suggested that we should apply Lagrange's equation to the ex-

pression for energy,

having regard to the condition lu + mv + nw = 0. We should thus obtain

dF d\ dG d\ dS d\
-Tt

=l
~dt

y

-dT
==m

dt
)

~dJ
==n

dt
>

d\ .

when is an indeterminate multiplier.

Here \ is evidently the resultant vector potential on S
;
and the equations

show it to be normal to S at every point. By this method we should obtain

determinate values for
, v, w on S, satisfying the condition lu + mv + me 0.

But, as will be shown, they cannot satisfy the condition of continuity except in

the case where A. = 0.

VOL. II. K
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other closed surfaces Sr+lt ...Sn ,
to be regarded as conducting

shells, on which closed currents are free to form themselves by
induction.

Let Q be the magnetic potential of the given currents, 1

that of the induced currents.

Then

-*<*">//
in which the first integral relates to the surfaces S

19
... Sr ,

on

which < is given at every point, and the second relates to the

For integrating by parts throughout the space within S, we have

rCC, d ^d rr d\,dF dG dH

JJJ (
F
te

+ G
Ty

+H
^> (S +

ay
+W

If F, G, H be the components of vector potential of the currents u, v, ^v on S,
determined by the method now under consideration, and of the external system,
the first term of the right-hand member is zero, because the vector potential is

normal to S, the second because there are no currents within 8.

If the condition of continuity be satisfied by u, v, w on S, the third term is also

zero, and therefore the left-hand member is zero, and therefore =
, &c.,

at all points within S.

Therefore there exists a function x of x, y, z, such that within 8

p _dX G _dx H _ d_XF
-~te'

~
dy>

~
dz'

And since F, G, H are components of the normal, x is constant over 8.

Ms dF dG dH
v2
x = -r-+v- + -r- = o

dx dy dz

at all points within 8. Therefore x has the same constant value at all points
within 8. Therefore F =

0, G = 0, H =
0, at all points within S, and A = at

all points on 8. The method suggested can therefore never lead to a solution,
unless ^=0, 6r = 0, H = lead to a solution. This cannot be generally the

case.
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remaining
1 surfaces Sr+l) ...Sny on which $ is to be determined

by induction.

Now there are no forces tending to increase
</>

on Sr+l ,
... Sn

except the forces of induction. The potential of free electricity,

if it exist, and the forces derived from it, can have no effect

on
</>. Further, the system has as many degrees of freedom as

it contains variables, namely the $'s.

If therefore the external magnetic system be generated con-

tinuously, the corresponding system of induced currents on

e determined by the equations

at each point on the surfaces r.n, ... Sn .

ThatiS>
d_ (dQ^ d&^_
dt (dv

"f
dv )

~

That is, ,

dfd&t.dQ^Q
dv\ dt dt)'

at each point on Sr+1 ,...Sn ;

also V2^T
= 0;

and V2 =
;

at

at all points within any of those surfaces ; and therefore

-
-\ =- has uniform value over and within each of the

at dt

surfaces Sr+l ,...SH .

But, as already proved, there is for each surface only one

determinate system of closed currents which has this property.

We see then that the system of closed currents which will be

induced on the closed surfaces Sr+l , ... Sn ,
is the determinate

system which we found above, making the magnetic potential

constant upon or within each of the surfaces Sr+l ,...Sn . As

any closed currents come into existence outside of r̂+1 , ... Sn by
the variation of the external system, their magnetic screen is

formed on Sr+1 , ... Sn .

These induced currents decay by resistance, and cease to be

K 2,
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a complete screen. We are here considering only the law of

their formation.

419.] On this hypothesis, and neglecting for the present the

resistance, the magnetic force will be zero at every point within

any of the surfaces $r+1 ,...$M ; it remains to consider the

electromotive forces.

Since the magnetic force is zero at every point, we have,

writing F, G, If for the components of the complete vector

potential, due as well to the original as to the induced systems,

d^dF __ d^dG _dd#__[^
T

^.^_A^?
dy dt dx dt dx dt dz dt dz dt dy dt

at all points within the surfaces Sr+1 ,...Sn . It follows that

there exists a function
\j/ t

of #, ^, and z
t
such that

^_^i __^I_^ dH _d^
dt dx dt dy dt dz

and d dF dG

at every point within any of the surfaces Sr+1 ,...Sn .

AT dF dG A dH
^ t

JNJow --rr --T~ > and --r being1 the components 01 an
dt dt dt

electromotive force, produce, according to the theory of electro-

statics, on the surface of the conductor 8 a distribution of

electricity having potential */>-,
and therefore causing at all

points within 8 an electromotive force equal and opposite to

the resultant of --7- > --=- > and --rr This distribution,
at dt dt

and its potential \/r,
will be invariable with the time as long as

--rr ) &c., are invariable.
at

We are thus led to expect that, in response to the variation

of the magnetic field outside of a conductor, there will be in-

duced on the conductor (i) a system of electric currents re-

ducing to zero the magnetic force, and (2) a distribution of

free electricity on the surface reducing to zero the electro-

motive force, at all points within the conductor.

420.] The potential function
v/r

at which we arrived in the last

article requires further investigation.
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Let S be any closed surface, P, Q, R the components of a

vector which satisfy the condition

dP
+ dQ+

dS
=()

dx dy dz

at all points within S. Then

It follows that there exists a function x of #, y> z, such that

at all points on S, and V 2
x = at all points within 8.

We will call this function the associatedfunction to P, Q, E for

the surface S.

The vectors dx n dx dx
JT ---

3 U/----
3 1 ----

dx dy dz

have a resultant in the tangent plane at each point on S.

421.] If P, ,
and R satisfy the further condition

"_*?-<> &c-- --=
\J, OcC.,

dy dx

at all points within S, then shall

P-^*=0, <2-^=0, and *--&=<>
dx dy dz

at all points within S. For these further conditions being

satisfied, there must exist a function x', such that at all points

within S , / 7 , , /

P <*X n- d* 7?
^x

* = -7- 9 (/ = -7" ' /I = -7-dx dy dz
And therefore -

Then = at all points on 5, and V 2
(x'-x) =

at all points within S. And therefore x' X = constant, and

d\P
-^
= &c. at all points within S.

422.] If P, Q, and 72 be the components of an electromotive

force, and if $ be a conducting shell, then, whether the conditions

- = -j^ 3 &c., be satisfied or not, they will maintain on S the
dy dx
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statical distribution whose potential is x- For letP=P/ + P1 ,

civ
and Pj= -^

> then the forces Pl , Q1 ,
E

l are derived from the

potential x> and produce the effect stated. P', Q', E' form wholly
closed curves within S, and do not affect the potential.

423.] Let now
-j^

>
~>

, be the components of the time

variation of vector potential of any magnetic system outside

of S. Let
\l/

be their associated function for S.

Let -=r j -TT ) rr be the components of the time variation of
at at at

vector potential of the system of currents on 8 which forms

the magnetic screen to the external system. Let
\//

be their

associated function for S9
then for the two systems together we

have a vector whose components are

with an associated function

magnetic screen

it follows that

at all points within S, or replacing F +F by F, &c., and \^ + ^
by \^, we have dF d^lr

-77 -7-
= 0, &c.

<w ax

The associated function to -r. , &c., is equal to the potential of
dt

that distribution of free electricity on the surface the statical force

due to which is equal and opposite to the force whose components
dF

(

are -TT> &c.
at
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And therefore since

__dF _dG _dH
~~dt' ~"5' "~di

are components of an electromotive force, we have a statical

distribution formed on S whose potential is
//.

There may of course be any free electricity in the field. But
we have to do with it only so far as it appears to be required by
the conditions of our problem. And from that point of view

\j/

is a single and determinate function of #, y, z, which is known
, dF

fiwhen
, &c., are given.

clt

424.] According to this theory, superficial currents, and none

but superficial currents, are continually being created on any
solid conductor by direct induction. We may regard the solid as

made up of an infinite number of thin conducting shells, succes-

sively enclosing one another. The same currents are generated

on the outer shell from instant to instant as if it were a hollow

shell, and these are on their creation, and were there no re-

sistance would continue to be, a complete magnetic screen,

effectually preventing the interior strata from becoming affected.

But in fact the currents in the outer shell decay by resistance,

and cease to be a complete screen. By this means the interior

portions of the solid become gradually, but perhaps within a

time sensibly instantaneous, pervaded by currents.

The Effect of Resistance in Conducting Shells.

425.] We have hitherto supposed resistance zero, and calculated

the effect of variation of the external magnetic field. It comes

next in order to consider the effect of resistance alone without

variation of the external field.

In any system of currents in a conducting shell Ohm's law

requires that the equations
a- dF d

(TU= = U. = 1 r- 3

h dt dx

a- dG d*
(rv= -vg

= 37~~T~ 3

h dt dy
a- dH d*

crw = -rW8
= j

h dt dz

(A)
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in which o- denotes the specific resistance, be satisfied at every

f dF dG dH
point by some value or other of -=- > , -33 and V.

at at at

Let us suppose the shell to be of uniform material and o-

constant. Then we have by differentiation

^dx dy dz / dt ^dx dy

at all points within the substance of the shell. If therefore the

currents are derived from a current function, and if F, G, and H
relate to any varying magnetic system, including the currents

in the shell themselves, it follows that V2v = at ajl points

within the substance of the shell.

But also multiplying equations (A) in order by I, m, n, and

adding, we have

dF dG dH d*_
dt

" n
dt

n
~dt dv

~

=
and therefore ^ is by definition the associated function to

dF dG dH .

-7T > -rr'9 rr > which we denote as heretofore by \lr.

dt dt dt

Any system of closed currents in a uniform conducting shell

derived from any arbitrarily assigned current function can be

caused by the electromotive forces due to some varying magnetic

system, including the currents themselves, with the associated

function belonging to those forces.

If, however, it be prescribed that F, G, H relate exclusively to

the system itself, that is, if it be a system decaying in its own
field in the absence of external forces, the equations (A) cannot be

satisfied unless or, or the thickness of the shell, be suitably chosen

at every point. For in this case -7- , -=7 > and -rr ,
and there-

j
dt dt dt ..

fore also
-j-

> &c., are expressible as linear functions of - -

Assuming- them so expressed, and $ and o- and h arbitrarily

given, the equations (A) express two independent conditions

which the single unknown quantity j~
has to satisfy at each

point on the surface. This is not generally possible. But if /$,



427.] SELF-INDUCTIVE SYSTEMS. 137

the thickness of the shell, or &, be also disposable, then a or li

and -~ are determined by those equations.
Cc v

We may conceive a system in which these conditions are

satisfied, and continue to be so during the whole process of

decay, in which therefore equations (A) hold true when differenti-

ated according to t. We might call such a mode of decay of

a system of currents a natural decay. The complete solution of

any such problem involves the determination of -= or $ as a
d/t

function of the time, which can only be effected in special cases.

426.] We will here consider the case in which the currents

are such and the resistance is so adjusted at each point of the

conducting shell as that all the currents decay pan passu,

bearing at every instant during the process the same proportion

to one another.

If this be the case, we shall have

Idu

8 dv8 dw8

;here

A is a constant proportional to the resistance,

me law must hold for all linear functions of us ,
v8) w8 ,

dF d<b
A.r'j &c., ^^ A (p j and ^^ -~

i

dt dt dt

and since T7

is a quadratic function of us ,
v

8 ,
iv

8 ,

dt
-

expressing the rate at which heat is generated in the decaying

system. Also if F
19
G

19 &c. denote the initial values of those

functions when t = 0, we shall have at time t

F = F^-", &c.
5
and T= T, <-*".

The constant A is called the modulus of the system.

Any system of currents in a shell which has this property of

decaying proportionally in its own field shall be defined to be a

self-inductive system.

427.] We proceed to investigate the conditions that a system

may be self-inductive, and its properties when it is so.
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Let us denote by v/f
the associated function, as denned in Art. 420,

dF dG AH
to the vector whose components are --77 ?

--
77 > and --

dt dt dt

Also let x be the associated function to F, G, and H.

If the system be self-inductive,

^ = -A*,&o., and ** = _A*X,4c.
dt dx dx

The equations (A) become in this case

and therefore *

d d
F+^ G+ H+

a
-_d_ ___dy___dz_ <*_ >

/

u8 vs w8

~
h\

428.] Now if for any conducting shell we choose an arbitrary

current function $, the quantities u
s >

v
s ,
w

s , F, G, H, and x are

all determinate at every point as functions of 0. The vector

whose components are F+~ , G + y^
> jST+ -p

is necessarily in

the tangent plane at every point, because

dv

by definition, but it is not generally in the same line with the

resultant current. But unless it be in the same line with the

resultant current the equations (B) cannot co-exist, and there-

fore the system cannot be self-inductive-

The equations (B) then express the condition which the current

function </>
must satisfy, in order that the system of currents

derived from it in the given shell may be capable of being made

self-inductive. They express only one condition, namely that

two lines, both ascertained to be in a given plane, shall coincide.

It may be expressed by the single partial differential equation
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at each point of the surface. This is a partial differential equa-
tion in

(f> only, because F, G, H and
x.

are determined if $ be

given.

429.] As there are as many disposable quantities, namely the

values of < at all points on the sheet, as there are conditions to be

fulfilled, namely, the above partial differential equation at every

point, we may assume that for every surface S there is at least

one function < which satisfies the condition. We shall see later

that if S be a sphere, and in certain other special cases, there are

many. If < be any function which fulfils this condition, then

F, G, ff, and x> derived, from it satisfy equations (B),

^__~~
h\
~ suPPose '

dx
__ dy

at each point on S. But Q generally varies from point to point

on the surface.

In order to make the system with $ so chosen actually self-

inductive^ we must so choose h as to satisfy equations (B) or

= XQ at every point.

If <r be constant, this determines the relative thickness at

every point which the shell S must have in order that it may be

self-inductive with the current function <.

If for any system of currents on a surface the tangential

component of vector potential coincides with the current at

every point, the system can be made self-inductive by properly

assigning the thickness of the shell. For -^ is made equal and

opposite to the normal component of vector potential by defini-

tion, and therefore the vector whose components are F+ ~, &c.,

is the tangential component of vector potential.

Examples of Self-inductive Systems.

430.] (i) a sphere of radius a.

Let $ be a spherical harmonic of any one order, as n. Then
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z d(b v dd>
u = -

-j- -~, v = &c.,
a ay a dz

and therefore u, v, w are spherical harmonics of order n. And

therefore, by Art. 66,
u

2n+l
4-rra- v
2n+l

and F: G : H : : u : v : w at all points on the surface.

The vector potential then coincides with the current, and

X = 0, \l/
= 0, and the shell, if of uniform material and uniform

thickness, is self-inductive with $ = AYn and A constant.

(2) S a solid of revolution about the axis of z, and $ any function

of z only which makes -=- always of the same sign throughout S.

For the currents are in circles in planes parallel to that of #, #,

and so evidently are the lines of resultant vector potential, and

therefore the vector potential coincides with the current at every

point, and -

being of the same sign throughout S the currents

are in the same direction round all the circles, and so therefore

are the lines of vector potential. In this case x = an^ ^ -

(3) In any case if $ be a function of z only, and if x> being the

associated function derived from it,
- = 0, the system is self-

inductive. .

For both the resultant current and the resultant of F+~,
dx

&c., are in this case in the intersection of the tangent plane with

a plane parallel to that of xy.

Hence

and

An example of this is given later, namely, an ellipsoid with
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the axis of z for one of its axes of figure. And it is shown that

in this case the thickness of the shell at any point must be pro-

portional to the perpendicular from the centre on the tangent

plane at the point.

On Self-inductive Systems generally.

431.] We have seen that in self-inductive systems every linear

function of u, v
y
and w decays according to the same law. Now

12, the magnetic potential, is such a linear function. Therefore

the variation of 12 due to resistance alone, there being no varia-

tion of the external field, is given by -j-
A 12.

But the variation of 12, due to variation of the external field

in the absence of resistance, is given by
do, _ dQ

9

~dt~
''

"

dt
'

12 being the magnetic potential of the external field.

Therefore for the whole time variation of 12, we have

da_ da,- = Ai = J

dt dt

from which 12 may be determined as a function of t whenever

the law of variation of the external field is given.

EXAMPLE I. Let -^ be constant. Then the equation be-
ctt

comes
d

or 12 =
^(1-6-^).

If we make \t infinitely small while Ct remains finite, this

represents the ideal case of so-called impulsive currents, that is,

a system of finite currents supposed to be created in an infinitely

short time, and Ct represents the impulse. In this case the

equation gives 12 = Ct
t
and 12 is independent of the resistance.

If, on the other hand, we make A t very great compared with

unity, as we always may do by sufficiently increasing the resist-

Q
ance, or the time, we obtain 12 = . That is, 12 varies inverselyA
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as the resistance. The resistance in this case plays a part

analogous to that of mass in the motion of a material system
under finite forces from rest.

Suppose, for instance, there be several conducting- shells, and

a magnetic system external to all of them, whose magnetic

potential is made to vary so that -~ is constant. And sup-
Cvt

pose that the systems of currents generated in the shells are

self-inductive ; then, according to the result last obtained, the

currents in the shells will, as the time increases, become in-

versely proportional, cateris paribus, to the resistances. This

result agrees with the assumption with which we started, that

induced currents may be regarded as existing in conductors only,

because, although no substance is a perfect conductor or a per-

fect insulator, the resistance in so-called insulators bears a very

high ratio to that in metals.

EXAMPLE II. Let the potential of the external magnetic field

on or within the shell S be given by
& = AcOSKt,

where K is constant, and A constant as regards time, but having
different values at different points. Then at any internal point

we have, if the system of currents be self-inductive,

Let A = K cot a.

Then ^ +
at at

To solve this assume

and 12 = A cos K t.

H = (cos K t + q sin K t)A'.

Then we have, neglecting constant factors,

A smKtA'smKt + qA'cosKt + A'cota(cosKt + qsmKt) 0.

And therefore q = cot a,

and A + A'+

or A' A---s-
l+cot2 a
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Therefore at any internal point

11= .4 sin
2 a (cos K cotasinxtf)

= A sina sin(K a).

And for the whole magnetic potential at any point within S

= A
{
cos K + sina sin (K a)}

= A cosacosKtf a.

The field is diminished in intensity in the proportion cos a : 1
,

;md retarded in phase by
-- of a complete period*.
2ir

432.] If A be very great compared with /c,
a becomes nearly

zero, and sin a = a = -
. In this case the internal field has the

A

same intensity, because cos a = 1
,
and nearly the same phase,

as the external field. This is the state of things to which we ap-

proximate as we diminish indefinitely the thickness, or increase

indefinitely the specific resistance, of the conducting shell. Now
we may conceive a solid conductor to consist of a number of

infinitely thin shells successively enclosing one another, and

apply the formulae above obtained to each shell. Let the shells

be of such thickness that each is self-inductive with the given

currents. Then the same phase is reached in an inner shell at a

time -
,
that is -

, later than in the shell immediately outside of
K A

it. The ratio which h, the thickness of the outer shell, bears to

this difference of time, is in the limit the velocity with which a

disturbance of the type in question penetrates the solid. This

velocity is then Xh, that is
j:

in the notation of Art, 429. This
^

relation holds true so long only as we can neglect the inductive

action of inner shells upon outer ones.

It is assumed in the above investigation that the system
of currents induced in the shell at any instant by the variation

of the field is self-inductive. This, if true at any instant, is true

* This problem is treated by Professor Larmor, Phil. Mag., 1884, for the

special case of a spherical sheet.
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at every instant, because the values of O at all points in or

within the shell are multiplied by the same factor cos &t.

433.] Any two or more self-inductive systems of currents may
co-exist on a conducting shell ;

and if they have the same

modulus, or value of A, they combine to form one self-inductive

system with that same value of A. For let F
l
&c. relate to one

system, and F
2 &c. to another. Then at any point on the surface

= A

and therefore % 4- u.2 is the component of superficial current in a

self-inductive system with A for modulus. And so on for any
number of systems.

434.] We can now treat the following case. Let a conducting
shell whose surface is a solid of revolution, revolve with uniform

angular velocity co about its axis of figure in a field of uniform

magnetic force, P, at right angles to that axis. Let the axis

of rotation be that of y> and the direction of the force that

of x. Let us take any plane through the axis fixed in the

conductor for the plane of reference, and let time be measured

from an epoch at which the plane of reference coincides with

that of xy. Then if Q be any point on or within the conductor

distant r from the axis, and such that a plane through the axis

and through Q makes the angle with the plane of reference,

the potential at Q of the external field is Pr cos (<at + Q).

By the change of position of the field relative to the shell we

have induced on the shell at any instant a system of currents

which is symmetrical with respect to that particular plane

through the axis which coincides at that instant with the plane

of xy. Let us suppose that the system of currents induced at

any instant by the rotation is a self-inductive system. We have

then a series of self-inductive systems successively created, sym-
metrical with regard to successive planes through the axis fixed

in the conductor.
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We have then, to find the potential at Q of the induced

currents, <m

and & = Pr cos (at + 6)

d&-~ = Pwrsin (f+0) ;

whence we obtain

fl= Prsmasin(o + a),

& + I2 = Prcosacos(co + a),

a having the value cot ~* -

435.] We may calculate in this case the mechanical work done

per unit of time in turning- the conducting shell. For this is

the same as would be done if the currents were at each instant

replaced by the corresponding system of magnetic shells over

the surface with strength $. It is therefore

if n
o
be the magnetic potential of the given field, and therefore

-j-^-dS the flux through the ele
d v

netic induction of the field. Now

-j-^-dS the flux through the elementary area dS of the mag-

dv

where /3 is the angle which the normal to dS makes with the axis

offigure,and ddO. = _ ^^+9)
dt dv

Also <$>
= PAcos(a>t + a),

where A is a constant depending on the form of the surface.

Hence rr d dl ,
(

//***;**
is proportional to

/*2rr
/ dOsm((Dt + 0)cos(a>t + a),
Jo

that is to sin a. It is proportional, as in the case of the single

closed circuit treated of in Art. 355, to the sine of the retardation

of phase.

VOL. II. L
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436.] We might in any of the preceding cases suppose a core

of soft iron within the shell and separated from it by a thin

lamina of non-conducting matter. The magnetic potential of

the field in which the core is placed is, as we have seen, of the

form A cos acos(W a). The core will be magnetised by in-

duction but with a retardation of phase as compared with the

field in which it is placed *.

If we were to assume that the magnetisation bears a constant

ratio to the magnetic induction, we should have for the deter-

mination of li an equation of the form

=
dt

where C is constant, which would lead to a solution of the same

form as before.

As the relation between the induced magnetisation and the

magnetic induction in soft iron is not perhaps sufficiently estab-

lished, it may not be safe to draw any but the following general

conclusions, viz. (i) the magnetisation of the iron will be always
retarded in phase as compared with the field in which it is

placed, and therefore as compared with the external field
; (2) if

this retardation be not very great the magnetic field due to the

core will at all points on the shell be of the same sign as the

external field, and the effect of the core will be to increase the

currents induced in the shell.

Further, as soft iron, although magnetisable, is a conductor,

there would, were the surface of the soft iron continuous, be also

induced currents on it which would create a magnetic field of the

opposite sign to that of the induced magnetisation, and so tend

to diminish the induced currents in the shell. But this may be

obviated by making the core consist of insulated iron wires

running in directions at right angles to the currents in the shell.

This is usually done in forming the core of the armature of

a dynamo-machine.

437.] The treatment of special cases is reserved generally for

the following chapter, but in order to elucidate a general prin-

* We assume here and throughout the chapter that the oscillations of the field

are not too rapid.
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ciple of some importance, we will again anticipate one of the

results there proved. It is shown, namely in that ch pter,

that if currents of the type $ = Az^ where A is constant, be

generated in an ellipsoidal shell of which one axis coincides with

z
t
the system will be self-inductive when the thickness of the

shell at any point is proportional to the perpendicular, -or, from

the centre on the tangent plane at the point. The component
currents per unit of area are then

Ay Axu=
,

=
--y, w=0;

*-7+t+7'-
_ dS

d<j> _ dS d<fr __ 2Ay
dy dz dz dy

~
b
2

If the equation to the given ellipsoid be

cc
2

?/
2 z2

then - + - + --

is the equation to a similar, similarly situated, and concentric ellip-

soid ', whose linear dimensions are to those of the given ellipsoid

a&r: 1 . And we shall suppose r < 1
,
and $' an inner ellipsoid.

It can now be shown that if we form on the ellipsoid & a shell of

uniform material similar to the given shell S, then the generation

of the given system of currents on the given shell S will cause

by induction a system of currents of the corresponding type, but

in the reverse direction, on the inner shell '. For let F, (?, H
be the components of vector potential of the given currents in

the outer shell, x their associated function. And let I", G\ H' be

the corresponding functions for the induced currents on the

inner shell.

Then, since the given system of currents is self-inductive,

we have

t,t

all points on S, A being the modulus. Now by the definition

-('+$-*
L 2
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at all points within S. Also, u being the function
-j^-,

V 2 u =
at all points within S.

Therefore

at all points within the ellipsoid S, and therefore at all points
on the ellipsoid $'.

That is, dp

JTjl

at all points on y, substituting =- for \F and ty for \\,
as in Art. 427.

That is, the continuous increase of the given currents on 8 acts

as an electromotive force tending to produce the reverse currents

-u, v, and w on S'.

But since this system of currents on S' is self-inductive, its

own self-induction will not cause currents of any other type to

appear in ST. This type of currents will therefore be induced

with the opposite sign to those in the outer shell.

438.] We have dealt with the case of an ellipsoid only. But

the same method may be extended thus. Let S be any homo-

geneous function of positive degree in a?, y, and z, and 8 = 1

a given surface.

Then we may divide the space within S into a series of similar

concentric and similarly situated shells, each being between two

surfaces such as S = c and 8 = c + dc, where c < 1 .

Let us suppose that in each of these shells, if a conducting

shell, a system of currents with $ for current function would be

self-inductive. Let an inner conducting shell be so formed.

Let an outer shell be formed on S, i. e. between S = c and

S = c dc, and let the given type of currents be generated in it,

Then it can be proved by the same method as we employed in

the case of the ellipsoid that a system of currents of the type
< would be generated by induction in the inner shell, provided

only that the functions u and v
t
or

dS d(j) dS d(f>

dz dy dy dz
'
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be of positive degree, and V2u = 0, and similarly V 2v = at all

points within S.

The Effect of Resistance ; Solid Conductors.

439.] As the superficial currents decay by resistance, they no

longer act as a complete magnetic screen to the internal portions

of the solid. These accordingly become subject to the influence

of a varying external magnetic field, and currents are excited in

them also, so that in time the whole solid becomes pervaded by
currents

;
and this time is perhaps generally so short that the

process is sensibly instantaneous. The laws of this process are

expressed by the equation,

dt dx

* _=
dt dy

d

(B)

dt

with the bounding condition

lu + mv +nw = 0.

In dealing with problems of this class it is frequently more

convenient to retain the variables F, G, and If. For instance,

if S be a solid sphere of uniform material, and the external

magnetic system be due to closed currents on spherical surfaces

concentric with S, we shall have no statical potential \j/,
and

the equations become

~dt ~dt
~~ ~~

Assuming, as in the second example of Art. 431,

the problem admits of solution *. The treatment of this class of

cases is reserved for the next chapter.

* See the memoir by Professor Larmor, above quoted. Also a memoir by Pro-

fessor Niven, R. S. Phil. Trans., 1881.
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NOTE to Art. 405. It may be objected to the reasoning in the text, that although
the displacement currents in any finite space have inappreciably small magnetic

effect, yet that of the displacement currents in all space may nevertheless be appre-

ciable. Let us then consider three points R, Q, and in space, and let the

vector potentialF be required at 0. Let an elementary current u be excited at Q,

That causes an electromotive force
-,

at R, if QR =
r', and therefore an

TT" -I ,J2 ^*

elementary current -r i -r^ a* R> an(l therefore the vector potential at O

contains the term , if OR = r. The whole vector potential at O
4?r rr' dt*

derived by this process from the elementary current u at Q is found by inte-

grating the last expression for all positions of R in space. It is therefore

i

I
r" "

JLL B{n d6 d<f)dr + I I -^s
V Jo Jo rr Jo Jo Jo

rr

where a is any finite radius measured from 0.

The first term, or external integral, is not inappreciable even when multiplied

by K. But if Q be within the sphere of radius a, the value of the external

integral is independent of the position of Q within that sphere. If the elementary
current at Q be part of a closed current wholly within the sphere a, there will for

every element u be a corresponding element u. Hence it follows that if the

sphere a includes all the closed currents excited in the field, the vector potential

at O derived from them does not contain any terms derived from displacement
currents induced in external space. And the effect of all the displacement
currents induced within the finite sphere a is made inappreciable by the factor

K
47T*



CHAPTEK XXIII.

PAETICULAK CASES OF INDUCTION.

ARTICLE 440.] THE general principles applicable to the in-

duction of currents in solids and surfaces in a varying magnetic
field have been investigated in the preceding chapter. The

treatment of special cases may frequently be more readily

effected by the application of the equations of the magnetic field

arrived at in Chap. XXI, and some of these cases will be now

considered. Before doing this it will be advantageous to re-

capitulate the magnitudes of most frequent occurrence and the

notation by which they are usually expressed.

These magnitudes are, firstly, vector magnitudes as follows :

The electromagnetic momentum at any

point of the field, otherwise called the

vector potential with components . F, G, H.

The magnetic induction . . . a, b> c.

The magnetic force . . . a, /3, y.

The total electric current referred to unit

surface . . . . u
t
v

y
w.

The conduction current . . . J, q, r.

The electric displacement . . f, g<>
^.

The displacement current . . /, #, ^.

The electromotive force . . . P, Q, R.

And, secondly, scalar magnitudes, namely :

The electric potential ... \l/.

The conductivity ... C.

The dielectric inductive capacity . K.

The volume electric density . . *

The superficial electric density . .

'

The magnetic potential . &

The resistance to conduction . .

o-(

The magnetic permeability . /*
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The equations, differential or otherwise, already established

between these quantities will be employed without special

reference to them.

It is only in a few substances, such as soft iron, that the

magnetic permeability (//,)
has a value differing- sensibly from

unity, and in the examples treated of by us we shall assume that

such substances are excluded, or that /x is always unity, unless

the contrary is distinctly stated.

441.] The components of the total current referred to unit of

area must satisfy the equation of continuity or, as it is sometimes

called, of no convergence, viz. :

du dv dw
IT + T-+ -7- =

. . ax ay dz
at every point.

If n, v, w be replaced by their equivalents p+f, q+g, r + /i

respectively, this equation of continuity becomes

^4.^4.^*4.^ ^4.^4.^^-0
da dy

"*"

dz
"*"

dt \dx
"*"

dy dz /
~

dp da dr de
i. e. -~ + -~ + + -=- = 0,

dx dy dz dt

the interpretation and truth of which are obvious.

If u, v, w vary discontinuously over a surface S, the values

on opposite sides of that surface being u, #'; v, v'
-, w, w' re-

spectively, the condition of continuity requires that

l(u u) + m(v v) + n(w w') = 0.

In all regions throughout which u, v, w are finite we have the

equations

V2F= -4-Tm, V2
<9 = -47TV, V2#= -4vw.

If M, v
t
w become infinite over any surface S, and the corre-

sponding current components referred to unit of length be

u
s)

v
s ,
w

s) the last-mentioned equations are replaced by
dF dF' dG dG' dff dH'
3 = 4irw8 ,

- =4-77^, 3 -= =
dv dv dv dv dv dv

where F and F' are the values of F on opposite sides of S
y

and similarly for G and H*.

* The suffix s is rarely adopted, it being left to be understood when the currents

are superficial, i. e. referred to unit of length. By some writers also the equations
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Since a = -=
, it follows that a is always continuous

dy dz

except at surfaces of superficial currents, and similarly for b

and c.

At such surfaces this is not necessarily true, but as proved
above (Art. 412) the resolved part of the magnetic induction

along the normal, which is identical with the normal component

of magnetic force
( j ),

is always continuous.

442.] If o-, the specific resistance, be continuous and isotropic,

Ohm's law gives us the equations

vp = P, o-q = Q, crr = R.

Also the relations between electromotive force and displace-

ment give us the corresponding equations

4 TT 4 77 4 7T

A XL XL

whence it follows that at every point

vi-^Lj)

where i is the resultant current (referred to unit surface) and

D is the resultant displacement at the point. If there be no

material motion we have

and in this case, if over any surface the values of cr and K
change discontinuously, there will generally be a corresponding

discontinuity in the space differential coefficients of ^, as well as

in the values of p, q, r, f, g, h the time variations -7- > -=- >

dH
and -r being always continuous.

The superficial electric density
'
is equal to

dF dFr
, dF dF

are written -- = iiru, and by some again h >
= 4irw, the dv

dv dv' dv dv
and dv' being normal elements in the directions of the regions wherein F and F'
are the respective values.
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and is therefore determined by the equation

subject to the equation of continuity

The elimination is somewhat complicated, and for our subse-

quent purposes is only required for two cases, viz. (l), where on

both sides of the surface K is zero, in which case we get

dF dG dH\ ,d^ dtf+ w-+n ) + o-
/

-^-o--^ = 0, and e
/= 0.

dt dt dt ' dv dv

and
(2), where on one side K is zero and on the other a is

infinitely large, in which case we get

47r
c
/ d^__

K (T

~dT~~ ~dv dv
'

but since in this case 0- or -^ is infinitely less than -= , the equa-
. . , C K
tion reduces to

d

the same as in ordinary electrostatics.

The first case corresponds to that of two adjacent conductors,

and the second to that of a conductor in contact with a dielectric.

443.] We have proved in the preceding chapter that at any

point in the field at which the electromotive force is finite,

the intensity of the displacement current in electromagnetic

measurement is infinitely small, and at all points within a

conductor it disappears in comparison with the true conduction

current.

In all the cases therefore contemplated in the following in-

vestigations which have reference to good conducting substances

in dielectric and practically insulating media, we shall assume, as

in the preceding chapter, that the only currents are conduction

currents and limited entirely to the conductors. The displace-

ment currents,/,^, k, will be treated as non-existent in estimating
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the conditions of continuity within, or at the boundaries of,

conductors, and in determining the electromotive or electro-

magnetic forces in the field. The electromotive forces, however,

arising from the electrical distributions determined hyf,g, ^ and

their space variations are finite, and are included in the ^
employed as above.

444.] We have proved in the preceding chapter that the

equation of continuity

du dv dw _
dx

+
~dy

+
Jz

=
'

necessitates the equations

dz dy dy dz
_~~

~~

dx dz dz dx

dSdd>
w = - =

dy dx dx ay

when the currents are flowing in the shell or space between the

closed surfaces S = c and 8 = c + dc
t
where $ is some arbitrary

function called the Current Function.

If instead of referring the currents to unit of area we treat

them as superficial currents that is, currents referred to unit of

length on the surface S = c, these conditions become, as ex-

plained above, dm ad)
u = n -~- m-^t

dy dz

- eld) d(j)
v = I -- n )

dz dx

dd) , dd)
w = m~ I ~i

dx dy

which satisfy the condition lu+mv+nw = 0.

So that a known cun-ent function on any given surface

S = c, completely defines the superficial currents, while to define

the currents per unit of area we require to know another magni-

tude, namely the thickness of the shell between the surfaces

S = c and S = c + dc in which the currents flow.
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Also, as above shown, for any current sheet 8 = c,

//*<
d_
dz dy J r

with corresponding values for G and H, and also

445.] We have already, in Chap. XVIII, investigated the

magnetic field in the neighbourhood of an infinite rectilinear

current, and we now proceed to do the same for the field due to

certain given systems of currents on certain closed surfaces.

This is completely determined when F, G, If are known at

every point, also since at all points not situated on the surface

the magnetic force is derivable from a potential H the investiga-

tion will include the determination of 12 at all such points.

For example, suppose the sheet to be spherical with radius

0, then the values of u, v, w are given by the equations

z d<b y d(b x d(j) z dd> y dd> x d(f>u -= . --- "T~ 9 V = ' --- m -T-> tp = -=--- "T"'
a dy a dz a dz a ax a dx a dy

where
</>

is the current function.

Fj G, If must satisfy the potential conditions

everywhere except at the surface, must be everywhere finite and

continuous, and satisfy the condition of no convergency

dF dG dff_ Q
dx dy dz

at all points.

At the surface, if F, G
',
H' denote the values of F, G, H

within the surface and F
t G, H without,

dF dF dG dG' dH dtt'

~3
---T = 47TW,

---- =4-7717, -----r 5= 4lTW.
dr dr dr dr dr dr

Since F, G, H are potential functions it follows that the

solution of the problem is unique, and therefore that any
solution is the general solution.
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Now all the equations in F, G, H may be satisfied if

157

j.- i
-

-= -= i j.
,

\j i -= - -
-j i j.

,

\d ctij a az/ \a az a ax'

^a dx a dy/

>vided P be everywhere finite and continuous, and V 2P be

jro at all points not on the surface, and on the surface

dP_ dP*_
dr dr

where P and P7
are external and internal values of P.

Also at all points not on the surface

d&_dG^dII__x 1 / d*P d?P f*2!\_? ^
dx dz dy a a ^ dx2 dxdy dxdz* a dx

1 Id, dP
dxdy

dP dP\
^" l

V 2P=0;

dr } a dr v

It follows, therefore, that the field is completely determined

by mere differentiation when the quantity P is known, and this

quantity from the conditions which it satisfies is the potential

of matter of density < over the spheres surface.

We might have treated the problem otherwise, for by what

has been already proved we know that

dz a

leading to the same results as above when

,.//*.
446.] The conditions to be satisfied by P indicate that the

most general form which can be assumed by it is a series of

spherical harmonic functions of the type
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without the spherical sheet, and

within the sheet, where M is some constant, and Y. is a surface

harmonic of the degree i*

The surface condition

dP dPf

---T = ~ 47T0
dr dr

gives, corresponding to each term of the degree i,

for the current function on the sheet.

And the equation ,

gives, if H and Of be the value of 12, at points without and

within the sheet respectively,

O^fr,, and Or (i+ l)^)V,
If, as is sometimes more convenient, the system be determined

from the form of <, and we assume

4>
= AY

f

on the sheet, we have

4-n-i /o\<+1
v n/ t+1= r^(-) r<, 12'=- r

2i+l vr/ 2^+1
12

If Y
i
be the zonal-surface harmonic with axis z of the first

order, and therefore $ be of the form A cos where is the

angular distance from the axis z, then outside of the sheet

4-7T

and inside of the sheet

r cos ^.
3 a
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Or the external field is that of a small magnet at the centre

of the sheet with axis along that of z and moment Aa2
.

3

And the internal field is one of constant force parallel to z

and equal to -

3a

Since is a function of 6 it follows that the resultant current

referred to unit length is at every point perpendicular to the

meridian and equal to

_1 d$
or ^ gin

whence the total quantity crossing any meridian

= A I sinOdO = 2 A.

If the current be in a wire of uniform transverse section coiled

round the sphere's surface, and n be the total number of coils,

the number of windings from the pole to latitude 6 is

447.] Again, let
<f>
= AY2 where Y

2
is the superficial zonal-

spherical harmonic of the second degree with axis z, and therefore

equal to - -- -
> where is the angular distance from z.

2 2

In this case we have outside the sheet

id within the sheet

>r within the sheet the potential is that of a homogeneous
iction of the second degree.

Since < is a function of only it follows, as in the last case,

that the current referred to unit length is in parallels of latitude

and equal to
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If produced by coiling a wire round the sphere, we must re-

member that the direction of the coils must be reversed on

crossing- the equator, because of the change of sign in 2, that

is in sin 20.

The density of the coils in different latitudes is easily calculated

as in the last case (see Maxwell's Electricity, vol. II. Chap. VII.

448.] If the sheet were an infinite plane, we might treat it as

a particular case of the spherical sheet by supposing the radius to

be infinitely increased, but it is more interesting to investigate

it independently.

Taking the plane of the sheet for that of #, ^, the several

equations become

d<f) d<l>u = -y 3 v= -~) w = 0,
ay ax

and therefore H = 0,

F and G everywhere continuous and finite, as also their differ-

ential coefficients, except at the sheet or when z = 0, in which case

dF dFf da dG'--- -r = 4:TTU,
--- -=

dz dz dz dz

dF dF' , dG dG'
and since by symmetry -7- = -- > and -7- = --

7 ,
these

^.
J / J dz dz dz dz

'

last equations become

dF dG
~=27ru, =

dz dz

The condition of no convergence gives us

dF dG_
dx dy

~~

All these equations are satisfied by the assumption

w dp r dp
f = -r- i Or = --r j

dy dx

provided V2P = everywhere except upon the sheet, P be every-

where finite and continuous as well as its differential coefficients,

except upon the sheet, and at the sheet
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As in the case of the sphere, therefore we infer that P is the

potential of matter of surface density $ upon the sheet.

If 11 be the magnetic potential at any point not on the sheet

then, since
dQ. = dG__dH^
dx dz dy

__

dx dxdz
'

and 12 = .

dz

The most general expression for P in this case is a series of

terms of the form p _ e-^^ ^
on the positive side of the sheet, and

on the negative side of the sheet, where sf is measured in the

opposite direction to z, i. e. away from the sheet on the negative

side, and
\j/

satisfies the equation

d 2 d 2

where V,
2 stands for -=-= + -5-5 -

dar dy*

Or if
cj)

be expressed in a series of terms of the form
\l/(%,

Where

P will be a series of terms of the form

i TT _mz , i \ -I i 7T _ j

e
mz
^(x,y) and e

Pon
the positive and negative sides respectively*.

* The possibility of expressing <f>
as required in the text follows from the

possibility of expressing any function of the position of a point on a spherical
surface in a series of surface spherical harmonics.

For if u be one of the harmonic terms of such a function of order (t), we know
** -- A, 1 d'

If (a) be the radius of the sphere and be very large, then in order that x and

y may be finite 6 must be very small, and therefore, unless i be very large, this

equation becomes -^ =
0, but if i be infinitely great we have

VOL. II.
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449.] Finally, consider the case of a shell in the form of the

ellipsoid #2 ^2 #
-a + fr + T= 1.
a2

6
2 c

2

Here if w be the perpendicular from the centre on the tangent

plane at #, y, z,

~
~tf* b2 '

c
2

Let be equal to Az.

y . X
Then u = A'&fr, v=A^-, w =

6
2 a2

(, v, 20 being currents referred to unit of length), and therefore

The quantities F and G must satisfy the equations V*F= 0,

V 2
6r = everywhere except on the sheet, must be everywhere

finite and continuous, as well as their differential coefficients,

except on the sheet, where these last satisfy the equations

dF dFf
y dG dGf x

= SS= 4'jrA'ST^^s = 47T./1 t7-^
dv dv o* dv dv c?

Now we may prove, as in Chap. XVII, Art. 318, above, that

the conditions determining F, F', G, G' may be satisfied by taking

and A
2 and A

2 -^-
for G-' and G,

where **

.

o V(a
2 + A) (6

2+ A) (c
2 + A)

whence, if sin0 = r, and a = rcos<, y = rsin.<j>',

i
2

and therefore . V^ti + -^w
=

;

therefore (Vx
2 +m2

) u = 0,

where w is the reciprocal of the infinitely large radius of the sphere divided by
the infinitely large order of the spherical harmonic.
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A being the positive root of the equation

For, by reasoning- as in the chapter referred to, we have

^?_^-^ _^L ^T_^L_ A
*
x J^L

dv dv
~

ab5
c d<&' dv dv

~
a5

bc d<&n

9

whence, comparing with the above-written surface conditions, we

get

And therefore

4?/, 6r'= 4irabc - Ax.

Also rZfL = ^! ^L. = _ 4 7rajc^3_^ .|_
_

( d&
2 da2

^
cfe cfy dx

dy dx

That is to say, within the ellipsoidal shell the field is one of

uniform force parallel to z and equal to

^nabcA

If the ellipsoid become a sphere of radius (a) the values of

u and v become A 7 , A
ft ff 1 O.JU- and .

a a
Q _ .Y

And the uniform force within the sheet becomes >

agreeing with the results already obtained *.

Of course the method here employed might have been applied

to the sphere substituting -= for

da* dtf

?5
r

d*o
-

da2 db*

Also we might in the ellipsoidal case have obtained the values

of F and G directly from the general equations

* The quantity A in this Art. when a = b = c corresponds to - in Art. 446.
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d ddS

450.] We should have obtained a similar result, mutatis mu-

tandis, by taking* currents in planes parallel to those of y3 z and

2, a? respectively, whence it follows by superposition that if we

had a system of currents such that at every point

Biz z CGT y

nit __

da? dc2 da2 db2

Cm x Am z

da2 db2 do2

y Biv x

db2 + dc2 d<?
+

da2

i. e. if the current function be of the form

Ax By Cz
J j'K 7 *-< "l 7 /T* 7 >** "l" 7 JL

db2
""

rfc
2

c^c
2

~~

Ja2
c^a

2 ^62

the interior of the sheet will be a field of constant force in the

direction of the line
x y z

~Z~"li'~(?'

Again, with the same ellipsoidal sheet let us take

Atxxz
Then u --

-^
, v , w 0,

whence, as before, H 0.

Now employing the same notation as before, we have

_/ d<$>^ d / d4>\ _ 2 f c?<I>x d f ^
V (^<w)

= 2
d-^) + ^(y^) = 2-(^

a- -11 TT2/ d<&\ d f d<b\
Similarly ^(y,^)

= 2-(,-2 )
;

, d3>\ d / d

(^)-^(
and it is easily seen that the right-hand member is zero.
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Also V 2

(2/*)
= 0,

Whence it follows that if for F* and F we assume the forms

db2
dc*

the conditions V 2F = VF'= everywhere, and F= Ff
at the

surface will be satisfied.

It may easily be proved that at the surface

J
"ffl

J
Tjl/

= is of the form Cvrvz.
dv dv

Hence the forms of F and I", and similarly of G and G'
9
are

determined.

If jP'= f-, then it is easily seen that G f'= =-, and
,, r b2

'

a?
therefore

*L M( -"b - Ma d '

- My

and &'= y j(
+ p)

^2 -
^

Or the potential of the field within the sheet is a homogeneous
function of a?, y, z of the second degree. Compare Art. 447

above.

451.] Hitherto we have investigated the nature of the field

arising from the existence of currents of assumed form on given

surfaces, that is with certain assumed forms of <p (the current

function), without any reference to the way in which such

currents are excited or maintained, or the laws according to

which when once established they tend to decay under the

influence of their mutual action and the dissipation into heat

by resistance.

In the case of the indefinite rectilinear current we know that

this law of decay is expressed by the equation

where L is the coefficient of self-induction as above explained.

In the general case of currents on a conducting sheet, we
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have seen in the last chapter that unless the current function

satisfies a certain condition, this law of proportional decay will

not hold true and the type of currents will not be maintained

throughout the decay.

In other words, the direction of the electromotive force at

each point in the sheet will not be coincident with the direction

of resultant current at that point, and in cases where this con-

dition can be satisfied, it will in most cases necessitate the

existence of a/ distribution of free electricity over the sheet.

In spherical sheets of uniform thickness the condition can be

satisfied for currents of all types without the aid of such a dis-

tribution.

Thus, in the case of the spherical sheet with the notation

employed above, we have

dF dti dF dF'
(ru= ------^- and ---- = 4iru

at ax dr dr

at the sheet, with corresponding equations in G and H, v and w,

a being the resistance per unit area on the sheet, whence

(
d ?L\\ (^ \ \- - d^

(
Z
fy~yfa)lTn\d^~~*~d7s~drl'~

~~

dx~'

d

d

x d^lf y d\l/ z d^lf d\l/
therefore ---^ + -~ +-=-7-^ =

a dx a dy a dz dr

at the sheet, and since V 2
\^
= everywhere except upon the

sheet, it follows that
\fy
= everywhere, and therefore if -

be denoted by E we have

,dP dP\ dP
__W"^""^T =

at the sheet, and therefore if the original value of $ were

we should have
-, A

PA Y 4.
a

< V n^*r* + 27TT rf*

-

Therefore A = Ae~
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where A
{
is the value of Ai at any time t from the first estab-

lishment of the currents.

Whence it follows that F3 G, H, 12 all vary according to the

law e~
Kt
where \ = R.

a

452.] For the infinite plane sheet, with the notation already

employed, our equations become, at the sheet

dydt 2 TT dydz dx

d*P
a_

d*P _ _<ty
dxdt 27T dxdz dy

--
dz

Since
-j-

= at the sheet, and V2
-^
= at all other points,

we have
\f/
= : whence, writing E for > we have

*?-?-o"dz dt

at the sheet.

If therefore the initial value of be a series of terms of the

form
4.*(,y)

where (Vj
2+m2

) \/r
= 0,

the value of P at any point a?, y, z at the time t will be a series

of terms of the form

and the value of at any time t will be a series of terms of

the form
4..-.fc.

The values of F
9 G, and 12 at any point are obtained from

dP dP dP
those of P by differentiation, being- -5 ? 3 , and

^ , asJ '

dy dx fa
above shown.

Hence if any system of currents be established in an infinite

plane sheet, and be then allowed to decay by resistance under

their mutual actions, the magnetic field on the positive side of

the plane at any time is the same as if the currents remained
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unchanged in magnitude and direction, and the plane moved

parallel to itself with the velocity R towards the negative

direction.

Of course exactly similar results hold on the negative side

of the sheet, the field of decay being obtained by moving the

sheet in the positive direction.

453.] Finally, consider the case of the ellipsoidal sheet

with the system of currents

or the current function Az.

Our equations become

= 0,

d3> dA d^f

Htf y
~di ~lfa'

cZ<f> dA d\jf

da2
dt dv

'

~
dz

Assume that a varies inversely as and we get^ writing
-

for ^ >*A

'

i 5" T I
*"""" "^ *

cwr a< / ay

= ?
Eliminating \j/

between (1) and (2), we get

(2)

(3)

or
dt 47T

~ K
whence we have proportional decay of the type e

,
where
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agreeing with the result already obtained for the sphere when
a = b = c and i = 1 because Rf = aR.

From the above equations also we get

x dty y d\l/ z d\l/ d\jf

a2 dx W" dy c
2 dz dv

indicating an electrical distribution of determinate density on

the surface.

The density of superficial distribution may be readily found

)m the values Mxy and , , , ,

Mxy-
d<f>

da

\js internally and externally, see Art. 450 above.

454.] The assumption a = is by no means arbitrary but

iccessitated by the condition of proportional decay or the main-

snance of the current type in accordance with the results estab-

lished in Chap. XXII. For if s be the specific resistance of the

substance and h the thickness of the shell at any point, the con-

dition of proportional decay with the type of currents selected is

dx dy
u

,

and -~-
dz

0,

riiere

-

dx

u
,
C some constant.

Now
\l/

satisfies the equations

= IF-}- mG upon S,
dv

andand V2^ = within S,

whence
\l/
= Cxy where C is a constant, and the further con-

dition ^
s dx

requires that h oc w,
u
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455.] Hitherto we have confined our attention to cases in

which given systems of currents have been supposed to be estab-

lished in conducting sheets of certain forms, and then allowed to

decay by the dissipation of their energy into heat under the in-

fluence of their mutual action.

We have now to consider the more general case of such con-

ductors placed in a given magnetic field, varying from time to

time according to any assigned law, and to investigate the

properties of the total resultant field arising from the given

magnetic field, or, as we shall generally call it, the external field

and the field of the induced currents in the conductor, as these

last decay by dissipation under the influence of their mutual in-

ductive action and that of the external field.

As a simple example of the application of the field equations

to such a problem, we will take the case of an infinite plane

conducting sheet in a variable external field, and will assume

that a system of currents, with current function of any type, has

been established in the sheet by induction.

Let &, v, be the component currents in the sheet at any

instant, F, G, the components of their vector potential, and

12 their magnetic potential.

Also, let F
Q ,
G

, Hy 12 be corresponding quantities arising

from the given external field, these last being given functions

both as to space and time, while the former are quantities to be

found.

Our equations are therefore the same as those of Art. 448

above, with the substitution of F+F and G+ G for F smd G.

Therefore we have at the sheet

dF dF d^ dG dG d^VU= ------ 2- ----?-, (TV = --;
---~ --~->

dt dt dx dt dt dy

dF dG
-r = 2TTU. - = 2lTV,
dz dz

dP dP
JT = -

, Or = --
}

dy dx
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d^ (df^ __ d&\ __ ^_f^_^_ ^_(^o_^^o\ R-
dz^dy dx* dt^dy dx ' dt^dy dx ' ~27r'

dz* dtdz~dtdz

or ^_^ = ^o,dz dt dt

y and y being the magnetic forces at the sheet normal to the

plane arising from the induced and external field respectively.

Since -- + -j~ at the sheet, and V 2
\ = in other parts

of space, it follows that ^ is not generally zero, and it cannot be

determined until F
Q ,

(?
,
and H (assumed to be known) are

actually given in terms of #, y, z, and t.

456.] The solution of the problem, therefore, involves the

determination of 12 as a function of #, y, ,
t satisfying the con-

ditions 12 finite and V 2 12 = at all points of space not upon the

sheet, and the equation (A) at the sheet, or when z = 0, Ii

being a given function of as, y> z, and t.

For example, let the given external field be that of a unit pole

moving normally to the sheet with the velocity (w).

Let
,
b
Q ,

C
Q be the initial coordinates of the pole and a, b

y
c

its coordinates at any time t, then we have

a = a b = b c =
1 1

SL= = -, suppose.

If equation (A) can be solved for all values of a?, y, z
t and t,

the value of 12 thus found will of course satisfy (A) at the sheet,

and if it also satisfies the remaining conditions it must be the

required solution.

But the general solution of (A) gives
<m <m_<m
d* ~~dt "~dT*

i. e. changing the variables from x, y, z^ t to a?, y, t where

or
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where f is to be replaced by z + lit after the integration of the

second term on the right-hand side. Hence in this case

_12 = 1_ *
-

r w +R r

-w 1
or 12 = . - .

This value of 12 satisfies equation (A) everewhere and therefore

upon the sheet, as well as the condition V 212 = 0, but on the

positive side of the sheet it becomes infinite at the point ,
3

, <?,

i. e. at the pole, it is therefore inadmissible as the value of 12 on

the positive side of the sheet.

If, however, we write for 12
, or 12

'
instead of where

i. e. if / be the distance of #, y, z from the optical image of the

moving pole in the sheet, we observe that equation (A) on the

sheet, i. e. when z = 0, is satisfied provided

__ _o_ __
~dz ~dt

~
dT~~~~~dt V

whence, as before,

w-R /
And this value of 12 is finite at every point on the positive side

of the sheet and satisfies the condition V 2
I2 = 0.

Therefore the required value of 12 is

on the positive side of the sheet.

Since 12 = --T , the general value ofP satisfies the condition

dP dP d C
jK ---z = -- / 12, n az :

dz dt dt J

whence, reasoning as before, we should have found

on the positive side of the sheet.
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457.] For any practical application we must take w negative

or the pole approaching the sheet from an infinite distance,

whence we get on the positive side

dP_
w I _

dz
~ ''~

w I -1/7 d& w z+ c
- & = --D--> and ^ = 5-= + nET 7T'w + JK r dz w +R r 3

Therefore at the pole there is a repulsive force from the disk

equal to -
1 w

If the pole were not moving normally to the disk but with

component velocities, u,v,w, the equation in P would become

r
Jo V(x a

or P = log(/-

R
4-~

where F2 =
^P

whence 12 = --r reduces to

f 458.] Again, suppose the external magnetic field to be that of

a unit pole describing a circle parallel to the sheet with uniform

angular velocity (to).

If the origin be taken at the projection of the centre of this

circle on the sheet it follows that 12
,
and therefore also O,

are functions of the time merely so far as they are functions

of the angle (</> suppose) between the radius rector of the pro-

jection of the point to which they refer and the radius vector of

the poles projection, and that
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If therefore (a) be in this case the radius of the circle de-

scribed by the pole, and we use the 12 ', function as above de-

scribed, we have

= -
} suppose,

and _P

where f-- $ is written for z in the expression under the in-
D

tegral signs before integration and z -\ (/> for f after integra-

tion, (r) being the distance of the projection of the point on

the disk from the origin.

Whence 12 or at any point can be found. The in-

tegration cannot be effected in finite terms.

459.] The question last treated may also be investigated by
the application of the formulae of electromotive force in a

moving conductor.

For example, let there be a plane conducting disk infinitely

large revolving with uniform angular velocity u> about a normal

in a given magnetic field.

If y and y ,
a and a

, j3 and J3Q be the components of magnetic
force at any point in the plane of the disk arising from the

induced currents and the given magnetic field respectively, the

components of the electromotive force of the motion are

where ^=
dt dt dt

It is usual to include the \j/ with the potential, if any, of elec-

trical distribution in one symbol x/f,
so that, if the origin be

taken at the point where the axis meets the disk, in which case

dy dx dz
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the equations become

dF . dG
dz

Eliminating \^ from the first two and writing R for
,
we get

dy dy dyRTx -'a Te = a>^'
an equation agreeing with that of Art. 455 above.

To determine ^ we have, if
<f>

be the current function and

therefore , , ,,
9 "9 J 2 , 2w = ^-j <y= , and cc

2 + 2/

2 = r-,
a ax

460.] It must be carefully remembered that
\j/

in this case is

not the potential of electrical distribution, but differs therefrom

by the quantity x//, as above explained.

For suppose the disk at rest and the field revolving, and let

the H of the field be zero, then, as we know, a quantity P may
be found from which o

, /3 , y ,
FQ and G may be deduced by

differentiation in the same way as a, /3, y, F and G may be

deduced from the P of the induced current field. Also we know in

this case that if^ be the potential of electrical distribution, we have

whereas the aforesaid equation gives

dz
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dz

Similarly in this case

<L(^ dpo\
dr\dO *

dB '

d_
dO

~dd

Similarly for --
.

Proving that the
\jf,

as determined from the above written

equations, is in this case the v//, omitted from the electromo-

tive force of the motion and not that of electrical distribution.

See above, Art. 403.

461.] In Chap. XXII we proved that every magnetic system
external to a given closed surface 8 may be replaced by a current

system upon S whose magnetic effects at all points within 8 are

exactly equivalent to those of the given magnetic system, but

that the electromotive forces arising from the 8 system and of the

given external system are not necessarily equivalent throughout
the interior of 8, but may differ from each other by forces derived

from a potential function.

In cases of conductors, solid or superficial, placed in any given

magnetic field, we may often simplify the investigation of the

inductive action by supposing the field replaced by this equi-

valent current system upon any properly chosen closed surface S

surrounding the conductors.

This surface is generally referred to briefly as the equivalent

sheet, and the currents thereon as the equivalent currents.
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If, starting from this equivalent sheet and current system as

known, we arrive at any results concerning the induction pheno-
mena on the given conductor surrounded by S, we conclude that

the same results hold true for the state of the conductor in the field

of the actual magnetic system, provided only a suitable additional

electrostatic charge be placed upon the conductor neutralising

the above-mentioned difference of electromotive force which may
exist between the original field and the equivalent system.

That is to say if, in the case of the conductor under the

influence of the equivalent system, we find a certain current

function
</>
and electric potential \j/,

then in the case of the con-

ductor under the influence of the actual system we should have

the same current function <, but generally an electric potential

function
\j/ + \^ different from

\js.

If the conductor be a spherical surface, and the equivalent sheet

a concentric spherical surface, the potential \jr
is always zero, and

the same is true for an infinite conducting plane under the

influence of an infinite parallel plane equivalent sheet.

462.] We will briefly reconsider the induction phenomena in

infinite conducting planes influenced by given current systems

on parallel plane sheets.

In this case the equations of Art. 445 above hold true with

the additional condition H = 0.

Therefore we get
-~ = 0, and since V 2

\j/
= at all points not

(Hz

on the plane we have \^
= everywhere.

Therefore

j,d_(d]F ML\*L(*E. ^L\ (^ dG
\

d^(d^ +
d^)"di(d^

+
d^)

+
dt Vdb

+
dy)'

Also -~ + ~ = 0, since the currents are closed upon the
dx dy dF dG

equivalent sheet, and therefore if
-j

H -j~
= at any instant,

we have

d_,dF dG^
Q

dt \dx dy)~
dF dG

and therefore -= f-
= always.

dx dy
VOL. n. N
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But if the equivalent current system be suddenly excited, we

know that in this case there is an impulsive excitation of currents

on the plane such thatF+Fn
= 0, G + Gn

= 0, and since -~ + -^
dx dy

,, ,_
dF dG. f dF dG

is zero it follows that -= f-
-r- is so also, and therefore -=

f- -= =
das dy dx dyt7 J

throughout any subsequent variation of the equivalent systems.

Hence, if u and v be the component induction currents on the

plane at any instant, du dv
~T~ H r

== ^>
dx dy

or the equation of continuity is always satisfied, and we may
always find a current function

</>
such that

<ty d<#>w = -^-, v=--?-.
dy dx

In this case the condition to be satisfied by P at the sheet is

v

d* dt d#
-

dt d>
and by reasoning similar to that employed above, the value of P
may be proved to be that satisfying the equation

cfe~~ dT~
"

~dt
'

CdP'
or P = P ' + R I

jjr-
dt,

where P'
is the value of P arising from the image of the

equivalent sheet behind the plane of (x, y\ the integration being

performed with f constant and z + Rt being substituted for f

after the integration.

463.] This result is capable of an interesting interpretation.

In the first place, the sudden excitation of the equivalent

current system gives rise to the impulsively excited currents in

the plane such that F= F
Q
and G= G at all points on the

plane, and since the F's and G's are potential functions it follows

that F= F
Q and G= G at all points on the negative side of

the plane, i.e. the side opposite to the equivalent system, and

therefore that upon that side the induced system forms a perfect

magnetic screen to the given system (i.
e. the assumed equiva-
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lent system), or the effect of the induced system on the negative
side of the plane is the same as if the currents on the equivalent

sheet, otherwise unaltered in magnitude and position, were ex-

actly reversed in direction.

By symmetry it follows that the effect on the positive side of

the plane of the induced currents in the plane is the same as

these reversed currents of the original system each formed with

the optical image of the original currents behind the plane, and

therefore on the positive side of the plane the magnetic effect of

the induced currents is the same as the exact magnetic image of

the original system on the equivalent sheet situated at the

optical image of this system in the plane.

Suppose now that the given external system having been

suddenly excited remained constant, we have seen (Art. 452)
that the corresponding induced system would decay by resist-

ance in such a way that its magnetic effect at the plane and all

points on the positive side of the plane would be the same as if

the induced system retreated negatively from the plane, other-

wise unchanged, with the uniform velocity R.

If however the given system vary with the time, then when

the current function is <, the value of P arising from this sys-

tem at a point x, y> z, reckoned from an origin in the plane, is

<f> /
~'dS where r = *Jx

# ,^ ,
Z
Q being coordinates at a point in the equivalent sheet, and

dS being an element of that sheet, and therefore from the

image of this system in the infinite plane under induction the

corresponding value of P is given by

/y<=
JJ ~/ where ^=

dS '

being an element of the image and therefore equal to dS .

If therefore at some instant r from the origin of time < be

varied by -37 bt, the corresponding increase ofP, or bP, is given by

N
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At the time t this image has retreated to R
( ?) from its

position at r. and therefore the total value of P at the time t

is given by

or performing the integration with regard to t by parts,

o
2+

*

because = when r=0 or t r= t.

464.] In the particular case of a moving pole of intensity m^

suppose the motion to be parallel to the plane.

At any remote instant from the time considered let the pole

suddenly start into existence at a very great distance from the

region of the plane at which the inductive effect is being in-

vestigated.

The immediate inductive effect is a system of currents on

the plane equivalent at all points on the positive (or actual

pole) side to an equal pole at the optical image of the given

pole. If now the given pole move parallel to the plane with

any given velocity u through spaces ut in successive equal

intervals of time 8 1, the effect is the same as successive creations

of small magnets of moment mu b t in the line of motion of the

pole, the direction of magnetisation being that of the pole's

motion. The corresponding induction effects are equivalent to

the creation of successive optical images of these magnets on

the opposite side, and combining these with the recession of these

images with velocity E as representing the decay by resistance.

The result of the process, supposed to have continued for an

infinitely long time before the instant considered, is at that

instant the same as an infinitely long bar, terminating at the

instantaneous optical image of the given pole, inclined to the
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TO

plane at the angle tan"1 and magnetised parallel to the plane

sheet.

When the motion of the given pole is inclined to the plane

sheet the general result is the same, but the inclination of the

magnetised bar is different. When the pole describes a circle

parallel to the sheet the magnetic eifect of the induced currents

is that of a helix on the right cylinder whose transverse section

is the described circle, magnetised in the direction of a tangent
to this cylinder perpendicular to the axis inclined at the angle

T)

tan" 1 to the plane, and terminating in the instantaneous opti-
u

cal image of the pole.

The whole investigation is given with much instructive detail

by Messrs. Mascart and Joubert in their treatise already quoted,

and the results arrived at are identical with those obtained by
the preceding analytical treatment.

465.] In the last chapter we investigated the case of the

spherical conducting sheet in any field.

If the field be replaced by the equivalent system on a con-

centric spherical surface, the equations of Art. 451 hold with

the substitution of P + P for P.

Hence, as in that Article, we have
\j/
= 0.

Also R (^ - ~] = I- (P +P ) at the sheet.
^ ar dr / at

P
Q at any given instant must be expressible in a series of

spherical harmonics, and therefore at any time t must be of the

form 2A ( )
Yn ,

where A is a given function of t.

Whence, if A be of the form J cos(*^ + a) where A
Q

is

constant, we get, as in the Article referred to, P and P' being

external and internal values of P respectively,
M+1

, if tan/3 =

cos/3
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466.] For the particular case of a uniform field of force

.Fcos (kt + a) parallel to z, we have $ of the form Cz.

In this case therefore, as shown above (Art. 446), the currents

are in circles parallel to the plane of #, y, and by what was

proved in the article referred to, the interior of the shell is a

field of uniform force parallel to z
y
and the external field is that

of a simple magnet at the centre of the sphere with axis in the

axis of z and moment at any time t equal to
O IT)

| Fa* cos /3 cos (k t + a
/3)

where tan/3 = =-.
cite

467.] The case of a conducting- spherical sheet of radius
(a),

revolving with constant angular velocity (o>) about a diameter,

coinciding with the axis of z in a uniform magnetic field leads

to exactly similar treatment.

For let the sheet be at rest and the field revolve round the

same axis with the same angular velocity reversed, the. relative

motion is the same.

With the same notation as before, we get at the surface of the

sheet the equation

If $ be the azimuthal angle between a point fixed with refer-

ence to the revolving field and a point in space,we have -=j = o>,

and therefore ,

If P
Q be expressed in a series of spherical harmonics, the most

general form of that of the nih order is, as we know, a series of

terms of the form

If we assume for P a similar expression, the term in P of the
b order and type, k will be

and that of P' will be
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and the above written equation becomes

for writing p for 1-

And therefore, as in the last case,

X = ^
O cos/3c

where tan /3=j0.

If the given field be one of uniform force F, parallel to the

axis of revolution, 7 assumes the form ^
Ocos0, and is independent

of
(f).

In this case therefore P is zero, and there is no induction

of currents in the sheet.

If the uniform force F be perpendicular to the axis of revo-

lution, PQ assumes the form

.4 sin cos ($ + )>

and P becomes
A cos /3 sin 6 cos ($+ a /3).

Within the revolving sheet therefore the field is that of a

uniform force perpendicular to the axis of revolution, and in-

clined at the angle (3 to the original line and with intensity

diminished in the ratio of cos/3 to unity, where

3R
tan/3 = -- .

a oo

The induced currents on this sphere are the same as if the

sphere were fixed in a field with uniform force Fcosfi in the

direction aforesaid.

By what has been already proved therefore the internal field

of the induced currents is one of uniform force, and the external

field is that of a small magnet at the centre of the sheet, with

axis parallel to the aforesaid direction and moment equal to

i/a
3 cos.

In the particular case of the spherical shell revolving round

the axis ofz with uniform angular velocity (o>)
in a field of uniform

force a
, /3 , y ,

we may also proceed as follows.
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468.] We know, Art. 446, that the system of currents derived

from the current function

i. e. with components,

Bz-Cy, Cx-Az, Ay Ex,

produces upon and within the spherical surface a field of uniform

force, whose components a, /3, y are

8-rra 8-na
.A, .B, and . C.

The equations of Ohm's law are therefore with such a system
of currents on the shell,

L........ (2)

-2. - (3)

Eliminating ^ between the first two equations, we get

3o-

Showing that y and therefore C is zero, and that the current

function is reduced to
o

Aoc+ By or ---
(aaJ-fj3y),

OTTtt

The elimination of
\fr between 1 and 3, 2 and 3, gives

whence, writing^ for ---
,
we get

If 2. = tan e, = tan 6, and = tan 6,a a

A/a2+ /3
2 = VV + A>

2
cos g

>
tan ^ = tan

(
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Or the system of induced currents on the moving sphere is

the same as that which on the fixed sphere would produce a

constant force in a line perpendicular to the axis of rotation

q ~f>

inclined at the constant angle tan"1 - to the direction of the
aco

force of the given field resolved perpendicular to the same axis,

and whose intensity is equal to the resolved part of the force of

the field in the direction of that line.

469.] Next, suppose that the sphere in the last example is

replaced by the spheroid

rotating round the axis of figure c, and let the thickness of the

shell be proportional at each point to the perpendicular from the

centre on the tangent plane.

If we assume a system of currents to exist upon this shell,

such that the current function < is

the components currents will be

Bz Az_ tZ7 __, CT __,

And these will produce within and upon the sheet the uniform

force, whose components are

and zero respectively.

Denote these force components by a and /3, so that

*** a 1TZ

V =

and w =
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If now for a- we write , and for we

write py
our Ohm's law equations become

fiz d\b
-sp = <oy *- -,

Therefore
P/3(T + -j)

= w(a+ o
),

therefore ^+o= a
, fta /3

=
/3 ,

i Ps / 1
,

1 \
where /;t

=
(

+ -r-
)>

co ^a2
c
2 /

whence we arrive at similar conclusions to those in the case of

the sphere.

470.] In the case of the revolving sphere of Article 468 the

quantity \l/
is identical with i// or Fx + Gy + Hz.

For we get from equations 1, 2, 3 of that Article

Also in this case

jc = coy, 2/
=

6oa?, 4; = 0.

And therefore, since

and
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Fob + Gy + Hz, or \//, reduces to

i. e. to
\f/,

whence we know that there is no distribution of free

electricity in this case.

In the case of the revolving spheroid of the present Article,

Fib + Gy + Hz or \|/ will be found by similar treatment to differ

from
\jf by a quantity of the form

Indicating an electrical distribution with potential of the form

Mzy Nzx upon the spheroid.

And therefore with values Mzy Nzx within, and

_ __
db2

dc* da* dc*

without the spheroid, and of superficial density of the form

M'zy-N'zx
upon the spheroid.

471.] Hitherto we have applied the general field equations to

the investigation of the phenomena of induction in closed con-

ducting sheets of special forms situated in a variable magnetic
field. The same general principles hold good in whatever be the

forms of the sheets, but except in special cases their application

presents very great analytical difficulties. As any closed currents

are generated in the external field, a system of closed currents

constituting the magnetic screen to the external field comes into

existence, by induction, in the sheet.

The effect of the finite resistance of the conducting sheet

is to cause these induced currents to decay by dissipation of their

energy into heat. In this process of decay they vary, and thus

exercise mutual inductive influences. In certain special systems,

which may with propriety be called self-inductive, their intensity

at any time from their first establishment diminishes accord-

ing to the e~
Ki

law, where A. is a coefficient depending upon the
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shape and resistance of the conductor, and these special systems

alone are easily amenable to mathematical treatment.

As shewn above, Art. 431, in the very important class of cases

in which the external system varies periodically, the field in the

interior of the sheet also varies periodically but with retarded

phase and generally with diminished intensity.

472.] When we pass to the consideration of a solid conductor of

any form the same general principles hold, but their application

becomes very complicated.

Thus, the first effect of the excitation of the external system

may be regarded as the establishment of superficial currents,

constituting a perfect screen as before, and if the resistance were

evanescent this screen would be always maintained and the

currents would always be on the surface. But the effect of the

resistance is to impair this screening influence, so that if the

external system remained unchanged the superficial currents

would vary by resistance, and thus by their variation modify their

own intensities and induce currents in the interior mass, which

would again modify the superficial currents. If the external

system also varied the problem would be still more complicated.

The problem of induction currents, therefore, in a solid con-

ductor in a varying magnetic field is one of great analytical

difficulty even in its simplest cases, as, for instance, where the

conductor is bounded by infinite parallel planes or concentric

spherical surfaces. For these cases it has been treated with great

generality in special papers to which the reader is referred *.

473.] By way of illustrating the general treatment, we proceed

to investigate the question under very restricted and special con-

ditions.

Consider a solid conductor of any form situated in a given

varying magnetic field.

At all points within the conductor

*
See, amongst others, a paper by Professor C. Niven in the Phil. Trans, of the

Eoyal Society, 1881, part II; also a paper by Professor H. Lamb, Phil. Trans.,
R. S., 1883, part II; and a paper in the Philosophical Magazine, already quoted
in the text, by Dr. Larmor, January, 1884.
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and at all external points V 2
jP, V 2

, V 2H are severally zero, F,

G, H are everywhere finite and vanish at infinity.

F and -F
,
G and G^, If and H

Q are continuous everywhere, as

well as their differental coefficients.

dF dG dH
+ + -j- = 0, everywhere.dx dy dx

The component currents satisfy the conditions

du dv dw

dx dy dz

at all points, and the additional condition

lu + mv+ nw
at the surface of the condutor.

The equations of Ohm's law,

hold always at all points in the conductor.

474.] Take the case of a solid conductor bounded by an

infinite plane, that of #, y suppose, and extending indefinitely

towards the negative axis of 2, and suppose there is a varying

magnetic field in front of it.

Replace this field by the magnetically equivalent current sys-

tem on a plane parallel to the boundary of the conductor as

above explained.

At any point in the field of the conductor a function PQ may
be found, such that

dP -

And then, as we know, all the requisite conditions can be

satisfied by

F=^, G=~, ff=0, ^ = 0,

dy dx

provided P be so chosen as to satisfy the equation

within the conductor, to be everywhere finite, to vanish at an
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infinite distance from the conductor, and to be, along with its

differential coefficients, continuous at all points.

Suppose PQ to be capable of expression in a series of terms of

the form A
Q
e
me

<j) (x, y) cos kt,

where (since V 2P = within and in the neighbourhood of the

conductor) we must have

Assume for the value (P
f

)
of P within the conductor the ex-

pression (^ (3) cos fo + x (3) giu fo) <f>
. e

?

and for the value (P) of P without the conductor the expression

{A cos (fa) +B sin (kt)} ^e~
m
\

since P outside vanishes at infinity and satisfies V 2P=0.
The equation

becomes therefore

(* + 2i*)co.*l+ (* + 2 OT ^CV^ 2
c?^ / \dzz dz

whence by equating coefficients of smJct and cos&t we obtain

two equations for the determination of \}f and >(

475.] The general solution is somewhat complicated*, but if,

4 TT K.

as frequently happens,
-- be small, so that its square and higher

powers may be neglected, since
\jr

and x depend at least upon

the first power of -
,
we may neglect them when they appear

on the right-hand side of the above equation as multiplied by

-
,
whence ^ (z)

= and

or x =

* The approximation is equivalent to neglecting the action of the induced
currents in the conductor in comparison with that of the given external field.
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The last term is inadmissible, because \(z) emz would otherwise

become infinitely great when z is infinitely large.

Hence within the conductor the value of P is

2m v
~

In the external field it is

At

where

from the condition of continuity of P and
-j-

;

r 1 ^o
~2^' ~4^2J

and the internal value of P or Pf
is

2m I 2m

And the external value of P is

4m2

476.] If the conductor be a sphere of radius a, let the equi-

valent current sheet be the surface of a concentric sphere, then

we know that a magnitude P may be found such that

and therefore all the required equations can be satisfied by

taking

provided P satisfies the equation
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and be finite everywhere and continuous, as well as its differ-

ential coefficients, and in the external space satisfy the equation

V 2P = 0.

I also satisfies the equation

V 2P = 0,

and therefore may be expressed in a series of spherical harmonics

with coefficients functions of the time.

Let any term in P be of the form

and let the corresponding terms in P be

for the internal space, and

/a n+1 a n+

for the external space, then the equation

within the sphere becomes

2 d\lr n

r dr r2

{\(r)cos Kt

477.] If - - be small, and its squares and higher powers be

neglected, the equation is satisfied by neglecting the term

in the assumed expression for P internally, and determining
from the equation

dr* r dr
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The solution of which is

where C and D are arbitrary.

Therefore P =

Since P is always finite, the term +1 is inadmissible, and

we get

P in the external space must be of the form

where A =

from the continuity of P at the surface, and

(2yi + 2 wZ>) _a ""
from the continuity of ;

=-a,

-

And the value of P externally is

If n and # become infinite, and if m be equal to It -
, these

results agree with those obtained for the plane boundary in

Art. 455. See page 161, Note.

VOL. II.
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478.] The case of the sphere revolving- in a constant field

with uniform angular velocity <o about the axis of z is reducible

to the last case by a process similar to that employed in the case

of the spherical sheet, the equation

being replaced by

and for every term in P of the given field of order n and

type K, and therefore of the form

we get the approximate expression, neglecting squares, &c., of

47TKOD f
,
tor r internally,

P =

and for P externally

For instance, in a field of uniform force A parallel to #,

P = .

TTco/r
2 2

\
and Jr internally =-- (---

J
aA r sin 9.

479.] The case of the revolving solid sphere may also be in

vestigated by the direct application of the equations of electro

motive force in moving conductors. These are

cru = ycocc ~-
dx

(1)

dz
'

/

where a, ft, y are the total force components.
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If the given field of force be uniform with components, o
, ,8 ,

y ,
and if we neglect squares and higher powers of

,
these

equations give us

dx*

dy

d\i/

dz

/du dw\ /dv dw\ /oxWhence cr(- )
= coa

, <r(- )
= a)/3 . . . (2)

^dz dx/ ^dz dy/

Now if /3 = 0, a system of currents in the sphere, all in planes

perpendicular to the axis of y, and such that at each point

u=Az, v = 0, w = Ax

satisfy all the conditions of continuity, superficial and solid and

likewise the equations (2), provided

A =
"27"

Also with this system it is clear that =0, and that -Fand H
must satisfy the equations

W= _***. v./r=
2Zo.

!B

<T O"

within the sphere, and V2F= 0, V2G = outside the sphere.

If we assume as the solutions of these equations

H =
o 2

we get </>(r)
= - + C, * (r)

= - + C"
;

and therefore within the sphere we get

and without the sphere

O 2
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where A, B, C, Cf are to be determined from the condition of

continuity of F, 6r, H and their differential coefficients.

It is easily seen that the results agree with those already

obtained.

480.] In the case of the spheroid

rotating round the axis of figure in a field of uniform force, the

equations are all satisfied by the assumption of the component
currents at each point

. z . x
u = Ai v = 0, w=. -4 j

c
2 a2

provided

Therefore

or

47To)af

Assume that

We have to determine and
\/r,

so that

V2

(z(f))
= z, and V2

(a?^)
= x.

If we divide the spheroid into an infinitely large number of

similar spheroidal shells, the parameter in any case being X, the

value of (x, y, z) may be assumed to be $ (A), i. e.

and that of \^(#, y, z) to be

Let
<j>
and \^ be of the form

and ^ constants.
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Then we have

or

a2+ c
2

)(2c
2+3a

2 rt4

and F = -

Outside the spheroid we have

where ^f, -6, (7, C" are to be determined by the conditions of con-

tinuity of Fj G, 3 and -= at the surface.
dv dv

481.] The external field for the solid revolving sphere may
also, to the same approximation, be determined by the following

1

reasoning.

Let the sphere be divided into a number of concentric

spherical shells of uniform thickness adm, where dm is the same

small fraction of unity that the thickness is of the radius a of

the whole sphere.

The radius r of any shell will be ma.

If the effect of the induced currents be neglected, each separate

sheet may be regarded as a spherical sheet of radius r
(
= ma) and

resistance </ =
, revolving in the given field of uniform force.

Externally therefore the magnetic effect of the induced cur-

rents in this shell under the external uniform force a will be, by
Art. 468, equivalent to a small magnet at the centre with moment

equal to

q _/

here r = ma and tan/3 =
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to the required approximation tan/3 is very large, so that squares

of cot ft are to be neglected,

4-Trro) 7

i.e. cosp= dm =
So- So-

2 TTa4 an tow
4

, dm
ana the moment is

So-

The total external field is therefore that of a small magnet at

the centre with moment equal to

27TC&
4

Cf CO /*! 27Ttt
4 O CO

/
m dm or >

So- y 15o-

and direction of magnetisation perpendicular to the axis of revolu-

tion and to the resolved part of the constant force of the field

perpendicular to that axis.

A similar treatment may be extended to the case of the

spheroid by dividing it into an infinitely great number of similar

concentric spheroidal shells.

The external field of the induced currents in each revolving

shell is readily determined by the results of Art. 480 in terms of

the parameter A. and cl\.

Whence, by integrating from to 1, the total external field

may be found.

482.] In this and the preceding chapter we have considered

cases in which an external magnetic field is made to vary, and

closed electric currents, with or without changes of statical

potential, are thereby induced on conductors. In another class

of cases the given variations are those of electromotive force, the

primary phenomena being the oscillations, forced or natural,

of electric distributions on the conductor. To these cases great

importance has recently been given by the experiments of

H. Hertz (Wiedemann's Annalen, 1887-1889) repeated and

extended by Dr. O. Lodge, Professor Fitzgerald, and others.

Let us then suppose a conductor placed in a field of oscillating

electromotive force and, as before, we will suppose the system

to be self-inductive, that is, one in which the value of any func-

tion at time t is formed by multiplying its initial value by the

factor
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In any such case the whole system may be divided into tubes

of flow invariable in form. Let +q be the quantity of elec-

tricity of the distribution cut out by any given tube on the

surface of the conductor. Then ? denotes the current in
at

that tube. Let P be the electromotive force of induction, E
the resistance in the tube in question, VA ^

J
f

B the potentials at

its positive and negative ends respectively. Then, iffeospt be

the external force in the tube,

But since by hypothesis all the currents throughout the system,

including the displacement currents in the surrounding dielectric,

continue to bear the same ratio to one another, P may be put
72

in the form
^-TTJ-, where A is a coefficient depending on the

geometrical relations of the system.

For the same reason we may write VA VB = -, where c is a

constant as regards time for the tube in question. So our

equation becomes

a solution of which is

da ( (_i + Ac 2

) Rep

i \ 2

There is a difference of phase tan" 1

^ between the cur-

rent and the external force.

If \cp
2 =

1, or p =
,
that is, if the periodic time of the

V\c
external force be TT \/A <?,

there is no difference of phase. In this

case the conductor is said to be in unison with the external system.

483.] If the given distribution be formed on the conductor

under an external force, and that force be suddenly removed, our

equation becomes

Ac? + *c-H = 0,...... (B)
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the solution of which is

Re
where W

Re
2 2Ac 2Ac

If ffic2 >4\c, this gives subsidence without oscillation. If

jR2 c2 <4A<?, the solution assumes the form q = ^e'
where

2Ac

The time of oscillation is
,
and if R2 c2 is negligible compared

with 4 Ac, this becomes TT\/AC.

Further, we may write the equation (B) in the form

And as an equation of this form holds with the same p for every

tube of flow, it follows that Ac and Re must be the same for

every such tube. This is the condition that the assumed pro-

portional variation may be possible.

It appears thus that to every conductor with such a distri-

bution of electricity as we have supposed, there corresponds, if

R be small enough, a definite time of vibration, called by Hertz

its fundamental tone. It is only in very special cases that the

numerical value of this time can be calculated. Hertz (Wiede-
mann's Annalen, 1887, No. 7) considers the case of two metal

spheres each of 15 cm. radius connected by a straight wire 150 cm.

in length, and Jem. radius. For such a conductor Ac and R c

must be the same for every tube of flow by symmetry. Hertz,

on certain assumptions, finds

7r\/Ac = - seconds.
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The conditions that EC and \c shall be the same for all tubes

can be secured in other cases by taking a conductor of sym-
metrical form as, for instance, the spherical shell treated by
Professor J. J. Thomson in the Proceedings of the Mathematical

Society, 1884.



CHAPTER XXIV.

AMPERE'S AND OTHER THEORIES.

ARTICLE 484.] IN the preceding chapters we have found that

two closed circuits with currents i and i' possess energy of their

/ / OOQ (

mutual action ii'l I
- - ds ds', taken round both circuits in the

direction of the currents, and the energy of any field of closed

currents is

The proof of this rests ultimately on experiments made with

closed conducting circuits, where no account is taken of the

variation of the statical distributions of electricity or the statical

potential. It is only for circuits of this character that we are

strictly justified in using the above expression for the energy.
We may call a system of such circuits a purely magnetic system.

485.] Generally in any field of currents we have what used to

be called unclosed currents, that is, statical distributions forming
on the surfaces of conductors, and variations of the statical

potential.

According to Maxwell's theory the circuits are nevertheless

all closed, if we take into account the displacement currents

in the insulating or partially insulating space, and the energy
of any field of currents is still represented by

f[f(Fu+ Gv

u, v, and w including the displacement as well as the conduction

currents.

Maxwell's theory, as thus extended, is consistent with experi-

ments. It is possible however to explain experiments with closed

circuits on other hypotheses concerning the laws of force or of

energy between elementary currents. Ampere's law especially,

as extended by Weber, has met with very general accept-
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ance. And Helmholtz' treatment requires explanation with a

view to the electromagnetic theory of light.

We therefore propose to devote the present chapter to the con-

sideration of some of these hypotheses. We shall assume that

every pair of current elements exert on each other a certain force,

or possess energy of their separate action.

When we speak of a force acting between two current ele-

ments, we must be understood as meaning a force acting between

the elementary conductors in which the currents flow in virtue

of those currents
;
for we cannot conceive electric currents as in

any other sense the subject of mechanical action. But for

brevity we shall follow the example of other writers on the

subject by speaking of the action as between the currents.

486.] We shall employ the following notation. If CP or ds,

C'P'or ds', two infinitely short lines, represent the directions

of two elementary electric currents, then in our notation

CC' = r,

LPCC' = 6,

LP'C'C = tf,

C C'

Fig. 47-

and the angle between CP and C'P'= e. Evidently with this

notation ,

a dr
cos =

-j- >

ds

*<?=-%,,ds

d . ^ dv dr d?r
cose = (rcosfn = --, r 37-7?ds v ds ds dsds

and we shall denote by i the current in ds, that is the quantity
of electricity which passes in unit of time through a section of

ds. Similarly i' shall denote the current in ds'. In the ordinary

notation u, v, w are component currents per unit area of the

section, so that ids corresponds to udydzdx.
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If ds be an element of a closed circuit, ds' any elementary

straight line, then

cos 6 cos 9' _ Tcos e

/ ds.
J r J r

f nna ft nr\o fi
f

f*f*ria (

For

T J r

cos cos & , Tcos r cos 0'Tcos (9 cos 0' , T
/

- - ds
J r J

/ (r cos

/jrdfc

by integration by parts, the integrated term disappearing for the

closed circuit

487.] The four quantities r, e, 0, 0' completely define the rela-

tive position of any two elements of electric currents. If therefore

these elements possess energy of their mutual action, or exert a

force on one another, this energy, or force, must be capable of

expression as a function of r, e, 0, and 0', together with ids

and i'd*'.

488.] It is assumed generally in these investigations :

I. That the effect of any element of a current on any other

element is directly as the product of the strengths of the currents

and the lengths of the elements. That is, it is proportional to

idsi'ds'.

II. That every elementary current may be replaced by its

components.
That is, if i CP, iCQ be two elementary currents, both starting

Q R from C, and if CE be the diagonal of the

/^^y parallelogram RPCQ, the two currents iCP
9

. / iCQ are for all purposes equivalent to the

Fi single current iCR.

This we shall call the law of composition.

It is found by experiment that the effect of a sinuous current

CPR can, by diminishing the dimensions of the currents, be

made to differ as little as we please from that of the straight

current OR. Hence we infer the truth of the law.
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If ds be the length of the elementary current at C, ds-^ and ds.2

its components, we shall denote by e, c
l9 and e

2 the angles which

they respectively make with ds'. And in like manner the

suffixes x or
2 applied to any function of r, e, 0, O',ds, and ds' shall

denote that ds
l
or ds.2 is concerned in its formation.

489.] DEFINITION. If/ (r, e, 0, 6') ds ds', or shortly/, be such a

function that for any whatever two components of ds, as ds
l

/ is said to obey the law of composition. We can now prove the

following proposition.

If/(r, e, 0, 6'), or shortly/, be any function which obeys the

law of composition, and is symmetrical with regard to and 0',

f must be of the form

$ (r) cos e+^ (r) cos cos 0',

where $ (r) and
\j/ (r) are undetermined functions of r.

By hypothesis

. .

By projecting on d*',

cos e cfoj
= cos

l
ds

l+ cos 2
ds

2 ,

ds, ds9
or cos e = cos , -j-

1+ cos e
2
-~ ..... (2)1 ds ds

Now let e vary, and 6
f

remaining constant. That is, con-

ceive ds' to be the radius vector of a cone of which C' is vertex,

and r the axis. Then as ds' changes its position on the cone,

changes, and el5 e
2 change with it, but r, 0, and & are un-

affected. Then by differentiation from (1) and (2),

^ =^^^ + o%^^
df df

l
df ds de

2
d ds

d~ ds, df^ds,,
sin = sm .

-~ :

-H sin e
a
-~

3-= ;l de ds a de ds

and these equations being true for any three directions in any

plane, and whatever the lengths of ds
l and ds

2 ,
we must have

1 df = 1 dfl= I df,

sine df sin6
1
c?e

1
sine

2 c?ez
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or ---
-j- is, given r and 8', independent of e and of 0. and is

sin e de

therefore a function of r and 0' only. That is,

-4-^ = -<l>(r,0'), (3)sine dc

where 4> is an undetermined function.

Again, by projecting on r, we have

cos 6 ds = cos O^s^+ cos
2 ds.2)

or cos 6 = cos 0,
* + cos 2 } . . (4)1 ds z

ds

and, as before,

/-.< ....... (>

Let vary, e and 0' remaining constant. That is, let r be the

radius vector of a cone whose vertex is 6", and whose axis is

parallel to ds'. Then as varies, 6
1
and

2 vary with it, e, l ,
e
2 ,

and 0' remaining constant. And by differentiation of (4) and

(5) we have 7 - 7 ,, 7/1 , 7 ,. 7/1 ,

^/ _ G% ^ ^ 4^ 2̂ d%
d0
~

dd
l
dB ds

+
d8

2
dO ds

'

dQ.ds. a de.ds,

And by the same reasoning as before,

sin8 d8 sin 0j d^ sin
2
c?0

2

or -;
-

-j- is, given r and 0', independent of and 6.

sin Odd

Hence

where ^ is an undetermined function.

From (3) and (6) we have

And by integration,

/= <l>
(r, P) cos e + *

(r, 0') cos 0.
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There can be no constant of integration, as x (*" #') because

such would not obey the law of composition.

Now if f be symmetrical with regard to and 0', 4>
(r, 6')

cannot contain 0', and is a function of / only. Let it be <(?*)

And V (r, 6')
must be of the form

\f/ (r) cos tf, where
\j/ (r) is a

function of r only. We find then that f, if it satisfy the con-

ditions, can have no other form than

<j> (r) cos e + \j/ (r) cos cos 6',

where < (r) and \^ (r) are undetermined functions of r.

490.] We will apply this theorem as follows. Firstly, let

idsi'dsf be the force which the element ids exerts on the element

ids'. We shall assume that this force acts in the line r, so that

action and reaction are equal and opposite. The force must

then be symmetrical with regard to and tf> and therefore must

satisfy the conditions ; and therefore we may write

f=(f)(r) cos + \js (r) cos cos 0'.

To determine the forms of the functions $ (r) and
-fy (r), we

have recourse to another experimental law, namely,
III. In similar systems traversed by equal currents the forces

are equal. They are therefore independent of the linear dimen-

sions. From this we deduce that

<t>(
r
)
=
^>

and ^(r)
= ^ J

because ds and ds' and r all vary directly as the linear dimen-

sions.

Hence we get

/ =
j

COS + -y COS COS 0'> 5

where a and b are constants.

491
.]
We now proceed to Ampere's method of determining the

ratio between ' a
'

and '
b.' To this end we have recourse to yet

another experimental law. It is proved, namely, or supposed to

be proved, by experiment, that

IV. The force exerted by any closed circuit on an element

of another circuit, resolved in the direction of that element, is

zero, or the resultant force is at right angles to the element.
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We will discuss hereafter the experimental evidence which is

supposed to establish this law. In the meantime, assuming its

truth, it can be proved that - = -
, which is Ampere's result.

d 2

For the resolved force in direction of d*' due to the closed

circuit of which ids is an element is

* I T cos e cos O'ds + i I cos cos
2
0'cfe

J r J r*

= i
-3 r cos 0' (r cos tf) ds+ i I -$ cos cos2 tfds

= i I (r cos 0')
2 ds + i / cos 9 cos2 Q'ds

3a . /Vcos'tf' dr
, . C 1= + i I

^ j-
ds -f 5e / -g cos cos2

ds,

(since on integrating by parts

the integrated term disappears for the closed circuit,)

=
(5
_

Ijf)
^ TI cos cos2 0^,

and according to law IV this is to be zero for every possible

closed circuit. This requires b =
,
which is Ampere's law.

492.] The method of quaternions is admirably adapted to the

discussion of questions of this kind. We will therefore, follow-

ing in the main Professor Tait in his work on Quaternions, give

another proof of the proposition that b = satisfies the ex-

perimental law IV.

The force on 'the element ds' is the integral, that is the re-

sultant, of all the vectors whose type is

( cos 6 + - cos cos 0'
J
ds ds,

each in direction between ds and an element, d*, of the closed

circuit.
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We may write this type vector

cos + -3- cos cos 0'> i ds'i'ds',

denoting by r the vector r, and the other quantities being scalar.

Now a I
-^ cos ds = a I d

(
r cos

and for the closed circuit s the integrated term is zero, so that

a I cos ds = a I r cos &'d
( )

r cos 6 cos 6'ds

/,,
dr

rcos0'^-

because -=- = cos 0.
ds

Now dr is the element ds of the curve considered as a vector.

Let it be denoted by ds. Then we have

ds CrcosOcosO'ds

/r
C n,ds C

cosds = arcosO'3a
r
3 J r3

J

Adding a \ -^ cose^5 to both sides, and transposing, we obtain

3 Cr cos 6 cos 6'ds

r cos 6 c?s d/

r3

S.dsdf-dsS.rdJ
~^~

in the notation of quaternions.

Now the type vector on the right-hand side is by a known

theorem (Tait's Quaternions, 2nd edition, Art. 90) equal to

F.ds
7

It is therefore perpendicular to ds
,
and therefore also the in-

tegral vector V. ds
3

is perpendicular to ds'
9
as was to be

proved.

VOL. II.
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493.] The resultant vector /
^ depends only on the position

and shape of the closed circuit and the position of ds', and is in-

dependent of the direction of ds '. It is a property of the closed

circuit, having given magnitude and direction at every point

in space. It is called the directrix of electrodynamic action for

the circuit in question.

It is remarkable that this vector, determined by Ampere's

method, is identical in direction with another vector which we

have determined from totally different considerations, namely, the

magneticforce due to the circuit.

For the directrix, as we have seen, is the resultant of vectors

whose type is
'

,
one for each element of the circuit. The

type vector is normal to the plane of r and ds
t
and of length

proportional to their product into the sine of the angle between

them.

If we take the element dsf for origin, and ds be at the point

9 $> z
>
the components of this type vector are

dy dz dz dx dx dy
/y

**
r ___ *i

/y , # nt nf*

ds ds ds ds ds ds

p ~7T~ T-
and the ^-component of the integral vector is

dy dz

ds ds ,
= ds,

that is,
~

j ,
F

9 G, H being the components of vector
dy clz

potential of the closed circuit. But this is the ^-component of

magnetic force due to the circuit. Hence the directrix and the

magnetic force are identical in direction.

Further, we have proved that, according to the theory of Chap.

XXI, the mechanical action upon any closed circuit s of any
other closed circuits may be represented by a force on each

element of s perpendicular to the element and to the magnetic
force of the field at the element. But this is the direction of
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the integral force exerted on the element ds' by the closed cir-

cuit s according to Ampere's theory.

494.] If we were to assume that each pair of elements ids, ids'

had a potential of their mutual action ii' - dsds', there would

be a force of translation in the line joining them equal to

. ., cos
^^ dsds .

r*

Now the resultant of these forces for all the elements of the

closed circuit s on the element ids' is not, generally, at right

angles to ds'. But the integral expression

'cos e
dsdsf

r

does, as we have seen, lead to a resultant force at right angles to

ds'. The explanation of the apparent inconsistency is as follows.

Assuming a separate potential for separate pairs of elements and

a force derived from it, we tacitly assume that each element can

be displaced unconditionally in any direction without reference

to any other elements, whereas in calculating the energy of

closed circuits we tacitly assume that no displacement of any
element can take place except conditionally on the circuit re-

maining closed. In the one case the displacement of the element

PQ into the position P'Q'is the substitution of P'Q' foi'PQ, in

the other it is the substitution of the broken line PP'Q'Q
for PQ.

495.] It follows from these considerations that if both circuits

are closed, Ampere's law of force, and the assumption of potential

dsds', both lead to the same result in calculating the

force on any element of either circuit. Therefore no experiments

with closed circuits can conclusively establish or disprove Ampere's
law. It does not appear that law IV, which is the basis of

Ampere's theory, has been conclusively establishedby experiments.

The experiments usually relied upon as establishing law IV are

made with closed circuits
;

for instance, the experiment relied

upon in Briot, 'Theorie mecanique de la Chaleur.' We have

there a circular current, and another closed circuit in the form of

P 2
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a parallelogram, one side of which coincides with the perpen-
dicular to the plane of the circle through its centre. It is found

that a current sent through the second closed circuit does not

tend to move the circular conductor round its axis. But by

symmetry this must be true, for any law of force which has a

potential. The experiment cannot therefore be relied upon as

establishing Ampere's law. Again, in the experiment described

in Maxwell, 2nd edition, Vol. II, 507, modified in 687, we have

two cups of mercury on a plane, and a wire passes through them,
and is bent between the cups in the form of a circular arc. The

wire between the cups forms part of a voltaic circuit, the current

entering through the mercury in one cup and leaving through the

mercury in the other cup. If any other closed circuit be brought
into the neighbourhood, it is found not to move the wire round an

axis through the centre of the circle ofwhich it forms part. In this

case any movement of the wire round the axis would not alter

the position of the current, but would merely place a different

portion of the wire in position to carry the same current. It

cannot therefore alter the potential of the electrodynamic forces

if they have one.

Concerning Weber s Hypothesis.

496.] Weber gives a physical explanation of Ampere's results

as follows. He assumes that two quantities of electricity, or, as

we may say, electrical masses, e and /, have, in addition to their

ee
r

statical potential ,
also a potential due to their relative motion

equal to c dr ,

-" Wt) '

where C is a constant. This gives a repulsive force in r equal to

, C ,drJ ,C d*r

or as we may write it

ee'
' ~^

dt*

Let us now assume that an electric current consists of equal

quantities of positive and negative electricity moving with equal
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velocities in opposite directions. Then considering e in ds and e'

in els', and r the distance between them, we have

dr dr , dr

dt
= v

Ts
+v

d/'

v and v' being the velocities of e and e' respectively, and if v and

v' be constant, f .

and therefore the force between and e' is, omitting (7,

*rYd?-
' W^ "Sd?j

ee/ f i(^
T \ /2/^r \

2

o '^r ^r>
\

The force between in ds and / moving with velocity v'

in r/,/ is found from the above by changing the sign of ef and if.

It is therefore

dsz

The force between e in ds and the system of e' and e' in d/

is found by adding together the two expressions. It is therefore

ee' d*r ee' ,dr dr
,

dsds 2r2 dsds

By symmetry, the force upon e in the element ds moving
with velocity v is the same as the preceding. And writing
i for ev and / for /#', we find for the force between the two

current elements ids and i'ds'

4u' d2r 2ii'dr dr

r dsds' r2 ds ds'

2ii' ( d*r dr dr I

that is, 9- j
2r T~rr T~3T( J

r2
( dsds' ds

which differs only by a constant factor from Ampere's force.

497.] We have assumed v and v' to be constant. Let us now

suppose t/, the velocity of e' in ds' and of ef in the reverse

direction, to vary with the time. Then, as before,

dr dr , dr
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d*r /dr a 2 2

But - = V

And therefore the force exerted by -f e
r
on e contains, in addition

to the expression above found for it, the term

ee' dv' dr
,

2r dt ds'

that is, -y- cos O'ds
f
.

Zr dt

But from e' and -=- will be derived the same term; so
dt

that the force on e due to the change in the velocities of e' and

e' will be a repulsive force

ee'dv' & j , . r ,.
cos 6 ds in direction r :

r dt

and therefore cos 6 cos 6' ds' in direction ds.
r dt

Similarly the force on e in direction ds reversed, due to the

change in velocity of e' and /, will be

ee dv' , ,
cos 6 cos 6 as .

r dt

But these two equal forces, on e in direction ds and on e' in the

reverse direction, constitute the Electromotive force in ds due

to the time variation of v'
9
that is of the current in ds'.

The electromotive force in ds due to a closed circuit of which

ds' forms part is

, . di' Tcos cos _ ,
that is / ds ,

dtj r

that is, as shown above Art. 486,

di' A;os e ,

=- / ds .

dt J T

That is
,
if F denote the resultant in direction ds of the

dt

vector potential of the closed circuit. This agrees with the
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laws of induction by variation of the primary circuit above

obtained, Chap. XIX.

For further investigations of this kind the reader may con-

sult among others the works mentioned in the foot-note.*

498.] It will be sufficient for our purpose here to follow the

more general method of Helmholtz, in order to investigate the

effect of unclosed electric currents, if such exist in the field.

The energy of two elementary currents ids and i'd*' may be

assumed to be symmetrical with regard to and &'. It must

therefore be of the form

(f> (r) cos e 4- ^ (r) cos cos 0'.

The experimental law III shows, as before, that $ (r) and
\jf (r)

are of the form - and -
respectively, where a and b are constants.

If the currents be all in closed circuits, this can be reduced to

one term involving
-

. For, for any closed circuit in relation to

an element ds of another circuit,

, . Tcos cos 0' . 7 , Tcos e 7

ds I ds = as I as, as above shown, Art. 486.

And therefore the assumed energy when applied to closed

a b /ycose . ., ,
circuits is reduced to / / i ds i ds .

r
cos cos tf

The existence of the term involving
- - in the expres-

sion for the energy is matter of indifference so far as closed cir-

cuits are concerned.

In any case we require only to know the ratio of the con-

stants a and b. We may therefore put the energy in the form

adopted by Helmholtz,

T= A z I j"* ^^- ^- > idsi'ds'
\ 2 r 2 r )

= A* \
(r

- cos 6 + -~
idsi'ds',

r 2 dsds )

*
Stefan, SitzungslericMe, Vienna 1869.

Carl Neumann, Ueber die den Krdften Electrodynamischen Ursprungs
zuzuschreibenden Elementaryesetze, Leipzig, 1873.

Helniholz 'Crelle's Journal,' vol. 72.

Clausius,
< Phil. Mag.,' series 5, Vol. I, p. 69. Vol. X, p. 255.
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where A is a constant employed by Helmholtz to denote the ratio

of the electrostatic to the electromagnetic unit of electricity,

i and i' being expressed in electrostatic units
;
and K is an un-

determined constant. Also i and *' include as well polarisation

currents as true conduction currents.

499.] The firstterm involving
- is the same as the expression

for the energy determined by the method of Chap. XVIII, and

leads, as we have seen, to\A2
I (Fu -f Gv + Hw] dxdydz as the

whole electrokinetic energy of the field.

d2 r
The second term involving-

- =-. can be shown, on Helm-
asas

holtz' principles, to depend on the existence of free electricity in

the field, and on variation of its potential with the time, and

therefore on the existence of unclosed currents, if free electricity

in motion have the properties of a current.

We may write

./ dr , , / / dr , dr . dr

And if r denote the distance of the element of volume dx'dy' dz',

in which the component currents are w'
9 i/, w' from the point

#, y> z at which the component currents are u, v, w^ then, in

forming the expression for the energy of the whole field, the

second term becomes

d d d</dr dr
'

dr

dxdy dz dx'dy'dz'.
We shall now assume that a surface S can be described en-

closing the field, so distant that the flow of electricity through

it, or (lu + mv + nw), where I, m, n are direction cosines of the

normal to 8, is zero at every point.

Then taking our stand at the point a?, ^, #, from which the

distance is denoted by r, let us form the integral

throughout the space within 8.
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Integrating by parts, it becomes

(lu'+ mrf+ nw') dS

of which the first term is zero by the condition concerning S.

500.] If all the currents are closed,

du' dvf dvf __

Tx +
dy

+
dz

=

at all points, and therefore the second term also vanishes, and

therefore also the integral (B) vanishes, and the second term in

the expression for the energy of the field vanishes.

But if there be unclosed currents, and if an electric current is

equivalent to a transfer of electricity, then in Helmholtz' theory

duf di/ dw' dp
d^ +

~dtf*lM~ ~dt'

where p is the volume density of free electricity in the element

dxdy'dz', and the integral becomes

that is,
- -L /YTrV

2^
if V be the potential of free electricity.

Again, applying Green's theorem to the surface 8 and the en-

closed space, with the functions r and
j- ,

we have in the nota-

tion of Chap. I,

of which the two surface integrals vanish if S be distant enough,
because whatever free electricity exist in the system, its algebraic

sum being zero, / dS must be zero if taken over any suffi-

ciently distant sphere described about a?, y, z as centre.
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We have then

-78 2
since V 2r = -

r

showing the dependence of the second term in the expression for

the energy of the field on free electricity and on variation of its

potential.

501.] Let us assume

or
at

Then we proceed as follows. We have

dr
{

,dr ,^ + ^' +w

dxdydzdx'dy'dz'

Integrating the last expression by parts throughout the space

within 8, and neglecting the surface integral, it becomes

that is, *
d

dxdVd*>

p being the volume density of free electricity, that is,

that is -i /T/VV^
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Again, by applying Green's theorem to the surface S and the

enclosed space, we have

And again, neglecting the surface integrals, we have

And therefore we have, finalty,

d d d Yr dr dr dr

dxdydz dx'dy'dz*

And the expression for the energy of the field becomes

2T = A* fhFu+Gv+ Hw) dxdydz

A^ rrr/dvj. A.*-
&]]] ( *-) dxdydz + -

Again,

. d2 r / d d d\/ ,dr , dr , dr
ii' - -^dsdi = (u + v + w-r)(u ^-,+ v T7+*f-r/

dsds' V dx dy dz' \ dx dy dz

-j
-- - -= j-*dx dy dz

The expression for the energy of the field becomes then

+ (H + -^^

And for the components of electromotive force, so far as they

depend on the movement of electricity, we have, by Lagrange's

equation,
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-K dd*
dt 2 dtdx'

dG I-K dd^
*"*

. I- "* XL ~

eft 2 cfa dy

dH
2
I-K d (H*.~~~

;

to which may be added the statical forces

502.] According to Ohm's law, we have for the diminution

of the current by resistance in every element of volume,

dV .

z
dF

, 2
1-K d d*-*u =d^ + A

di
+ A -T~dt^>

and for the heat generated in the element per unit of time,

where R is the resistance at the point where the component cur-

rents are ^, t>, w.

If we write

I ., x7vl/ 1 tf /7\I/ 1 K flty
ET/__ Jji I />'_ /"f I Z/' IT" i

~2~~^"' 2M*y' 2 <Z*
'

we may obtain the equations of motion in the form given by

Helmholtz, viz. in any body presenting electrical resistance,

__dV 2
dF'

dx
'

dt
'

and since

1_ K d^=_y2^_ _y2^/^.^ !:y2:r_
2 c?as

V s^'- (1 -K] dxdt R

V*&~(l^*\~ A *(^+J*T:L\. I equation in a
'

dydt R \dy dt '
( conductor.

fty
in' I Helmholtz'

r9 TTI i \ u~
v 47T /dV . dH'\

v^-o-^Sr-yd-t^-a-)-
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503.] According to this theory if we put

dF dG dH rrr\ fdu dv

=- , (see Art. 504)

then we have

dV= - K ^T
dV

since V2 *= 2 -=-
at

According to this theory further the components of magnetic
force are

^ ^ ^__dG\ =.
, ,*H dG,

(
dF dH.

p A
( -3)'^ dz dx J

. / dG dF\

d*V

dy d/3 / vu~ Y \
and = A['Tru-\ ; -I 3

dy dz dxdt'

da dy
j
c?^ dx dydt'

d(3 da , d*V.
-T ^-=AU^w+ -=;-

).
aa; dy dzdt /

It wiU be observed that /", G', ZT as well as ^ G, H are

potential functions.

If a moving particle or mass of electricity in motion be

equivalent to a current, then according to Helmholtz' formula,

unless K = 1, two such currents or moving masses should have a
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,. , . , . cos cos 0' ^T

potential involving
1 the term -- . We are not aware

that this is supported by any experimental evidence.

504.] Helmholtz further proves that, if K be negative, the

expression for T may under certain circumstances be negative.

To this end we first prove the following theorem :

For any system

dFdGrrr

JIJ
dFdG

For
rrdG J=
IJ

f * dS-

the surface integrals being taken over the above-mentioned dis-

tant surface S. But these surface integrals are of the order 3,

and therefore vanish if S be distant enough. Therefore

rrrdFdG. rrrdFdG,
JJJ to ITy

dxdydz=JJJ^^ ******

rrrdFdff. crrdFdH.
Simikrly,

JJJ -^ -^ dxdyd* =JJJ
- dxdydz,

&c. = &c.

dF dG dH dV
Again, -= h -j h -5 = -rr

dx dy dz dt

For since F
III dx'dy'dz, &c., and -7-7 ? &c.,

, d , d , d 1 1

= - ff^-u'dy'dz'
- T/^i Staid* - /Ti w' dx'dy'

of which the surface integrals are over the surface S, and there-

fore vanish if that be distant enough.
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Therefore

dF do

if p be the volume density of free electricity

_dV~
dt'

Again,

u=--L.V*F, v = --?-V*G, w= _-L
47T 47T 477

.-. /7T (Fu

is taken over the bounding surface #' and vanishes for a suffi

ciently distant surface.

Therefore

Similarly
rrr

Jff

fffodxdyd,
=

^) + &c.

We have then
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Also, as we have seen,

by the theorem above proved.

Multiplying (2) by , and then subtracting from (1), we

obtain

v+Hw) dxdydz

And therefore

2T = ^l
2

fff(F*+Gv+Hw) dxdydz

A^ rrr^v^
T7jjj ( A")

^^v r -= """

, , ,~

.

505.] To recapitulate the results of this investigation.

We have

(1)

dF dF
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According to Maxwell's theory this assumption is untrue if

n, v, w include the displacement currents.

(2) On Helmholtz' assumption concerning
1 the energy of ele-

mentary currents,

2 T = A*(F*++Hm) dxdydz

Under certain circumstances this expression for T may become

negative if K be negative, as in Weber's theory it is. The contro-

versy whether this is or is not physically possible is discussed

in Maxwell's Chapter XXIII. It is possible perhaps to imagine
a system of moving electrified masses which shall make T in the

above expression negative if K be negative. In any case where

the electrostatic distributions are due to induction, as in the

cases treated in Chapters XXI and XXII, the term

will be inappreciable compared with the magnetic energy of

conducting circuits, and therefore cannot affect the sign of the

total energy.

The difference between the above treatment and Maxwell's

consists in the assumption made by Helmholtz and Lorenz, that

du dv dw _ dp

dx dy dz dt

where n, ?;, w are the components of the total current. Ac-

cording to Maxwell, du dv dw
:J- + :F-+ -j-dx dy dz

is always zero with this meaning of u, v, w.

ttnt dp dq dr_ d ,df dg dh^ _ dp
dx
+
Ty

+
'dz-"^dt^^"d^

+
Tz)"

~
dt

j, q,
r being components of the conduction current only.

VOL. n. o



CHAPTEE XXV.

THE ELECTROMAGNETIC THEORY OF LIGHT.

506.] IN Maxwell's theory the electric current at any point in

given direction consists of two parts, viz., the current of con-
7 /

duction
jt?,

and the time variation of electric displacement
~
dt

In the investigation of the induction of electric currents in

conductors we have treated of cases in which the displacement
currents have no appreciable influence on the conduction cur-

rents. We now come to treat of cases in which these conditions

are reversed, the conduction currents may be non-existent, the

displacement currents having the field to themselves. Maxwell

shows that in a medium absolutely non-conducting, but capable
of dielectric polarisation, electric disturbances may exist, and

are propagated through the medium with velocity varying as

where K is the specific inductive capacity of the medium,

and
fj.

its magnetic permeability, and that light consists in the

oscillations of dielectric displacement in such a medium with the

corresponding magnetic oscillations.

The subject has been treated by H. A. Lorenz, Professor J. J.

Thomson, and others.* We proceed to show, following in the

main the method elaborated by Lorenz, how some of the phe-

nomena of light may be explained on this hypothesis.

* H. A. Lorenz, Ueber die Theorie der Reflexion und Refraction des Lichtes

Schlomilch Zeitschrift XXII, XXIII.
J. J. Thomson on Maxwell's Theory of Light, Phil. Mag. series 5, vol. ix.

p. 284.

Rowland, Phil. Mag., April 1881, June 1884.

Glazebrook, Report on Optical Theories, British Association 1885, and works
there cited.

Hertz Wiedemann's Annalen, 1887-1889.
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Inasmuch as the treatment of a simple case is here of excep-
tional importance we shall assume that

JJL
= I

,
that is, that no

magnetisable matter exists in the medium, so that the magnetic
induction is identical with the magnetic force. We will also

assume, firstly, that there is no conduction. The components of

electric current at any point are then f9 g^ h^ f, gy
and h being

the components of dielectric displacement. We then treat them

as having all the magnetic properties of an electric current, so

that

/= -f-rJ "

i-n\d dz

J_ (da _dy^
lir^dz dx)'

1 d(B da,

where a, /3, y are the components of magnetic force.

Also the equation of continuity becomes

df da dh
-T+/+-T =0,dx dy dz

(A)

(B)
whence also --+ -^ 4- =

dx dy dz

It is understood that /, g, h, K, and all the other functions

we shall have to make use of, are expressed in the electro-

magnetic system of units.

Light in an Isotropic Medium.

507.] In an isotropic medium at rest relatively to the source of

light we shall have at every point

4-rA dt dx

K ,dG d\fr

where
\jf

is the potential of free electricity.

(C)
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From these we derive the general equations

dz2

dxdy dxdzdx

< vu
\ff

u/ Lr\ t* IJT tr U 1

dt dy dt
z ) dzz dx2

dydz dydx*

(I)

It may be observed that Helmholtz's system, Art. 498, etc.,

leads in the case now under consideration to equations of the

same form with F'
, ', H' of Art. 501 for F, G, H.

508.] As we only require a particular solution, we may
assume

\l/ 0,

h = r p cosE )

where p is the amplitude of displacement, p, q, r its direction-

cosines, and

ITT
2 7T , ,_ . . 27T/ lx-{-my + mz\& ^ ~r~ (vt (lx -\- my -f- nzj J

=
^r

( ^ l j

A ^ >
'i?

T being the periodic time, A the wave length, and v the wave

velocity, so that

Also we have

(II)

vF =

= -

H =. r/jsin^ JA v

All points in any plane whose normal is /, m, n are in the

same phase at the same time. Any such plane is called the

plane of the wave.

Since

we have
dx dy dz .dx dy dz

dF dG- d_H_
dx dy dz
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and by equations (I)

pi + qm + rn = 0,

or the dielectric displacement is in the plane of the wave.

And since /= ppcoaE, &c., we have

a = (rw qn) -pcosE,
K. v

(3=~(pn-rl)-poosE, )
. (Ill)K v

y=~(ql-pm)-

And therefore also

la + mfi + ny = Q and pa+ q(3 + ry = 0,

that is to say the magnetic force is in the plane of the wave,

and also at right angles to the electromotive force, because the

electromotive force in an isotropic medium coincides with the

dielectric displacement.

The electrostatic energy per unit of volume is

The electrokinetic energy per unit of volume is

^(a* + /3< + /),

which, since pl+ qm + rn = 0, is also equal to

Hence the energy is half electrostatic and half electrokinetic.

509.] It is thus shewn how a system of waves of electro-

magnetic disturbance may be propagated through a homogeneous

isotropic medium, with velocity . Now, comparing dif-

VK
ferent media, K, or more accurately Kp, in electromagnetic

measure, is found to be inversely proportional to the square of

the velocity of light, or = with p = 1 represents the velocity

of light in a medium whose specific inductive capacity is K.
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Hence it is inferred that light consists of an electromagnetic

disturbance.

510.] It comes next in order to explain on this hypothesis

the phenomena of reflexion and refraction, when light passes

from one isotropic medium into another, separated by a plane

from the former.

Let p , plt p denote the amplitude of the vibration for

tne incident, the reflected, and refracted waves respectively ;

and in like manner any other function shall be distinguished

by the suffix or accent according to the wave to which it

belongs.

Let us take the plane of incidence for the plane of xz, and

the plane of separation for that of yz. In that case,

Z = cos0, m = 0, n = sin0.

Then E ~
~Y ^~~~ C S ^~~~~ sin ^'

or if the origin be not arbitrary, we must add an arbitrary

constant t
,
and write

and for the refracted wave

In order that on the plane of separation x = the phase
of the refracted light may not differ from that of the incident

sin 6 sin 0'
we must nave

v

sin0

the well-known law of refraction. This is in no way dependent
on the theory as to the nature of light vibrations.

The problem then is, given the direction, 0, of the incident

wave, pQ , qQ ,
r the direction of its dielectric displacement, and

/o

the amplitude, to determine the two unknown quantities p1 and

p', the amplitudes of vibration in the reflected and refracted

waves respectively.
For this we require two relations. One we can obtain inde-
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pendently of the direction of displacement in the incident wave,

that is, ofpQ , <? ,
r

; the other depends upon their values.

The energy per unit of volume is proportional to the square

of the amplitude of displacement and to
-^.

The energy that

crosses unit area of the plane of separation in unit time towards

the refracting medium is, since -=? = t?
2

,

for the incident wave p
2(y

3
cos0,

for the reflected wave p^v^coaO,

for the refracted wave
/D

/2 u/8 cos0
/

.

We may assume that the energy flowing towards the plane is

on the whole zero. That is, there being equality ofphase for the

three waves on the plane of separation,

(p* p*)v*coa0 = p'V
3
cos0',

or, having regard to the law of refraction,

(p,*_^8m*0cof0ssf^8inWeoB0'..... (1)

This is one relation.

This also expresses the fact that the energy of a wave of the

incident light is equal to the sum of the energies of the corre-

sponding waves of the reflected and refracted light.

511.] The form of the second relation will depend on the

direction of dielectric displacement in the incident light. We
will treat separately the two cases, Case I in which the dielectric

displacement is perpendicular to the plane of incidence, or

and by symmetry /x
= 0, f = 0, &c.

;
and Case II in which

the dielectric displacement is in the plane of incidence ;
that is,

/ = -p sin0 cos.E', gQ
= 0, \ = p cos0 cosfi.

Any actual case may then be dealt with by combining the two

solutions.

Case I. The electrical theory requires that the electromotive

force in either direction parallel to the plane of separation, shall

be the same on either side of that plane. Now the electromotive

force at right angles to the plane of incidence on the side of
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the incident and reflected waves, is
(ff -\-ffi),

and on the side
/ -A-

of the refracted wave ~-n whence we obtain
A

__ /~

or
<7o+ <7i

That is, neglecting common factors,

(p + Pl)sin
2 =

p'sin
2
0'....... (2)

Combining this with (1), we obtain

(p Pi)sinOco80 = /o'sinfl'cosfl',..... (3)

and from (2) and (3)

8111(0'- 0)^~ Po
sin

, sin
2

These results agree with those usually given for light optically

polarised in the plane of incidence.

COROLLARY

+ a
i
=

(Po + Pi} Yy
sin e cosE>

a' = p'
. 7, sin0

r
cos-^.

K. v

And therefore

o + a
i
= a'-

Similarly it can be shown that

and /3 + /31
= =

/3'.

That is, the magnetic force does not change discontinuously at

the plane of separation.

This result, which we have deduced from (1) and (2), Lorenz

treats as an independent relation, and uses it instead of (l).

It will be observed that the energy passing in unit time

at any point through unit area of any plane is proportional

to the product of the magnetic and electromotive forces at the

point and to the sine of the angle between them. See Art. 401,

note.
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512.] Next, let the dielectric displacement be in the plane

of incidence. In that case

gQ
= 0, / = p sinOcosE, h = pQ

cos0 cosE,

with corresponding values for g^ &c. Then we have, as before,

For the second condition we take

/+/,=/',
that is, by the electrical theory the dielectric displacement per-

pendicular to the plane of separation is the same on either side

of that plane. This gives

(Po+ ft) sin0 = p
/
sin0

/

(2)

Combining (l) and
(2), we obtain

Whence
sm0cos0-sin0/

cos0
/

_ 8in20-sin20/

_ tan(0'- 0)
Pl

~~ PQ sm0cos0 + sin0
/cos0/

" Po
sin 2 + sin 2 0'

" Po

These results agree with those usually given for light optically

polarised perpendicularly to the plane of incidence. From this

and the results above obtained it is inferred that dielectric

displacement in the plane of incidence corresponds to optical

polarisation perpendicular to that plane, and vice versa.

As in the former case, we can deduce from (2) and (3) the

continuity of a, /3, and y. Or, following Lorenz's method,

assuming the continuity of these functions, we may deduce (1)

as a consequence.

7T

If - co be the angle made by the direction of displacement

with the common section of the plane of the wave and the

plane of incidence, and if o)l5 &/ have corresponding values for

the other two waves, we find, combining the two cases,

cos + 0'
tan a)!

= tanco

tan a/ = tan o)

COS0-07

1

cos 0-6'
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513.] The path of every incident and refracted ray is rever-

sible in direction, so long as the relation

sin /~K'

gives real values for cos 6 and cos 0', so that if light is incident

at angle 0' on the right-hand side of the plane of separation,

it will be refracted at angle 6 on the left-hand side. If, in

this case, the amplitude of the polarisation in the incident ray

be m^, and that of the reflected and refracted rays m
l
and m'

respectively, we shall have

(1) For dielectric displacement perpendicular to the plane of

incidence,
sin (0-0')

ra, = m
Q

--

(2) For dielectric displacement in the plane of incidence,

sin 20' sin 20

sin20'+sm20'
= W

sin 0'

Comparing these values with those obtained for the direct ray,

sin(0
/

-0)

sin
2

sin20 sin20= '

sin0

we see that in both cases

wii
= - m

o , p' >' (p<?
-

w*i
2

)-

/
P

v' .

If sin > 1
,

Q' becomes imaginary, though sin 0' = sin

remains real. For these values of we have total reflexion.

For application of the theory to the resulting phenomena see

Lorenz's treatise above referred to.
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514.J We have assumed the medium to be at rest. We may
however conceive it to be moving relatively to the source of light

with velocity V, very small compared with the velocity -=> m
VK

the direction of wave motion. The effect of a motion of the

medium in the plane of the wave will not be considered.

Let the direction of wave motion be that of y, the direction of

displacement that of #, we shall then have by the field equations

Chap XXI,

Also in this case -r- = 0, and
dz

dy 4 TT v dy dt dy 4 TT V dy dt

nd

dy df

d-
dydt

d*f r fd^f rr dwhence -^ = K (-^ + V- -

dy* \dt* ddt'
Assume/= a cos E

'

and *

where t' is a constant.

This gives

and

in which the -1- sign must be taken, and V being very small

1 1 V
compared with > v = =. H-- > or the velocity of the

VK vK 2

light is increased by half the velocity of the medium relative

to the source.*

On the Passage of a Wave through a Partially Conducting Medium.

515.] If the conductivity be finite instead of zero as hitherto

supposed, Maxwell's theory gives us

* See a paper by Professor J. J. Thomson, Phil. Mag.' 1880.
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p = CP, f = -P,u = p+f, etc.
-,

- '--"-
'=///>*<.

andtherefore
dx dy dz

du dv dw dF dQ dH
Also + + 3- = 0, and therefore -=- -f 3 + -5- = 0.

dx dy dz dx dy dz

From these equations we get

and therefore V2
/= 4* tf +^+ ( + +> . (1)

eft ^ 2
c^cc \dx dy dz'

Differentiating equation (l) with regard to #, and the cor-

responding equations in g and h with regard to y and z re-

spectively, and adding, we obtain

d /df da dh\ d2

/df da dh\
47rC-(/- + /- + --) + ^--(-^ + / + )== 0.

dt \dx dy dz / d? \dx dy dz /

For a wave normal to a?, all the functions -^- > -^ , -f- ,
etc. are

<fy dz dy
zero. And therefore we have for the normal displacement /, in

such a wave

and therefore from (1) 4 IT C -jf+K /= 0.
dt dt

Therefore eitherf = throughout, or else /varies as e~H
Now if the conducting medium be bounded by the plane of yz,

light flowing from that plane, and if on that plane the functions

be periodic, they must be periodic at all points within the

conducting medium. In any such case then / must be zero
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throughout, or, given Maxwell's formulae, there can be no normal

displacement.

For the transversal displacements we have

-

We may assume as solution

where 'T is the periodic time; whence

K
'

~~ T *~

in which the positive sign must be taken.

C2

And if =- be very small,

1 C*l

We may call a wave in which at any given point all the

functions are periodic functions of the time, but affected by the

factor f-**vcx
9
a stationary wave. We see that if the wave be

stationary, it can, on Maxwell's theory, have no normal dis-

placement.

516.] Let us now consider the case of a wave of light passing

from an isotropic non-conducting medium into a partially

conducting medium, separated from the former by the plane of

yz. Let the plane of incidence be that of xz
9
and let us take

the case of optical polarisation in the plane of incidence, or the

dielectric displacement in direction y.

If the dielectric displacement in the conducting medium

be /ocos-Z?, the magnetic force in that medium consists of

two parts, one derived from the displacement current, and the

other from the conduction current. The value of its ^-component
is then (using the same notation as before)

= (p cos E +~p" sin E\ cos tf.
' ^ &
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517.] We shall now find, as the consequence of our theory,

that, if the magnetic and electromotive forces be continuous, as

we found them to be between two insulating media, there must

be a difference of phase between the reflected, the refracted, and

the incident wave at any point on the plane of separation.

For let us assume

for the incident wave, g = acosjE';

for the reflected wave, g = a
l
cosU + b

1
smE ;

for the refracted wave, g = a
2 cosE-}-b2

sin .27.

Then we shall have

(1) by the continuity of electromotive force in ^,

((a + a^cos^ + ^sin^sin^ = (a.2
cosE+ b

z
sin^

7

)
sin 2 0'

;

(2) by the continuity of magnetic force in z,

(aa1
cosEb

lsmE)sinOcos0 = (az cosE + b
2smE)8m6

f
co86/

2 TG
+ (a2

sinE b
z
cosE)

- r sin 6' cos 6'.
J\.

Equating coefficients of cos E and sin E, we have four equations

to determine the four unknown quantities c^ b
l9
a
2
#
2

.

The existence of the second term in the right-hand member

of (2), which is introduced by the conduction, forbids us to make

b
l

b2
= 0, which would reduce the three waves to the same

phase on the plane of separation. We have in fact a difference

of phase between the incident and reflected wave tan"1 - and

between the incident and refracted wave tan"1

a
2

518.] We have preferred thus far to use real quantities as far

as practicable. But the treatment of problems of this class

is frequently much facilitated by the employment of the ex-

ponential instead of the circular function. As for instance in the

case of

Reflexionfrom a metallic surface.

As the medium treated of in the last article becomes a pure

conductor, let us replace the circular function cos E by the corre-

sponding exponential form. Let us then suppose light passing

through a dielectric or perfectly insulating medium and incident

on a metallic surface. Let the surface of separation be the plane
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of xz, and the plane of incidence that of yz. Let the light be

optically polarised in the plane of incidence.

Then for the incident light we have a displacement

and ^=*
For the reflected light

and

Within the metal we shall have in lieu of the displacement

a conduction current u, where u = p'
~E'v~l

and V = *(t- f,
cos 0'- - sin

tf-f)-,

sin 6' sin ,._..,,.
or assuming the law - =

^- to hold in this case

in which P and 6', and therefore /o'
and p13

are wholly or in part

imaginary.
If now the conditions assumed in Arts. 510, 511 remain

formally true with these symbolical values of the variables, we
shall have by the continuity of the electromotive force in a on

the plane of separation y = 0,

47TO- being resistance, and by the continuity of the magnetic force

in z

(PQPI) sin cos = ^ cot &'> ..... (
3 a

)

whence ^l cot 6 = cot ^,
Pi

sin ^-^ . . .

It is usual to determine the intensity, pv of the vibration in

the reflected light by taking the real part of this expression.
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The treatment of the problem in the form now presented
is not peculiar to the electromagnetic theory of the nature of

light. We therefore follow it no further.

519.] Helmholtz supposes the dielectric to be capable of

molecular polarisation, and investigates the laws of propagation
of this polarisation, arriving at results analogous to those of

Maxwell.

In his view each molecule of the dielectric in a field of elec-

tromotive force becomes polarised, or charged with equal and

opposite amounts of electricity proportional to the electromotive

force, these polarisations being of the same nature as those

of small conductors, so that representing the amount per unit area

on a plane at any point normal to the resultant force by a-,

this <r is of opposite sign to Maxwell's displacement.

If/, g, k be the components of polarisation at any point,

the electrical density of polarisation is

(df_ dg_ ,^\.
\dx dy dz /

Helmholtz supposes the variations of these polarisations to

possess the electromagnetic properties of ordinary currents, as

we have supposed with regard to Maxwell's displacement

currents. In this theory therefore if the only electricity in

the dielectric be that arising from polarisation, and there be

no conduction, we have

where is the constant ratio of polarisation to electromotive

force, and where

as given in Chap. XXIV.

In this theory however

shown, is equal to k-^-

dF dG dH .

In this theory however J, or +-=-+ -7-, is not zero, but, as above
ax ay dz
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Hence we get

df da dh ,

or representing -^- + -f byj ,

dJ_
di~

~~

Again,
d _ d _

whence there would appear to be a wave of normal disturbance

with velocity

/I + 47T6

*V "4^"'
and a wave of transversal disturbance with velocity

1

A \/47re

If however the medium be absolutely non-conducting we

must necessarily have
\j/ independent ofor-y- +

y^ + -3-=0;

whence it would appear that the normal disturbance is constant.

It is difficult therefore to interpret Helmholtz's theory of

propagation of electric polarisation through the dielectric unless

we assume a passage of electricity independent of conduction, that

is to say a convective passage not obeying Ohm's law.

In fact if
\lf

be independent of the time, J becomes zero, and it

is hard to distinguish between Helmholtz's theory and that

of Maxwell.

Anisotropic Media.

520.] We now proceed to the case of anisotropic media. In

any such medium we have generally three different values of K,

VOL. II. R
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corresponding to three mutually perpendicular directions in space,

fixed in the medium. We assume the medium to be homo-

geneous, and these directions, with the corresponding values of

K, the same at all points.

Taking these directions for axes of #, y, and z, we will denote

by Kx ,
K

y ,
and Kz the corresponding values of K. We shall

assume, as before, that /u
= 1.

Our equations (C) then become

dF
<^"

lit H

_
dt dy

Kz dt dz

As in the case of an isotropic medium, the condition of con-

tinuity requires that

df + d9 +
dh = Q

,

and therefore [ (B)

dx dy dz

From the equations (C') combined with

. dy_<W tc
J

==
dv dz

and
dH dG

a = --
, etc.,

dy dz

we obtain the general equations

"- v. \ -, .o T ~Z~. 5 I
"

dxdy dxdz

v v dt* dt dy / dxdy
dzff

We may assume as a solution ^ = 0,

(D'j

dydz
J

h = rpcosE; >

(la)
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i _2'jr / /T xx 27r / l>x -\- fny -\- nz\
where E (vt (lx + my + nz)) = -

(t

'

= -V
A JL v v

'

F = - 2X

2A

H = rpsinE.

(Ila)

As before, A. denotes the wave length, and v here denotes the

velocity of a wave in direction I, m, n. As we shall see, v is

generally different for different directions.

521.] The conditions (A) involve, as in the case of an isotropic

medium, pl+ Qm+ rn = Q

or the dielectric displacement is in the plane of the wave.

And substituting in (D') the values assumed above for F, G, H,

we have

v2

p = f--fc^-ift-*. & ^v
r

"K ;...(!)

thatis

and multiplying these equations in order by jt?, ,
and r, and

remembering that pl+ qm+ rn = 0,

we have a _ p* q* r 1

Kx Ky
A g

(E)

And therefore v, the velocity of wave motion in direction I, m, n,

is inversely proportional to the radius vector p in direction J9, q, r

to the ellipsoid

R 2
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The ellipsoid is then determinate in the direction and magni-
tude of its axes, and the same at all points in the homogeneous
medium. We shall call this ellipsoid the dielectric ellipsoid.

522.] If we seek from equations (2) to determine the ratios

p:q:r,we have to eliminate v2 and (~ +^ + ^)^Kx K
y

K z
'

As the result we obtain the determinantal equation

JL 3- _L

p, q, r

I, m, n

from which, combined with

pi+ qm+ rn = 0,

the ratios and can be determined.
T r

Again, the section made by the plane

Ix+ my+ nz = 0,

with the dielectric ellipsoid is an ellipse, which we will call

the ellipse LMN: and if we seek to determine the direction

of its axes, we make aP-+y
z + z2 maximum or minimum con-

sistently with
a2

i/
2 z2

i y. i i

'lr~
~^ K ~^ W '

Ay. Ay A.J

and Ix+ my -j- nz = 0.

This gives the same determinant as before. Hence we see

that for given direction I, m, n of the wave motion, the direction

of dielectric displacement p, q, r must be one or other axis of the

ellipse LMN> and v, the wave velocity, is inversely proportional

to that axis. A wave may move in the given direction /, m, n

with either of two velocities according as the direction of

displacement is that of one or the other axis of the ellipse LMN.
If, however, all points in the plane perpendicular to /, M, n be

given in the same phase of displacement at the same instant,

and that displacement in any other direction in the plane than

either of the two axes of the ellipse LMN, the displacement

cannot be propagated as a . single wave. We must resolve it
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into two components parallel to the two axes of the ellipse

LMN. Each component of displacement is then propagated as

a separate wave with velocity inversely proportional to the axis

of the ellipse LMN to which it is parallel.

Of the Magnetic Force.

523.] The components of the magnetic force are

dH dQ 4?r / r nqu,i u-cr ^TT -i/ r nq \a= = p cos & [ m ) 3 ^

dy dz v
h V Rz K)

(Ilia)

And therefore la+ m(3 + ny = 0,

or the magnetic force is perpendicular to the wave direction, and,

as will be seen in the next Article, it is also perpendicular to the

displacement and the electromotive force.

Of the 'Electromotive Force.

524.] The direction-cosines of the electromotive force are

proportional to -- >
-~

, .

So also are the direction-cosines of the perpendicular from

on the tangent plane to the dielectric ellipsoid through the

extremity of the radius vector p, q,
r. If therefore the dielectric

displacement be in the radius vector OP of the dielectric ellipsoid,

the electromotive force is in the perpendicular from on the

tangent plane at P.

The vanishing of the determinant Art. 522, shows that the

three vectors whose direction - cosines are proportional to

Jr > -^- and -^- > jo, q and r, I, m and n
;

that is, the electro-
K x &y &z
motive force, the dielectric displacement, and the direction of

wave motion, are in one plane. The components of displacement

are /?p, qp, rp. Those of electromotive force are p j^ , p -^-, p



246 THE ELECTROMAGNETIC THEORY OP LIGHT. [525.

Hence the component of electromotive force in the direction

of the displacement is

that is pv
2

. And since OP, OQ, and the direction of wave

motion are coplanar, that is the resolved part of the electro-

motive force in the plane of the wave. But the electromotive

force has a component normal to the plane of the wave namely

pv
2 tan POQ, that is pv

2 tan e, suppose.

525.] Now let the plane of the displacement, the electromotive

force and the wave motion be that of the figure. Let OP be the

dielectric displacement, and therefore an axis of the ellipse LMN
which is perpendicular to the figure.

Let OQ be the perpendicular on the

tangent plane through P to the dielectric

ellipsoid. Let OS be the normal I, m, n

to the ellipse LMN. If we make OS= OP,

we find from (E) that the locus of 8 is

thatis-

where p
2 =

526.] Let us now invert the system with unit radius of in-

version. Let P then become P', and Q, Q'. Then OF=v.
And let us take a point v in OS such that Ov= OP'= v.

At the same time let

Then (1), the equation to the locus of v, is

xz
y* z*

+ _!L - + 2
= 0.

We will call this the ^-surface. It is such that the radius

vector to it at any point is the wave velocity in the direction

of that radius vector.



527.] THE ELECTROMAGNETIC THEORY OF LIGHT. 247

(2) The equation to the locus of Q' is the new ellipsoid

(3) The locus of P' is the locus of the foot of the per-

pendicular from the centre on the tangent plane to this new

ellipsoid.

(4) If a plane perpendicular to that of the figure be drawn

through OQ, its intersection with the new ellipsoid is an

ellipse of which OQ' is an axis.

(5) Therefore if in the plane of the figure we draw 07 A. OQ',
and make OF=OQ', the equation to the locus of V is, as

above shown,

,

V2-C2
"

We will call this the F-surface.

(6) Since a plane through P'Q' perpendicular to the figure

is a tangent plane to the new ellipsoid or locus of Q', a plane

through Vv perpendicular to the figure is a tangent plane to

the V- surface or locus of V. The v- surface is therefore the

locus of the foot of the perpendicular from the centre on the

tangent plane to the F-surface. The reader may verify analyti-

cally that the surface whose equation is

with v2

is the locus of the foot of the perpendicular from the centre on

the tangent plane to the surface whose equation is

V 2-A 2

with

527.] The ^surface above determined is known in physical

optics as the wave surface, and from the preceding reasoning it

follows that the well-known application of its properties and

those of the ^-surface to the determination of wave and ray

velocity, and the magnitude and direction of ethereal vibration

holds, mutatis mutandis, in the case of the propagation of dis-

placements in the dielectric.
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It follows, for instance, that OF, the radius vector to the

F-surface, is the velocity with which a disturbance originating

at is propagated in direction V. Let all points in a plane

through at right angles to Ov be in the same phase at

the same instant, that is, assume the wave front to be per-

pendicular to Ov. Then the plane Vv is also a wave front,

and the line OF is the line of quickest passage of the disturb-

ance from one wave front to another.

528.] We can find by a known construction the direction of the

refracted wave when light passes from

an isotropic into an anisotropic me-

dium separated by a plane from the

former or rather the path of each of

the two refracted waves since the

two surfaces which we have called

the fHBnr&ce and the F-surface re-

spectively can be formed from either

axis of the ellipse LMN, and each

has therefore two sheets.

Let AB be the plane of separation,

PA the direction of the incident light

in the isotropic medium.

Let the plane of incidence be that

of the figure.

Then the angle of incidence,
Fig. 50.

PAB -, being known, we know

the position of B in AB such that shall be the first point

in direction AB which is in the same phase with A.

About A as centre describe the F-surface. Through B suppose

a line drawn perpendicular to the plane of the figure, and through
this line a tangent plane to the F-surface touching it in V.

Let Ov be the perpendicular from on this tangent plane.

Then Ov is the direction of wave motion of the refracted ray,

V the direction in which the disturbance is propagated, that

is the direction of the ray. Ov is in the plane of the figure, V
not generally so.
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As the 7^-surface has two sheets, there are generally two

directions of Ov and OF for given direction PA of the incident

light.

We see then that, given the angle of incidence 0, there are

two determinate directions of wave motion in the crystalline

medium, and therefore two determinate angles of refraction,

0\ and 0'
2 ,

one for each of the two refracted waves. And each

obeys the law of refraction -7 = -
, > thus preserving contin-

uity of phase.

529.] The direction ofwave motion for either refracted ray being
now determined, the direction of its dielectric displacement is also

determined by Art. 522, and is independent of the polarisa-

tion of the incident light.

But although the direction of displacement in either refracted

ray is independent of the polarisation of the incident light, the

amplitude is not. And, as we shall see, it is possible by

suitably choosing the plane of polarisation of the incident light

to reduce to zero the amplitude for either refracted ray, so that

only one of the two refracted rays will exist. Suppose <o to be the

angle made by the plane of polarisation of the incident light

with the normal to the plane of incidence. Then for a certain

value of w, suppose o> a , one of the two refracted waves disappears,

and for <o b the other disappears. Then any given displacement in

the incident light may be resolved in directions denoted by o>a

and <o b ;
and the component in o>a gives rise exclusively to

one, that in oob exclusively to the other, refracted ray.

Let coj be the angle made by the dielectric displacement of the

reflected light with the normal to the plane of incidence, a/ the

same for the single refracted wave, o> being so chosen that there

shall be only one. Also let p , p15 // denote the amplitudes
of displacement for the three waves respectively. Then p , 0, 15

6' and &>' are given. And we have to find oo, G>I} p19 and //.

The value of o> so found is the value <oa ,
which causes the other

refracted ray to disappear.

530.] To determine these four quantities we require four equa-
tions. One is the equation ofthe flow ofenergy analogous to that
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of Art. 510. The flow of energy towards the plane of separation

on the incident side is, as in that article, (p
2
~Pi

2

) ^ 3 cos &

The energy per unit of volume in the anisotropic medium is

#/2 p'
2

, by Art. 521, where //is the amplitude of dielectric dis-

placement. The direction and velocity with which it flows

are represented by OF, and the projection of OF on the normal

to the plane of separation is

vf cos &'+ v
f
sin 0' sin a/tan e,

since e = POV VOv. Therefore the flow of energy on this

side normal to the plane of separation is

/2

(v'
3 cos0'+ </

3

sin0'sina/tane) ;

and therefore for the case in which only one refracted ray exists

our equation becomes

(p
2_

/
r)
1

2

)
sin3 0cos0 _ p'2| gin30/cos 0/+ Sm4

0'sina/tane}. . . (1)

The electromagnetic theory provides us with three more

equations, namely:

By the continuity of electromotive force perpendicular to the

plane of incidence

(Pocoscoo+ ftcosaj^sm
2 ^ = /cos a/ sin

2
0'. ... (2)

By the continuity of electromotive force in the common
section of the planes of incidence and separation,

(p sin co ft sin o^) sin2 cos = p' sin a/ sin
2
0' cos 6'+ / sin

3
6' tan. e (3)

By the continuity of dielectric displacement perpendicular to

the plane of separation,

(Posincoo+ ftsinco^sintf = /sine/sin 0'. ... (4)

From (3) and (4) we obtain

(/o

2
sin

2
co p* sin

2
co

x) sin
3 cos

= /2
sin

2 a/sin3 0'cos0
/+/2 sin

4 /smo/tane ;

and subtracting this from (1),

(p
2
cos

2
co pt

2
cos2 cousin

3 cos =
/)

/2
cos

2
o)

/
sin

3 /
cos0/3 ;

and dividing by (2),

(p coso) ft cos cousin cos = /cos a/ sin 6' cos 0'. . . (5)

And we have now four linear equations (2), (3), (4), and (5) from

which to determine o> and o^ , p^ and p.
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531.] Eliminating- p1
cosa>

1
from (2) and (5), we obtain

2 pQ
cos co sin

2 cos = p' cos co
7

(sin
2
0' cos + sin sin

7
cos 6K),

= p' cos co' sin 0' sin (0' + 0).

Eliminating p1
sinco1 from (3) and (4), we obtain

2p sinco sin
2 0cos0

= p' sin a/ (sin
2 7

cos 0' + sin 0' sin cos 0) +/ sin
3
0' tan e

;

and therefore

, sin
7
cos 0'+ sin cos sin

2 7
tan

tan co = tan co r 75 -&; 1 ,

sm(0 +
/

) cosco
7
sin0+ 7

sin
2 7

tan c

tanco
7
cos0

7

cos o/ sin + 7

This reduces to the formula of Art. 512 if the medium be isotropic,

because in this case e = 0.

Again, eliminating p cosco from (2) and (5), we obtain

2 PJ cos co
x
sin2 cos = p' cos co

7
sin 0' (sin 6' cos sin cos

7

),

= p' cos co
7
sin

7
sin (0

7-
0).

And eliminating psinco from (3) and (4),

2 PJ sin coj sin
2

cos

= p
7
sin co

7
sin 6' {sin cos sin

7
cos

7

} p
7
sin

3 /
tan e

;

and therefore

. sin cos sin
7
cos

7
sin

2 / tan e

- tan 0/^(0+ 60+ '
'

cos co
7
sin (0 )

which agrees with Art. 512 if e = 0.

Finally, we obtain from (2) and (5),

sin (0
7-

0)

Now these are the amplitudes of displacement perpendicular

to the plane of incidence, and we see that they are connected

by the same relation, as when both media are isotropic.

It will be observed that the flow of energy is at right angles

to the magnetic and to the electromotive force as in Professor

Poynting's theory, Art. 401.
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532.] It appears therefore that certain phenomena of light can

be explained on the electromagnetic hypothesis. The theory

however in the form hitherto given fails to explain certain other

phenomena, e. g. the rotation of the plane of polarisation, under

the influence of magnetic force.

This investigation shews that on the usual hypothesis con-

cerning the nature of dielectric displacement the magnetic
force normal to the plane of the wave due to any system of

periodic electromagnetic disturbances is zero.

As the system gives rise to no magnetic force in the normal

to the wave, we should expect that any magnetic force in that

direction due to external causes would have no influence on the

system.

It is found, on the contrary, that in certain media a magnetic
force in the direction of wave motion causes the plane of

polarisation to rotate from left to right, as seen by an observer

looking in the direction of wave motion. If we suppose the

plane of polarisation to vary continuously, we still get on our

hypothesis no magnetic force normal to the wave, and therefore

cannot conclude that the normal force would cause the plane to

rotate.

Maxwell gives an explanation of this phenomenon (Magnetic

Action on Light, Chap. XXI) by resorting to a more general

conception of dielectric displacement ;
instead of linear displace-

ment he assumes two circular motions in opposite directions.

533.] Professor Kowland has also given an explanation of the

phenomenon (Phil. Mag., April 1881) which is intimately con-

nected with the electromagnetic theory of light.

It was first observed by E. H. Hall of Baltimore * that an elec-

tric current in a plane conductor under a magnetic force normal to

the plane, if free to choose its course, is deflected across the lines

of magnetic force. Professor Kowland assumes that the displace-

ment currents in dielectric space have the same property. And

this he interprets as an electromotive force whose components are

where A is a constant expressing the intensity of the force.

* Phil. Mag. April 1880.
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Suppose then a wave of plane polarised light advancing- in

direction y, with a constant magnetic force /3 in that direction due

to external causes. Then g = 0, and G = 0. And making

\lr
= 0, as in preceding cases, we have for the total electromotive

force the components

Also /=
whence we obtain

\d*F d

\ d? dt

that is,

Kp ^

w
-^- + :pl "L^L I __n_

o,

d d*F) d*H = Q

A solution of these equations is

F = r cos (vt y) cos mt,A

27T
27 = r cos m

?/)
sin TW^,

A

where m = r-=-

/xA
z

1 /4
2 /32

and

giving a rotation of the plane of polarisation equal to per unit

of distance traversed by the wave.

The reasoning seems open to objection thus. The new electro-

motive force is assumed to be proportional to the current. If we

assume positive electricity e to be moving in the current with

velocity v, the force on it will be proportional to ev. By the

same reasoning, if negative electricity be moving in the opposite
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direction with the same absolute velocity, the force on it will be

( e) x ( v),
that is ev. The new force Xwill thus act in the

same way on positive and on negative electricity, and it there-
77-

J7

fore cannot be true that f= - X. any more than f= - X.
4?r 4?r

According then to the usual conception of an electric current,

as consisting of equal quantities of positive and negative elec-

tricity moving with equal velocities in opposite directions, there

can be no true electromotive force of the kind assumed by
Rowland, though there may be deflexion of the current across

the lines of magnetic force. But if we suppose positive and

negative electricity to be involved in the current asymmetrically,

there may be a true electromotive force such as Rowland assumes,

and his explanation of the phenomena may be the true one.

534.] Until the recently published experimental researches of

H. Hertz mentioned in Arts. 482, 483 the physical basis of the

electromagnetic theory of light developed in this Chapter was

limited to the observed approximate agreement between the

determined values of the velocity of light and the magnitude

in electromagnetic measurement.

These researches of H. Hertz, confirmed and developed by
Dr. Oliver Lodge, Professor Fitzgerald and other investigators,

must be regarded as supplying weighty and independent evi-

dence of the truth of the theory.
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Chap. VII, 525.

Laplace's equation, 47.
Lenz's law, 346, 386.

Light, electromagnetic theory of, Chap.
XXV.

Magnetic action on light, 532, 533.

Magnetic circuit and resistance, 339.

Magnetic induction, Chap. XVII.
Magnetic screen, 416.

Magnetism, general theory, Chap. XVT.
Poisson's theory of induced.
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Magnetism, other theories of, 321.
Maxwell's dynamical method, 383-

387-

Measurement, systems of, Chap. XX.

Ohm, law of, 204.

Orsted, law of, 323-324.

Oscillating statical distribution, theory
of, 482, 483.

Peltier's observations, 224, 226.
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36o, 397. 398.

Poisson's equation, 47.

theory of induced magnetism,
Chap. XVII.

Polarisation of dielectric, 176, 182,

Chap. XIV.
Polarisation of light, 511.
Positive and negative, conventions con-

cerning, Chap. XV.
Potential, Chap. III.

Potential, magnetic, 285-288, 315, 316,

357-360.
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Poynting's theorem, 401.

Reflection and refraction of light, 510-
513, 528, 5.SO.

Resistance, 204.

particular cases of, 208, 209.
Rotation of conductor in magnetic field,

355, 434, 435, and cases in Chap.
XXIII.

Rotation of plane of polarisation, 532.

Self-induction, co-efficient of, 353, 378.
Self-inductive systems of currents, 426,

433-
Solid angle, a definition of, 270.
Solid conductors, induced currents in,

472-477.
Specific inductive capacity, Chap. XT.

Spherical current sheets, Chap. XXIII.
Spherical harmonics, Chap. II.

Stokes' theorem, 271-274.
Stress in dielectrics, 254.

Thermodynamic cycle, 349.
Thermoelectric currents, 242-251.
Two dimensions, electric systems in,

Chap. VIII.

Units of measurement, Chap. XX.

Vector potential of currents, 335-337.
,, of magnetic induction,

311-314.
Velocity of light, 506-509, 405.

Velocity of propagation in dielectric,

509, 514, 515.
Voltaic currents, Chap. XIII.
Volta's contact theory, 219-221, 226.

Wave surface, the, 527.
Weber's hypothesis, 496, 497.
Wheatstone's bridge, 214.

THE END.
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