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AN

PREFACE.

e

THI1s volume is mainly concerned with the appli-
cation of electrical theory to current phaenomena,
especially in their magnetic manifestations.

The subject has been greatly developed mathemati-
cally and experimentally in the last few years; but
while much additional insight has been gained into
the relations between them, the intrinsic nature both
of electricity and magnetism remains yet to be dis-
covered.

As stated in the preface to our first volume, the
electric fluids cannot be regarded as physical realities,
although they are most useful as the basis of a theory
accounting for and to some extent predicting electrical
phaenomena. And as regards the magnetic fluids,
it may be doubted whether their existence would
have been conceived at all if the order of discovery
had been inverted and the magnetic properties of
electric currents had become known to us before,
instead of after, those of the loadstone and so-called
permanent magnets. Not that the Ampere theory
of the electromagnetic constitution of natural magnets
would have been sufficient, inasmuch as it fails to
include and explain many of the phaenomena of in-
duced magnetism. 1

In this volume we have proceeded on the lines laid
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down by Maxwell, adopting his conception of displace-
ment and displacement currents, but not so as to
exclude reference to other theories.

According to this displacement hypothesis of Max-
well, adopted in a modified form by Helmholtz also,
there is a wave propagation of electric disturbance
through different media with a velocity depending
upon certain measurable electric and magnetic pro-
perties of the media, and it is found that the velocity
as so determined agrees, within no wide limits,” with
the velocity of light in the respective media. IHence
an electromagnetic theory of light has been pro-
pounded, of great beauty and simplicity, and free
from some of the difficulties attaching to the older
undulatory theory founded on the wave propagation
of disturbance through an elastic luminiferous ether.

Until very recently, however, this electric disturb-
ance propagation was hypothetical only and fortified
by no independent experimental evidence; but within
the last two years the researches of Hertz in Germany,
based upon experiments with rapidly oscillating charges
of electricity in finite conductors, experiments which
have been reproduced and developed by Professors
Fitzgerald, Lodge, and others in Great Britain, have
supplied independent and almost demonstrative evi-
dence of the existence of this disturbance propagation,
and thus have invested the Maxwellian hypothesis
with great additional interest.

We trust that the importance of certain portions of
our subject and the advantage of considering them
under different aspects may excuse the detail with
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CHAPTER XV.

PRELIMINARY THEOREMS.

ArticLE 266.] Ir O be a point in any plane, and @ a point in
the normal through O, we may say that the direction-cosines of
the normal are those of the vector 0@, suppose /, #, and =, or
those of the vector @O, namely —/, —m, and —n.

If we define the direction-cosines of the normal to be those of
0Q, then OQ is called the positive direction of the normal,
QO the negative direction, and @ is on the positive side of the
plane.

267.] If OP and OF be two neighbouring positions of a radius
vector through O, it is arbitrary whether we consider the area
described to be positive when the radius vector turns from OP to
OF’, or when it turns from OP’ to OP. But according to the
usual convention, the direction in which positive areas are de-
seribed by the radius vector round O in the plane POP’ is
determined according to the direction arbitrarily chosen as the
positive direction of the normal to the plane. If, namely, @ be
any point in the normal through O on the positive side, then the
radius vector through O describes positive areas when its motion
as seen from @ is in the opposite direction to that of the hands
of a watch.

268.] Consider a closed plane curve, and a point passing com-
pletely round it; and a radius vector from the moving point to a
fixed point O in the plane of the curve. The algebraic sum,
aceording to the foregoing convention, of the areas described by
the radius vector during this motion is evidently independent of
the position of O in the plane. If it be positive, the motion of
the point round the curve is in the posifive direction ; if it be
negative, the motion of the point is in the negative direction.

T VoL. IL B



2 THE USUAL CONVENTION RESPECTING SIGNS. [269.

According to this convention the integral f xdy taken round
a closed curve in the plane of 2y is positive, and [ yde is nega-
tive. Similarly f zdz is positive, and [zdz negative, [ ydz is
positive, and [ zdy negative.

If do be any elementary plane area, /, m, #» the direction-
cosines of its normal, we have, taking the integrals round its

boundary, f ady = +nda,

fydm = —ndo,

fzdm = +mdo,

fmdz = —mdo,

fydz: +ldao,

fzdy = —ldo.

Let us next consider a curved surface bounded by a closed
curve or curves. 1t can be divided into an infinite number of
elementary plane areas. Let us choose the positive side of any
one of these. If the surface does not cut itself we thereby
determine the positive side of every other element, and so may
determine the positive side of the surface. In what follows it
will be assumed, unless otherwise stated, that the surface does
not cut itself.

269.] Hence we can define also the positive direction of motion
for a point passing round the bounding curve of any surface,
whether plane or not. For taking an element of the surface part
of whose boundary is the elementary arc PP’ of the curve, and
having chosen the positive side of that element, we determine
by our convention the positive direction of the point’s motion
along PP’, and therefore its positive direction of motion round
the bounding curve of the surface.

R70.] If the bounding curve of a plane area be traced out by a
radius vector through a point O not in its plane, the solid angle
subtended at O by the area may be defined as the smaller portion
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of a spherical surface of unit radius deseribed about O as centre
cut out by the radius vector. It may be defined as positive or
negative according to the motion of the radius vector, namely
positive, if the point of intersection of the radius vector with
the bounding curve moves, as seen from O, in the opposite direc-
tion to that of the hands of a watch, negative if in the same
direction. If the direction of motion of the point be taken as
positive or negative with reference to the normal according to the
definition in Art. 268, then the solid angle subtended at O by
the area is positive or negative according as O is on the positive
or negative side of the plane.

The solid angle subtended at O by any finite surface is the
sum of the solid angles subtended at O by all the elementary
areas into which the surface can be divided. It is, according to
this definition, a single-valued function of the position of O.

Stokes’s Theorem.

271.] Let do be an element of a single surface bounded by a
closed curve, ds an element of the curve, /, 7, 2 the direction-cosines
of the normal to the surface at the point @, 7, 2, and let P be
any function of #, y, and 2. Then shall the surface integral

f f (md—P—n@) do taken over the surface be equal to the

line integral / P2 ds taken round the curve in the “positive
direction.

For let P, be the value of P at the centre of inertia of
the surface element do. Through that centre of inertia let
axes be drawn parallel to those of z, 7, and 2, and let 2/, 5/, 2’
be the co-ordinates referred to these new axes of a point in the
curve bounding do. Then the value of P at o/, o/, 2 is

i dF,
P+a/ +y dJ+z/dz

and the line infegral f P —d¢ taken round this elementary
curve becomes

P, O R i ey
1::’_/‘@ f Y —dd + =2 | ¥—=ds -
B

ds dz ds’
2 5



4 STOKES'S THEOREM, [271.

The first two terms are severally zero because the elementary
P
curve is closed. The last two terms are equal to — n‘ii—y"da and

+m L) °do respectlvely Hence

dz
( - )d ._fP——d’

And since we may regard P as constant over do the theorem is
proved for the elementary area do and its bounding curve.
Hence in the case of a finite surface the surface integral

dP dP : .
f f (m Pl @) do is equal to the sum of all the line integrals

f P% ds round all the elementary areas into which the surface

isdivided. But in this summation every part of each line integral
is taken twice, once in the positive and once in the negative
direction, unless it belong to the final bounding curve; so that
all the line integrals cancel each other except those relating
to the bounding curve. It follows that, for the whole surface
and its bounding curve,

ff(mg—"(%)%:ff’%zds.. ¢ e

CoroLLarRY I. The surface integral is zero for any closed
surface.

Corofrary II. If X, ¥, Z be any three functions of #, 7, and
- 2, by applying the theorem to each of them we may obtain an
expression of the form

/‘f{l(dZ dY ax CLZ)+ aY dX}da_
"I T da; dy
dy dz

And if further X, 7, and Z be the components of a vector R,
and € be the angle between E and ds, we have

aZ _ dY dX dz 4y dX
ff{( dz —%)-’F da dy)}do

=chos €ds.
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d d\1
because = (f—a)+(n—y) + ((—2),

d1 di d1 . d1
and therefore Py %, and — i the negatives of pa

d1 i
—» and i respectively.

dyr d.
273.] If with the same meanings as before of 6, f, g, £ we make
__cosf
v= = )
dv_dh_dg _dv_dh _dg.
then shall W &= e
with corresponding equations for Zy, %—» ete.
el oy HEza)tmO—y) 40 (g
Lo B
d2 el il
= (] - -
( d§2 ™ oEay " 3Eat) -
d? a2
- (’”W g ’zn—) :
( dcz 3 dfdc)
b ¥
ecause (d£2 Fyga d(z) =0
_dh_dg
dn ¢’
The remaining equations follow by symmetry.
COROLLARY, —jj + dg + df dy ' ok = 0,

™ =2ttt ac

by differentiation of (2) and (4)
274.] If ds be an element of the curve bounding the surface o,
and 6 be, as in Art. 272, the angle between the normal to the

surface at the point @, y, 2, and the vector » from the point
@, 7,2 to & 7, ¢, then shall

4 [0, _f@/ n)d (- c>ds %







8 EXTENSION OF ARTICLE 12. [275.

ffu-— —dS—f/quz—l-dydydz
1d 1
=f/;d—ZdS—fff;Vzi¢dwdydz.
That is, ffu————dS—ffl@dS
1 du
—ffrdvczs ff v Las,

f (u—u) £ Lag=o.

And as this is true for all positions of O within §, it follows
necessarily that #—#"= 0 at all points on 8. For if not, u—u’
must have a maximum or minimum value at some point on &§,
suppose P. And by making O approach sufficiently near to P we

could make the integral f / (v—o' ) - —dS differ from zero.

‘We have then #—«'= 0 at all pomts on 8 Also w—w'=0
at all points at an infinite distance. Therefore #—«" must be
zero at all points in space outside of 8. For if not it must have -
a maximum or minimum value at some point outside of S. And
this is impossible by Art. 53, since V2(z—#’) = 0 at all points
outside of 8.



CHAPTER XVI
ON MAGNETIC PHENOMENA*,

ArticLe 276.] Certain bodies, as, for instancé, the iron ore
called load-stone, and pieces of steel which have been subjected
to certain treatment, are found to possess the following pro-
perties, and are called Magnets.

If, near any part of the earth’s surface except the Magnetic
Poles, a magnet be suspended so as to turn freely about a vertical
axis, it will in general tend to set itself in a certain azimuth,
and if disturbed from this position it will oscillate about it. An
unmagnetised body has no such tendency, but is in equilibrium
in all azimuths alike.

It is found that the force which acts on the body tends to
cause a certain line in the body, called the Axis of the Magnet,
to become parallel to a certain line in space, called the Direction
of the Magnetic Force.

The direction of the magnetic force is found to be different
at different points of the earth’s surface. If the two points in
which the axis meets the outer surface of the magnet be called
the ends of the magnet, and that end which points in a northerly
direction be marked, it is found that the direction in which the
axis of the magnet sets itself in general deviates from the true
meridian to a considerable extent, and that the marked end
points on the whole downwards in the northern hemisphere and
upwards in the southern.

The azimuth of the direction of the magnetic force, measured
from the true North in the westerly direction, is called the
Variation, or the Magnetic Declination. The angle between the
direction of the magnetic force and the horizontal plane is called
the Magnetic Dip. These two angles determine the direction of

* The introductory portion (Arts. 276-282) of this chapter is taken almost
without alteration from Maxwell’s ¢ Electricity and Magnetism,’ vol. ii. chap. 1.
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the magnetic force, and, when the magnetic intensity is also
known, the magnetic force is completely determined. The deter-
mination of the values of these three elements at different parts
of the earth’s surface, the discussion of the manmner in which
they vary according to the place and time of observation, and
the investigation of the causes of the magnetic force and its
variations, constitute the science of Terrestrial Magnetism.

277.] Let us now suppose that the axes of several magnets have
been determined, and that the end of each which points north
has been marked. Then, if one of these be freely suspended, that
is in such a way as to be free to turn in all directions about
its centre of gravity, the action of its weight being thereby
eliminated, and another brought near to it, it is found that the
two marked ends repel each other, that a marked and an un-
marked end attract each other, and that two unmarked ends
repel each other.

If the magmets are in the form of long rods or wires, uni-
formly and longitudinally magnetised called bar magnets, it is
found that the greatest manifestation of force occurs when the
end of one magnet is held near the end of the other, and that
the phenomena can be accounted for by supposing that like ends
of the magnet repel each other, that unlike ends attract each
other, and that the intermediate parts of the magnets have no
sensible mutual action.

278.] The ends of a long thin magnet such as those just deseribed
are commonly called its Poles. In the case of an indefinitely
thin magnet, uniformly magnetised throughout its length, the
extremities act as centres of force, and the rest of the magnet
appears devoid of magnetic action. In all actual magnets the
magnetisation deviates from uniformity so that no single points
can be taken as the poles. Coulomb, however, by using long
thin rods magnetised with care, succeeded in establishing the law
of force between two magnetic poles as follows :—

The repulsion between two magnetie poles is in the straight line
joining them, and is numerically equal to the product of the
strengths of the poles divided by the square of the distance
" between them.
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That is to sa;y, in the case of ‘two ideal bar or needle magnets
in the presence of each other the mechanical action between
them is exactly the same as if at the poles of each there were
placed a charge of electricity, one positive and the other negative,
numerieally equal to the strength of the pole.

279.] This law, of course, assumes that the strength of each pole
is measured in terms of a certain unit, the magnitude of which
may be deduced from the terms of the law.

The unit-pole is a pole which points North, and is such that
when placed at unit distance from another unit-pole, it repels it
with unit of force. A pole which points South is reckoned
negative.

If m, and m, are the strengths of two magnetic poles, if 7 be
the distance between them, and f the force of repulsion, all ex-
pressed numerically, then

L mym,

f= B
‘Whence it follows that the dimensions of the concrete unit-pole
are the same as those of the electrostatic unit of electricity,
namely, 3 as regardslength,— 1 as regards time, and } as regards
mass. See Chap. XVII post.

The accuracy of this law may be considered as having been
established by the experiments of Coulomb with the torsion
balance, and confirmed by the experiments of Gauss and Weber,
and of all observers in magnetic observatories, who are every day
making measurements of magnetic quantities, and who obtain
results which would be inconsistent with each other if the law
of force had been erroneously assumed. It derives additional
support from its consistency with the laws of electromagnetic
phenomena.

280.] It is not possible to obtain an ideally perfect bar magnet
such as we have been considering, and if so obtained it would be
equally impossible to maintain its strength unaltered for any length
of time, for reasons hereafter to be mentioned. If, however, we
imagine such an ideal magnet to exist and its strength to remain
always the same, and call this magnet the magnet of reference,
then all experimental evidence points to the following conclusions.
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(1) That, as has been already implied, if either pole of the
magnet of reference were brought near to the middle point of
any bar magnet no mechanical action would be apparent, and
such action would be feeble at all points near to the middle of
the magnet.

(2) If the bar magnet under investigation were broken into
two or more pieces of any lengths equal or unequal, then each
of the pieces thus obtained would form a short magmet whose
positive and negative poles are at those respective extremities of
each short magnet nearer in the unbroken state to the correspond-
ing poles of the original magnet.

(3) It is impossible by any process whatever to obtain a
magnet whose poles are of unequal strength, and therefore im-
possible to isolate a pole.

The multiplication of magnets by fracture and creation of
mechanical energy is not inconsistent with the conservation of
energy, because after fracture and before separation the adjacent
poles of the several magnets neutralise each other, and the act
of separation involves mechanical work.

Moagnetic Theory.

281.] The resemblance mentioned above (Art. 278) between the
mutual action of bar magnets and of bodies charged with equal
and opposite quantities of electricity at the poles of these magnets
could hardly fail to suggest the conception of magnetic matter
or magnetic fluids endowed with properties of mutual action
according to exactly the same laws as the supposed electric fluids ;
and indeed such an hypothesis has proved capable of explaining
some of the phenomena of magnetism as successfully as the two-
fluid hypothesis explains the phenomena of statical electricity.
At the same time such fluids have even less claim to be regarded
as physical realities in the magnetic theory than they have in
the electrical. They are nothing more than mathematical fictions
of great use in the enunciation and systematisation of the laws
of magnetic phenomena.

282.] The two-fluid theory of magnetism assumes the existence
of two magnetic fluids called positive and negative respectively,
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and attracting or repelling according to exactly the same laws as
govern the actions of the positive and negative electric fluids.

In the magnetic theory, however, there is nothing that corre-
sponds to a body charged with electricity. The molecules of all
substances which are capable of manifesting magnetic action are
supposed to be charged with exactly equal quantities of both
fluids, and it is to the separation of these opposite fluids within
each molecule that the phenomena of magnetisation are ascribed.
Each separate molecule is thus regarded, when magnetised, as
baving acquired the property of polarisation, that is to say there
is a certain line moving with the molecule, such that if by
turning the molecule the direction of this line is reversed, then
the magnetic action between this molecule and the surrounding
field is exactly reversed also. The particular mode of separa-
tion of the fluids within each molecule does not enter into con-
sideration, any more than the particular shape of the molecule.
As a very simple case we might suppose the molecules of a sub-
stance to be equal and similar prisms or eylinders, and the sepa-
ration in each to take place by the aggregation of all the positive
fluid at one end, and all the negative fluid at the other, i. e. by
equal positive and negative superficial distributions at opposite
ends. Each molecule would thus become an elementary bar
magnet as above defined, the end on which the positive distribu-
tion was situated being the positive pole. If a finite prism were
built up of a very great number of these molecules placed end to
end, the positive pole of any one of them being in contact with
the negative pole of the succeeding one, the mechanical action of
equal and opposite contiguous poles of contiguous molecules would
neutralise each other, and there would remain a bar magnet of
finite length, the strength of whose poles was exactly the same
as the strength of the poles of the molecular magnets. This
conception however of the particular shape of the constituent
molecules or of the particular mode of fluid distribution within
each one of them, is not, as above said, essential to the theory.

283.] In Chaps. X and XI, Vol. I, we discussed the properties
of a medium consisting of an infinite number of discrete infini-
tesimal molecules of any shape whatever, each of them containing
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either in solid or superficial distribution exactly equal quantities
of the positive and negative electric fluids, and we proved that if
¢ da dy dz were the algebraic sum of the mass of the fluids within
the elementary volume dz dy dz in the neighbourhood of the point
2, 7, zin such a medium, and if o, were equal to the triple integral

f f f 2 ¢ dw dy dz taken over an unit volume throughout which the

distribution of molecules and of the electricity within each mole-
cule is uniform, and the same as it is in the neighbourhood of
the point #, 7, z in the actual medium, with similar meanings
for o, and oy, then o, o, o, are components of a certain vector o;
and that if a plane were drawn through #, y, z the direction-
cosines of whose normal were /, m, n, then the algebraical mass
of the fluids within or upon the molecules intersected by
this plane, and situated on the positive side of this plane, is
lo, + me, +no,.

The vector o so obtained we defined as the polarisation of the
medium at the point z, g, 2, and the quantities o, o, and o, as
the components of polarisation at that point.

We proved also that if pdaedydz were the algebraical sum of
the electrical fluids within the volume element dzdydz in such a
medium, i. e. that if p were the electric volume density at the
point &, 7, 2, then

=-_{d0m i d_¢1£ +€_lﬁ}.
P da dz dz
And that if over any plane in such a medium whose normal
direction-cosines were /, m, # there were superficial electric dis-
tribution, then o,, ¢,, 0,, and ¢ must be discontinuous at points
on the plane ; and that if o, and o7, o, and ¢}, o, and o/, were the
values of these quantities at any point of the plane on opposite
sides of it, then the superficial density of electrical distribution
over the plane at that point would be

L{oa—0)+m (0,~0y) +n(0,— ).

284.] If in the medium above described the electric fluids be
replaced by magnetic fluids, we arrive at the conception of a
magnetised mass in the theory we are now developing. In
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conformity with the usual notation we shall replace the symbols
oy 0y, and o, by 4, B, and C respectively, and the symbol &
by 1. Instead also of the terms polarisation and components of
polarisation as denoted by the aforesaid symbols, we shall em-
ploy the terms magnetisation and components of magnetisation
respectively. It will be understood that we are here treating
of the effects instantaneously produced by a system of polarised
or magnetised molecules, and not of the means by which their
polarisation may be produced, maintained, or destroyed.

285.] If we assume the existence of these polarised or mag-
netised molecules, it follows that there will be a magnetic potential
and magnetic force at every point in the field of a magnetised
mass, each in all respects possessing the properties investigated
in Chap. III, Vol. I, and that with the molecular arrangement
and distribution just described, if 7~ be the potential at any
point in the ﬁeld

=_f/‘f ( dB dC')d e +/flA+mB+n0dS (1)

where 7 is the dlstanee of the element dadydz of the mass, or of
its surface element 48 from the point &, », ¢ at which the poten-
tial is estimated, and the volume and superficial integrations
extend throughout the volume of § and over its surface re-
spectively. The surface-integral may be more accurately written

in the form
Ef 1(d—4")+m (B—B)+n(C—C")

Ui

Ty

the summation = extending over all the elementary surfaces at
which there is discontinuity in the values of 4, B, and C, and
the quantities /, m, # being direction-cosines of the normal of
such element in each case; the simpler form first written con-
templating the case of a single magnet with continuous magnet-
isation within its volume and surrounded by a non-magnetised
medium.

286.] Restricting ourselves to case (1), and integrating each
term for z, 7, and 2 respectively, we obtain the equation

BT ik
V=ff/{A%-+B@+0@v} ~ dndydz.
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If the coordinates of the point at which 7 is required be &, », ¢
we may express the equation in the form

V= —fﬂ{A%+B%+O%};dwdydz,
or V:fffA (f_x)+B(2;y)+0(c—z)dxdydz.

If 6 be the angle between 7 and the resultant magnetisation
at 2, 9, #, we have

—[ff[ﬂdxdydz, or —f/f[ﬂdxdydz

according as we consider 7 to be drawn from ¢, 5, { to @, , 2, or
from , 7, z to &, n, { respectively.
287.] The components of the magnetic force at the point &, 4, ¢

a¥v. .., .V Vv
e g nd — ac and they are usually denoted by

the symbols a, 8, ¥ respectively, so that we have

s dfff_/{ +0 }ldwdydz,
or a= cﬁfff{Aﬁ+Bﬁ+ C} —dxdydz,

with corresponding equations for 3 and y.
288.] From the expression (1) for the potential 7, we see that
if 4, B, C be constant throughout a magnetised mass,

V___f/lA +w;B+nC’dS

and 7 depends upon the superficial magnetisation only. In
this case the magnitude and direction of magnetisation are the
same at every point throughout the mass. If the mass be
cylindrical with its generating lines parallel to the direction of
magnetisation, the quantity /4 +mB +#C will be zero at all
points on the curved surface, and will be equal to +7and —7 at
the two flat ends respectively. In this case let 7, denote the
distance of the point at which the potential is to be found from
a point in the flat end for which /4 +mB +nC =1, r, its distance
from a point in the other flat end. Then if we denote by &8,
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and 48§, elemeni;ary areas of the flat ends respectively,

V=ff-I—dSI—ff-£dsz.

s Ty

If, further, the dimensions of the flat ends be small compared
with 7, and 7,, this assumes the form m(— - —) where

= f f 1dS. Such a body has then all the propertles of a bar

magnet, as described in Art. 277 ; and if it be broken into any
number of cylindrical parts by sections parallel to the flat ends,
each part will separately possess the same properties, so that
the phenomena described above are explained by this hypo-
thesis.

In this case each end of the bar is called a magnetic pole, one
end the positive and the other the negative pole. Also m, or

1 f f d8, is called the strength of the pole. And if % be the

length of the magnet, m4 is called the moment of the magnet.

I is called the intensity of magnetisation. It is the magnetic
moment divided by the volume of the magnet.

289.] Again, if we take the expression for the potential of a
magnetised mass at the point &, 5, {as given by the equation

V=—fff{,4§—§+3%+ogz}m,

and suppose the direction of magnetisation to be uniform at every
point, we obtain the equation

V——fffﬁdfﬂn ;lc}ldw;lydz

where / is the magnetic intensity at each point, and /, 7, and »
are the direction-cosines of the direction of I.

If 7, denote the potential at the point £, n,  of an electrical
distribution through the volume occupied by the magnetised sub-
stance and in which the density at «, y, z is I, the above equation
is equivalent to av,

PESS DAL ()

where 7 is the line through &,m,C parallel to the given direction of
VOL. II, c
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magnetisation. If the magnetisation be uniform throughout in
intensity as well as direction, the equation becomes

gl dacdydz_ v, !
__zdff S L

where 7, is the potential at £, 1, { of a mass of uniform density
unity occupying the volume of the given substance.

290.] If therefore we know the potential of any given electrical
distribution at any point, either uniform or varying according to
any law, we can at once by mere differentiation determine the
potential at that point of a corresponding magnetic distribution
of given intensity and uniform direction.

For example, the potential of a sphere (rad. @) of density unity,
at the point &, 7, { distant » from the centre as origin, is

47ad
3r

if P be external to the sphere,

and 27 (a2— ';5,_) if P be within the sphere.

Therefore the potential of a sphere of uniform magnetisation 1
parallel to the axis of # is

P < £ for an external point
37 S

and I §3—17» £ for an internal point.

And the magnetic force has for its components in the former
case

2 3 3
and in the latter case
respectively.

291.] Again, the potential 7, of an ellipsoid of uniform density
unity at any internal point &, 5, ¢ referred to the principal axes
as axes of co-ordinates is known to be given by the equation

Vo=C—3(LE+MUn'+N(),

where L, M, N are certain known functions of the semi-axes, a, &,
and ¢, Therefore the potential of an ellipsoidal mass with uniform

4w
_'_“I’ ’
3 0,0
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magnetisation I parallel to the line 7 whose direction-cosines are
4, m, n at the internal point §, », ¢ is

_Jﬂ’_ or I(LIE+Mmn+Nul)= (LAE+MBn+NOO),
where 4, B, and C are the components of magnetisation at each
point of the mass.

292.] We now proceed to consider certain particular cases of
magnetisation, one of which, namely that of a uniform bar
magnet, has already been noticed.

An Elementary Magnet.
We have seen that the potential at the point & 7, { due to a
magnetic mass may be expressed in the form f f f il

where 7 is the resultant magnetisation, » the vector from z,9,2 to
& n, ¢ and 0 the angle between 7 and .  If the dimensions of the
magnet be infinitesimal, this may be put in the form I, S/L%’_—iﬁ )
when § is the transverse section, 4 the length of the magnet in
direction of I.

The quantity 18§ is called the strength of the pole, and IS % the
moment of the magnet.

Bar magnets of uniform magnetisation may be regarded as
elementary magnets, so far as relates to points in the field whose
distance from them is great compared with their linear dimen-
sions.

293.] Definitions. Aline eitherstraight orcurved drawn through
any magnetised mass, so that its tangent coincides at every point
with the direction of the resultant magnetisation at the point, is
called a Zine of magnetisation.

A tubular surface constructed in any magnetised mass, so that
the line of magnetisation at every point on the surface lies on
the surface, is called a fwbe of magnetisation. And when the
transverse section of the tube is indefinitely small, it is called an
elementary tube of magnetisation.

C2
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If throughout the space bounded by any closed surface § within
a magnetised mass the distribution be such that
dd dB  dC
Tttt =0 - @
at every point, and therefore the integral

_K[/{ dB dO}dxdydz

taken throughout the space is zero, it follows that
f (14 +mB+n0} dS

taken over 8 is zero, /, m, n being the direction-cosines of the
normal to S.

If § be formed of a tube of magnetisation and two transverse
sections 8, and §,, then since /4 +mB +nC=0 at each point on
8 except points on §; or S, it follows that if 7, be the resultant
magnetisation on §;, and 7, on §,, measured in both cases out-

wards from &,
jf;@g+[f@¢g=o.

A magnetic distribution satisfying the condition (A) is called
solenoidal.

A Magnetic Solenoid.

294.] A magnetised mass in which the distribution is solenoidal
bounded by an elementary tube of magnetisation, is called a
simple magnetic solenoid. Since V7, the potential at the point
&, ¢ of any magnetised mass, is given by the equation

Icos
V=/ff e dx dy dz,

if we replace the volume element dzdydz by Sdk, where § is the
transverse section of the tube perpendicular to its axis at the
point whose distance measured along the axis of the tube from a
fixed point in the axis is £, we have

Icos0 I8 dr
P

Sdh = Zdh — dh.

The product I8 at any point of the solenoid is called the strength
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of the solenoid, and is by Art: 293 uniform throughout its
length.
The potential therefore becomes

1 dr i
ISsz o dh = Is{rl —Z}’

7, and 7, being the distances of the ends of the solenoid from the

point considered ; or writing = for IS, it i gL 2

| R~

The uniform bar magnet already considered is a particular case
of the simple magnetic solenoid, and it follows from what is here
proved that the same magnetic effects would be manifested by
the bar, whether the magnetisation were uniform or not, provided
it were solenoidal,

295.] When a magnetic mass is bounded by an elementary
tube of magnetisation, but the distribution is not solenoidal, it
is called a complex magnetic solenoid. We have, as before, for
the potential 7 at the point P the equation

7= IS dr ar o — /‘m d'r

AR 2 dh
In this case = is a function of %, and the equation becomes
R R
e r dh s

A complex magnetic solenoid may also be found by the super-
position of elementary tubes of magnetisation in a mass of
solenoidal distribution, touching each other, but of unequal
lengths, so that the extremities of each elementary tube are on
the surface of the solenoid. If a filament of such a mass be taken
with its surface touching some tube of magnetisation at every
point, and with transverse section very small, it is called a com-
plex magnetic solenoid.

The expression for 7 evidently becomes as before

m;  m, 1dm

non Jra®
and may be regarded as arising from the poles of the solenoid
together with a distribution of imaginary magnetic matter of

linear density — o

T along the axis of the solenoid.
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296.] If the distribution of magnetisation in any magnetic
mass be such that all the lines of magnetisation can be cut ortho-
gonally by a system of surfaces, we know that the components of
magnetisation, 4, B, C, must satisfy the equation of condition,

dB dC dC d4A dd dB

Mz~ 2 G ~ @)+~ m =
at every point. When this condition is satisfied, the mass
between any two of the surfaces may be divided into elementary
portions, each bounded by a tube of magmetisation, and two
surfaces which cut the tube and all the lines of magnetisation
within the tube at right angles, the distance between the trans-
verse surfaces measured along a normal to either of them at every
point being indefinitely small. A magnetic mass bounded by two
surfaces satisfying this condition is called a magnetic shell, the
normal distance between the surfaces at any point is called the
thickness of the shell at the point, and the product of this thick-
ness into the resultant magnetisation at the point is called the
strength of the shell at that point. When the strength of the shell
is uniform throughout, it is called a simple magnetic shell, other-
wise a complex mognetic shell.

297.] A simple magnetic shell may therefore be otherwise de-
fined as a thin shell of magnetised matter in which the magneti-
sation is everywhere normal to the surface, and its intensity at
any point multiplied by the thickness of the shell at that point is
uniform throughout. The product thus found is the strength of
the shell. If it be denoted by ¢, and if 7, #,  be the direction-
cosines of the mormal to the shell, %2 its thickness, evidently
dh=1lp, Bh=mp, Ch=n, Ih= . If, the arrangement being in
other respects the same, the above-mentioned product is not
uniform throughout, that is if the strength varies from point
to point, it constitutes a complex magnetic shell. A complex
magnetic shell may be conceived as made up of simple magnetic
shells superposed and overlapping one another, in the same way
as a complex solenoid may be conceived as composed of over-
lapping simple solenoids.

298.] To find the potential at any point P (¢, 4, {) of a simple
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magnetic shell. * The potential ¥ at P due to any magnetised
mass is, as above shown, given by the equation

V=fff]c?20 dudy dz,

where 7 is the resultant magnetisation at the point 2,7, 2 of the
mass, # the distance from #,7,2 to P, and 6 the angle between
the direction of I and ». If we replace the volume-element
dxdy dz by its equivalent £dS, where dS is an element of one of
the transverse surfaces of the shell, and % the thickness of the

shell at dS, we have
V=fflhc;)30ds

o[t

where ¢ denotes the strength of the shell. Evidently from the
interpretation above given to cos @, this integral will be positive
or negative according as the face of the shell presented to O
be that of positive or negative magnetisation.

shell at O. The side of the shell on which is positive magneti-
sation, or towards which the magnetisation is measured, is the
positive side of the surface (Art. 268).

299.] If therefore we denote by w the solid angle subtended by
the shell at the point in question, /=¢w; where the sign is
determined as just now mentioned. As P moves from a point
close to the shell on one face round the boundary of the shell to a
point close to the shell on the opposite face, 7 passes from —27¢
to +27¢ or from + 27 to —2n¢p according as the passage is
from the negative to the positive or from the positive to the
negative face of the shell; and if the passage be through the
shell the same increase or decrease by 4w takes place in the
value of 7 on passing from a point on one face to a very near
point on the opposite face, but this result does not imply dis-
continuity in the value of 7, inasmuch as the thickness of the
shell, although small, is finite.
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300.] The potential of a magnetic shell at any point not in its
substance being ¢ f f Osed o, it follows that the z-component

of force at the point §, 5, {is

3 dff/‘cos@

e st dy &1
== dsdnr =9 ds dCr

_¢f(d_z?/_"_€zz‘5)d

by Art. 274, with corresponding expressions for 8 and .
801.] Let us write

¢ ld_xd =57k

14d
of; 2
‘Ulﬁd_
Then also F=¢ff(m%-nd—y);ds
ALl B
=ff(355—0@)¢—ds.

Similarly @ ff {oa‘% ey Ezd;} Las
H=ﬂ{A i—Bi 14s,
dw r

_aH @

and b dC

iF i

P=a—ae

i@ drF

=dE " dn’

802.] Again, let the point &, n, ¢ be on another surface §" not
cutting the shell, bounded by a closed curve; let 7, w/, n’ be the
direction-cosines of the normal to &'
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element PP’ of the curve, such increase being reckoned positive
when we proceed along the curve in the direction of magnetisa-
tion. If this sum be called ¢, it is clear that with the supposed
constitution of the magnet ¢ is independent of the form of the
curve from the fixed point to P, and is a function of #, 7, z only.

Therefore Ade+Bdy+0dz = d¢,
_d¢ _d¢ %
or 4= o Tii— F 7 - oy

The function ¢ is called the pofential of magnetisation. It must
be carefully distinguished from the magnetic potential.

804.] To find the potential at any point of any lamellarly mag-
netised substance.

If & n, ¢ be the coordinates of the point and 4, B, C the
components of magnetisation at the point », , z in the sub-
stance, and 7 the required potential, we know that

S

where 7=/ (2—£)*+(y—n)? +(¢—()% and the integration is
taken throughout the mass.
In this case s ¢
4> d
E:; y B=-=-", C= d—g)-
where ¢ is the potential of magnetlsation.
Therefore by Green’s theorem

_ff¢_ _dS—fff¢V2;1-dxdydz,

the symbols having their ordinary signification.
If 6 be the angle between the normal to 4§ measured out-
wards and the line 7 drawn from dS to & 5, ¢, the equation

b
ecomes V= /‘4) cos 0 .ds _/ff¢vz o 5

If & n, ¢ be without the mass, v — is everywhere zero, and
the equation becomes
v=([? "‘;S".ds.
T

If the point & 5, ¢ be within the mass, then the equation
for 7 becomes
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V=ff¢°;s"gs+4ﬁ(¢),
where (¢) is the value of ¢ at £, n, ¢

The double integral f (‘b(;gsedS is generally represented by

Q. The values of © for two points close to the surface S, one
just within and the other just without the mass, clearly differ
by 4n (¢), where (¢) is the value of ¢ within the mass close to
the point; whence it follows that the value of 7 is continuous
on crossing the surface, as it should be by Chap. III, inasmuch
as it is the potential of matter of finite density.

The Emergy of a Magnetic System.
805.] It is proved in Vol. I, Art. 166, that the potential energy
of an electric system is given by the integral } f f Vodudyde,

where 7 is the potential of the system, and p the volume density
of electricity, at the point #,7,7, the triple integral being re-

placed by the double integral 1 f f Vo ds§ for surfaces of superficial

electrification. By reasoning in all respects similar to that used
in obtaining the above-mentioned result, we obtain for the
potential energy of any magnetic system, so far as concerns
the magnetic forces alone, the expression

_%\/‘ff(fl +~+ )Vd dy de
+§/f(lA+mB+n0) Vs,

the volume integral extending over the substance of the mag-
netised bodies and the surface integral over their bounding
surfaces. This is the work done in constructing the system
against the magnetic forces. In an actual magnetised body it
may be the case that other intermolecular forces are called into
play in constructing the magnet. The above expression does
not include work done against such forces.

Again, the relative potential energy of ome portion of an

-
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electric field with reference to the other portion is f f Vpdadydz,
where p is the volume density of the first, and 7 the potential
of the second portion at the point #,7,2. Similarly the relative
potential energy of one system of magnetised matter in the field
of another system is

4 dB dC -
—fff(d? +5 + 3 )V adyds +ff(1A+mB+n0) vas,

in which 4, B, and C relate to the first and 7 to the second
system.
This expression is equivalent to

v . 4V av
fff(Ad7 B+ 0% ) dadyds

It is this relative potential with which we shall be mainly con-
cerned in the following investigations.

306.] On the potential energy of a magnetised mass in a field
of uniform force.

If X, Y,Z be the components of the force, # the energy
required, it follows that

W= —XfffAd’aadydz—Y/fdewdydz—fodewdydz.

If wé denote the integrals f / Adzdydz, f f Bdwrdydz, and
f f Cdzdydz by IK, mK, and nK respectively, the above ex-
pression becomes

W=—Kfff(lX+mY+nZ)dacdydz.

If, further, 72+ m? 4+ n2=1, the quantity K is called the #mag-
netic moment of the magnet, and the line whose direction-cosines
are Z,m,n is called the awis of the magnet.

If R denote the constant force, and e the angle between Fand
the axis of the magnet, the potential energy # is given by

W= —RKcose.

Any region on the earth’s surface is sensibly a field of uniform
magnetic force. If ¢ and 6 be the azimuth and horizontal
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inclination of the axis of the magnet,-and & and ¢ the cor-
responding quantities for the magnetic force, then the axis of 2
being vertical and that of # in the meridian,

X =Rcos{cosd, Y=Rcos{sind, Z=LRsin(,

! =cosOcosp, m=cosfsing, xn=sind,
and therefore W = — KR {cos ( cos 0 cos (¢ —38)+sin { sin 6}.

If therefore the magnet be suspended by its centre of inertia,
so as to be free to turn about that point, the generalised com-
ponent of force tending to increase ¢, or the moment of the
force tending to turn the magnet round a vertical axis, is

= %—f", or —KRcos(coslsin(p—23);
and similarly the moment of the force tending to increase the
inclination of the axis to the horizontal plane is

- %V; or KR {sin { cos §—cos {sin g cos (¢ —0)}.
807.] To find the magnetic potential energy of any lamellarly

magnetised substance in a magnetic field.
If 7 be the potential energy required,

_fff(A"W BdV+0d ) dody da
_ ([T 47, dd)dV dg ar:
fff o B e A e

=ff¢% dS—f/f¢V’dedydz,

¢ being the potential of magnetisation at the point #, 7,z of the
mass, and 7 the potential of the field at that point.

If the potential energy required be relative to a field of
magnetisation entirely without the mass, then V2/'=0, and the
equation becomes

- 3 f f o2 as,
or W:—ff¢(la+mﬁ+ny)dS,
where a, 3,y are the components of force due to the field at the
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element 48, and /, m,n are the direction-cosines of the normal to
the element.

If the mass be bounded by a tube of magnetisation and the
transverse surfaces §; and 8, each of them everywhere at right
angles, to lines of magnetisation,

W= ¢1ff(lla1+m1ﬁ1+”171) dSl_d)zf .(lzaz‘l‘_mzﬁz'*'nz?’z) dsS,,
the surface integrals being taken over §; and §, respectively and
the normals being measured in both cases from §; to &,

If the surfaces §; and §, be very near to each other so that
the mass constitutes a uniform magnetic shell of normal thick-
ness ¢,

de . 4
b,— P, = d—(:oz =Jo—D,
where @ is the strength of the shell, and
W=— @fﬁla+m,8+ny) ds.

If the field be that of another uniform magnetic shell of
strength @', we know from Art. 301 that

ff(la+mﬂ+ny)do- —f(F’—+G-' +H,dz)d

where
= d”fldx,d cpfldz ds, d)’fldz’ds’,
ds ds’

the integrals being taken round the contour of the shell @,
therefore

=“¢’¢’ff (dxdw’ ﬂ% dz d2’

ds ds" = ds ds ds ds’
—— oV f 2L dsa,

where ¢ is the angle between the elements ds and ds'.
If the energy required be that of the lamellarly magnetised
mass in its own field, then we have by Art. 304,

1 dop d2 d¢dQ. dp dQ
i fff(dw dr dy dy +'d_z dz

+27rf/f((dg’) + (d‘”) - (d¢) ) da dy dz
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- %ffd) a7 2rff Wi
L §ff¢ (lat-mB+ny) dS+2ﬂfffI’dxdydz.

And in the case of a uniform shell of strength & this becomes as

phove 391 f°°:€ dsd + 2#@ffld8',

the former of the two double integrals being taken for each pair
of elements of the contour of the shell.

These two terms are of the same order of magnitude. The
energy therefore is not in this case represented by the integral

—§¢2f/°°“ Sy J;/fqb—ds

The whole energy of the mass placed in the given external

e is f fqb( = +§Z'Q)d8'+27r f f I dudydz.

308.] On the potential energy of a given magnetised mass in
the field of an elementary magnet.

If #,9,2 be the middle point of the axis of the elementary
magnet, M its moment, 6 the angle between its axis and the
line 7 drawn from @, 7, # to the point &7, {in the magnetic mass,
we know from Art, 298 above that the potential 7 of the
M cos 0

o

7.3

elementary magnet at &, 7, is

I, m, n, being direction-cosines of the axis of the elementary
magnet, and M its moment.
If this axis be denoted by the symbol %, the last expression

is M —( ) in the notation of Vol. I, chap. IT; therefore

V—M;ml(;)'

If therefore # be the potential energy of the whole mag-
netised mass in the field of the elementary magnet,

W:Mfff{zidiiz+3%+0§Z}a%(%)d£dnd§,
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A4, B, and C being the components of magnetisation of the mass
at £ 7, G and the integration being taken throughout the mass.

If the magnetised mass be also.an eleméntary magnet we may
regard it as consisting of the s1ngle element d¢dnd{, which
may also be written as ka, where % is the length of the secondary
elementary magnet and a its transverse section, so that W is
determined by the equation

W=M(A +B +0 c)dh( )k

oo W= M(Ad§+pdn dc) dh( ~)«Ika,

where A,u,» are the direction-cosines of the axis, and I the
intensity of magnetisation, of the second magnet.
Now I%a=M, the moment of the second magnet, and
d d d d
(el w
if %, be a line through ¢, v, ¢ coincident with the second axis.

Therefore W= M,1] 1[2 a, dk( )

= 23,55 (7
If u,,, be the cosine of the angle between the two axes and
Ay, A, be the cosines of the angles they make respectively with

r, we get
M, M2

W_ (11'112 3A )\2)

And from this equation we may determine the force on either
magnet in any direction and the couples round any given axis
arising from their mutual action by the ordinary methods of
generalised coordinates.



CHAPTER XVIL

MaexEeTric INpuction AND INpucEp MAGNETISM.

ArticLE 309.] In Art. 191, we proved that when an infinite
plane is situated in a uniform medium of polarised molecules,
whose polarisation normal to the plane is o, the average force at
any point on the plane arising from the molecules intersected by
the plane is — 4 7o

If, therefore, a plane element d§ be drawn through any point
P of a magnetic mass, large in comparison with the superficial
dimensions of a magnetised molecule, but so small that the
polarisation of the mass is sensibly the same as that at P all
over dS, the force at P normal to dS arising from the magne-
tised molecules intersected by &S will be —4we, where o is the
magnetic polarisation normal to 4§ at P, or in the notation now
adopted the force is

—4n(ld +mB+nC), -
and the flux of force over @S is
—47 (I4 + mB+nC)dS.

Now, if a, 8, y be the components of the total magnetic force-
at P, the total flux of force over d§ is (la+m B +ny)dS.

Hence it follows that the flux of force over d§ arising from
the magnetism in the field when the molecules intersected by
dS are removed is

lat+4md)+m (B+47B)+n(y+4wC)ds.

The force whose flux is thus determined is called the magnetic
wnduction at P normal to dS. Its components parallel to the axes

of reference are
at+4wd, B44wB, y+4=nC.

They are generally denoted by the symbols @, &, and ¢ re-
VOL. IT, D
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spectively, and are called the components of magnetic induction
at P.

310.] If any closed surface § be drawn in space, the total flux
of the magnetic induction through § is zero. For the quantity
of magnetic matter within § is

—ff(ZA +mB+nC)ds.
Therefore, by Art. 42, the total flux of the magnetic force

through §, or
ff{la+m,8+ny}dS,

is equal to —47rff{lA+mB+n0}dS.
Therefore

ff{l(a+47rA)+m(,B+ 47B)+n(y+4nC)}dS

=/f{la+mb+n0}d5= 0.

Since /f{la+mb+nc}dS= 0
for all possible closed surfaces, it follows that
da db de
p + @ o T 0

at every point.

It is proved in Art. 191, above referred to, that if a small
cylinder be taken whose base is 4§ and height very small in
comparison with the linear magnitude of @S, then the average
force within this cylinder normal to @8 arising from the included
magnetic molecules is —4 w0, or in the magnetic notation

— 47 (4 +mB+nC).
Whence it follows that if a crevasse be formed by emptying
this cylinder of the included molecules, the average force within
the cylinder normal to 4§ arising from the rest of the field is
la+47d)+m(B+47B)+n(y+470C),

in other words, this force is the magnetic induction as above
defined.
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It will be observed that the magnetic induction components

satisfy the no-convergence condition

da db de
but that the magnetic force components a, 8, y do not generally
do so; on the other hand, a, 8, and y are always derived from
a potential, but @, 4, and ¢ are not so, unless the components of
magnetisation 4, B, and C are so derived.

The magnetic induction and magnetic force are the same in
all regions devoid of magnetic matter.

311.] Since the flux of magnetic induction is zero for any
closed surface whatever, this flux must be the same through all
surfaces bounded by the same closed curve, and therefore must
" be equal to a line integral taken round the curve.

Let 7, m, n be direction-cosines of the normal at any point P
of a surface § bounded by the closed curve s, and let «, &, ¢ be
the components of magnetic induction at P. Then, if 7, G,
be vector functions of the coordinates & 7, ¢ of any pomt in §
which satisfy the conditions

_dx ég- P dF dH B da dF
=dn _ac ac— ag’ at " an’
we know, by Art. 271, that the line integral

df  ndn | dC
f(FE; +620 4+ m2%)ds
taken round the curve ¢ is equal to the surface integral

f (la+mb+ ne)dS.

The quantities ¥, G, H determined by the above written
equations are called the components of the Fector potential of
magnetic induction, and sometimes also the components of the
Magnetic momentum.

312.] In Arts. 285, 286 we have found the expressmn for the
ordinary or scalar potentlal V of any given magnetic field, and
we now proceed to do the same for the components F, G, H of the
vector potential. This involves the solution of the simultaneous
differential equations

D 2
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d d@ dV dF dH av

d(r" dFr av
it ket Sl

The solution is

dosptt e d . dy1
r=[[[(r5-0); astvas, &= [[[(05-45); dwdyas
H:fff(A%—B%)%dwdydz,

where 7 15 the distance between the point &, n, ¢ at which
F, @, H are to be found and the element dzdydz, and the
integrals are taken over all space.

For remembering that

with similar relations for n and y, ¢ and 2, we have with these
values of F, G, and H,

dH_%?—%fffB dxdydz d/ffA—- dedydz
+d_cfff(}'zi—f;dwdydz——a—cffngz,;dwdydz.

Also, by Art. 286, if 7 be the scalar magnetic potential,

df dffff( d£+B +Cd€) dadyde.

Therefore
PRI TN
+€%fff0¢%;JWdydz—%/fo‘%;dwdydz
_%ff/A%}dmdydz—dinfffA%;dmdydz_ngffzidicgdwdydm

Here the integrals in the right-hand member are extended
throughout all space, including the point from which 7 is
measured.

We may consider them as divided into two parts, (1) for all
space outside of an infinitely small sphere described about the
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point in question as centre, (2) for the space within that small
sphere. Then in forming the integral (1) for the external
space we may differentiate under the integral sign; and this
causes the right-hand member to vanish, because in this case,
the point from which 7 is measured not being included in the

limits of integration, VZ; = 0 for every point. The external
space therefore gives
dH dG@ 4V
A R
Secondly, for the space within the infinitely small sphere we
may, if 4, B, C be continuous functions, put them outside of
the sign of integration as constants. Then the first two lines
of the right-hand member of our equation vanish by symmetry :
and the third line becomes 4wA4. Hence, the integration for
the space within the small sphere gives

=10l

dH dG@ dvV
% - ‘d—-c + a? = 47TA.
And combining the two results we have for all space
dH d@ dv
“7 aT et d—f =474,
dH d@
or %—(—l—c—.:a+47rA—a.
s dF dH
Similarly, YA b,
a6 _aF _
df dn

313.] If 4, B, and C are discontinuous at the point con-
sidered, we may obtain the same result as follows

II=fff(Bdi£—Ag—;’);dxdydz
=fle:mA dS—ff/% (g—é—;—%)dwdydz,

in which the double integral is over every surface of discontinuity
of 4 and B, and throughout the triple integral B and 4 are con-
tinuous. Treating G and also 7 in the same manner, we obtain
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di _ d@ dV IB—md nd —1C
ar —at taE= dnff e Cff o
d 14 +mB+nC
-4 szt

f/‘f (dB dA)d 0 dcff_/ (dO’ dA)d 45
dffff( dB E)dxdydz.

The integral taken throughoub the space outside of the small
sphere enclosing the point considered is zero by Art. 312,
because we may perform the differentiations under the integral
sign. When we integrate throughout the small sphere the
triple integrals in the second member vanish, because the
quantities under the integral sign are finite. Of the double in-
tegrals the first represents the force in 7, due to a distribution
of density /B—md over the surface of discontinuify passing
through the point considered. That is, — 4wm(/B — md).
Treating the other double integrals in the same way, we find
for the sum of the three

—47m(B—md)+4nn(nd —1C)+ 474 + mB+nC) = 4w 4.

Therefore, as before,

af dG av
dH d(}’
or dﬂ d{ a+474 = a,
&c. = &e.

314.] When the magnetisation is lamellar 4, B, and C are
derivable from a potential ¢, and therefore in this case @, 4, and
¢ are so likewise.

Referring to Art. 304, we see that in such a mass the quantity
in that Article called Q, or

/‘ ¢czs0dS
7

is the potential of magnetic induction, and that the components
of this induection are
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_da _ao ‘4o
8- T dn - SdE
In this case

F=/ff{@i_ﬁ'i}dxdydz
=ff¢( dz dy
o ffp-ntt

The quantities denoted by F, @, H in Art. 301, are the com-
ponents of vector potential for a uniform magnetic shell, and,
as there stated, for such a shell

j re ¢f1d'”ds, G ¢f1dfd = ¢/395ds,

the line integration being taken round the shells contour.
These results might have been deduced from the expressions
for F, G, and X just found for any lamellar mass.

Of Induced Magnetism.

315.] Hitherto we have treated of magnets and magnetic
molecules in their mechanical relations only, considering mag-
netisation as an invariable quantity without regard to the
means by which it can be produced, altered, or destroyed. In
nature no such thing as an invariably magnetised body exists.
Magnetisation is always changing, and in particular the magnet-
isation of any substance generally changes with the state of

* the magnetic field in which the substance is placed. Magnet-
isation is said to be induced in it by variation of the field.
Generally, a piece of iron tends to assume magnetisation if
originally unmagnetised, or additional magnetisation if partially
magnetised, in a direction opposite to that of the field, that is,
in such a direction as to diminish the magnetic potential of the
field. If the field were one of electric instead of magnetic force,
and the magnetisable substance a conductor, it would become
polarised in that direction, and the polarization would be pro-
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portional to the inducing force. In Poisson’s theory of induced
magnetism this is the action which ensues in the molecules of
magnetisable masses when brought into any magnetic field.
The molecules become polarised to a degree proportioned to the
magnetic force. Hence, it follows that the mathematical treat-
ment of such a magnetisable medium would exactly resemble
that of the dielectric medium considered above in Chapters X
and X1, the magnetisable molecules taking the place of the small
conductors of that chapter. So that if a, 8, y were the com-
ponents of total magnetic force of the field at any point, we
should have an additional magnetisation in the neighbourhood
of that point arising from induction whose components were, in
the notation of that chapter, Qa, @B, and Qy respectively, the
symbol « being generally used for  in Poisson’s notation .

The quantity 1+ 47« is, therefore, in all respects analogous
to that represented by K or 1+4wQ in the chapters referred
to, and it is in Poisson’s notation generally denoted by p.
Further, 4, B, and C, the components of induced magnetisa-
tion, are respectively equal to xa, 3, and «y.

It follows from the results arrived at in the aforesaid chapters,
that the magnetic potential at any point in a magnetisable mass,

in any magnetic field, is ,% of the potential at the same point in

air or vacuum, and therefore that in comparing two media with
different values of p, the intensities of the fields arising from
gimilar magnetic systems vary inversely as p, that is, a, 8, and
¥, the forces derived from magnetised molecules, vary inversely
as p. On the other hand, the vector whose components are
pa, pB, py is always independent of p.

When the magnetisation of the mass arises entirely from
induction, the last mentioned vector is the magnetic induction,
and in this case the magnetic induction at any point in any
medium due to any given magnetic distribution is independent
of p, and whatever be the changes of medium, the flux of

! It is assumed in the text that we are dealing with iron, by far the most im-~
portant of magnetisable substances. In certain substances induced magnetism

is of the opposite sign to that stated in the text. Such substances are called
diamagnetic. Iron, and substances which behave like it are paramagnetic.
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magnetic induction over every closed surface is zero, and the
magnitudes F, G, I, are independent of p.

In all cases the flux of the vector pa, uB, uy over any closed
surface is equal to the algebraic sum of the magnetism within
the surface.

316.] If a homogeneous mass without magnetisation, but
capable of being magnetised by induction, be placed in a mag-
netic field, the magnetisation which it assumes is, according to
this theory, lamellar and solenoidal.

For let 7 be the magnetic potential, including as well that
of the field as that of the induced magnetism. Then we have
at every point in the mass

av
o
av
B = —]L@s
av
0__p'dz ;

And therefore since the mass is homogeneous and y constant,
4, B, C are derived from a potential —p 7, and the magnetisa-
tion is lamellar. Again, if p be the density of magnetic matter
within the mass, V2V +47p = 0. Also, as shown above,

__(#4 B dC
P==\G& i dy dz )

=pV?V, or —pV¥4p=0;
whence it follows that p = 0, and

d_A + @ + d_o =0
dw Tdy Td
or the magnetisation is solenoidal.

A case of a lamellar mass is conceivable in which the force,
due to the mutual attraction of the faces of every magnetic
shell into which the substance is divided, is always equal and
opposite to the separating force to which the magnetisation is
due, so that a =0, 3 =0, y =0 at every point. According
to the experiments of Thalen (Maxwell, 430) this condition is
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very nearly reached by soft iron, for which l%l = 32, and
therefore u = 12874 1. e

817.] On this theory it follows that to any problem in in-
duced magnetism there corresponds a problem in specific inductive
capacity, and any such problem may be investigated on the
principles developed in Chap. XI, with the substitution of u for
the symbol K of that Chapter, where u = 1 + 47«.

If 7 be the known potential at any point of the given mag-
netism in the field, and 7’ that of the induced magnetism, and
we confine our attention to the case of isotropic media, the
equations for the determination of the unknown quantity 7’ in
terms of the given quantity 7 are of the form

d dV dV)+ (dV dV)+d av dV)+47rp_0

throughout regions Whereln w is either invariable or continuously
variable, and |

d 4 / d 7 —
b TP+ 5+ V) + 470 =0,

over surfaces separating the media at which u changes discon-
tinuously from p to y/, where p and o are the volume and
superficial densities of any given fixed magnetism in the neigh-
bourhood of the point. In the case of a single magnetisable
mass bounded by a given surface and placed in air or a medium
for which p is unity, and in a given external magnetic field,
and if there be no fixed magnetism in the mass, the above
equations are reduced to

VAV,
sl C T+ LreT)=0
M%( gy +du' = 0.
The last equation becomes, by the substitution of 1+ 47«

for p,

VL IV i

(1+47K) = 4 o5 + 47k 2 = 0,

av _dav

because 77t =0

and it is more generally written in this form.,
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If ¢, denote the value of ¢ when A = 0, that is to say, for
any point on the ellipsoid, it follows that the function
Pl
da*
by
da?
satisfies the above conditions, and is equal to # at the surface

of the ellipsoid. Also at the surface,

dé
d (% da? ®w o xd _yd _zd)dd
Jz?(dT%)=“’Zﬁ +m{”§@+“ﬁ@+”@d—z}z@
da® da*
_wx wx(x dA  ydA  zdA\) d d¢
=Tt et YA
da?
where = is the perpendicular from the centre on the tangent
plane at 2, , 2.
d do
Also T
And from (1), where A = 0,
A dA
j—m- =-2;2—:’5f2, fll; 26_‘:/ 3 —-=Efﬂ'z.

when A = 0.

1
2 a’be

Rt
d da? wE WL 1
Therefore E}(m):;;— -a_z'_—_[l?;o. PRI - (2)
da? e da?

Therefore we obtain a solution by assuming for the potential
V of the external space

ER e
P e s e
¥ L 3 AR T
da? da?
and for the potential, 7;, of the internal space
V,=Az+0,

where 4 is a constant to be determined.

Again, on the surface
av av, _

—— = 0.

d‘v—ﬂdv
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a®\  Aa®
V= —Fu(1 “F) + et

V= Bo(1-5) 4 Ca(1= 5) 4@
V" = Dx+ @,

where @ is a constant, will at all points satisfy the condition
V2V = 0.

Also 7 at infinity becomes — Fr+ @, and 7" and 7" are every-
where finite.

A 3
If 4= 0(1 - ;ﬁ)’ and D = .B(l — %), the values of the
potential will be everywhere continuous.
The surface conditions require that

av__ R Syl
drr=q =8 Md"r:a, & dry=p  drr=p’

whence we get

bﬂ
3uB+0(2+p+2(,¢—1)5)= ~3F

b® b
3k0— +B(1+2p+(p—1)5) =0,

or eliminating and reducing,

bs

ul —

b° a
B{9y+2(p,—1)2(1 S E)} B~
1-F

Also : D=~—BZ—:(1—%)-
ouF

Therefore D= = o
Op+2(p—1)(1— ;s)

And the hollow is a field of uniform magnetic force whose
value is
I
2 b3 ;
op+2 (u—1y (1— )

820.] A similar method may be applied to the case of a shell
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where _da¢’
=L d(a’— 1)
A=0¢1——0p= —ad, )
d(a’ d(a®=1)
d¢
d(@—Ny)
o,
dalﬁ
with the superficial conditions at the outer and inner surfaces
dv - % Ry = v’
At the outer surface

D=B{1-—

dvV  Fx= 1 wX o 1
= A Tt gy
i cdal,2 da®
X dd)o
av’ T 1 da®
e A (“” 5, )
da? d(@®=A,)

where = is the perpendicular from the centre on the tangent
plane at 2, g, z of the outer surface. Substituting in the first of

the superﬁcml equa{wns and dividing by ¥ we obtain a linear
equation in fhe constants. 7 v

Slmllarly, we sghould find that at the inner surface dd and 7

w;\ , where = is the perpendicular from

the centre on the tangent plane at the point @, 7, 2 of that surface,
whence we should get a second linear equation—these two equa-
tions in 4, B, C, D combined with the two given above give a
complete solution of the problem.

321.] The theory of induced magnetism given above does
not adequately explain the phenomena presented by soft iron or
other magnetisable substances when placed in a magnetic field.
According to the theory, the intensity of magnetisation induced
should be proportional to the force, and so capable of increase
without limit. And the magnetisation should immediately dis-






CHAPTER XVIIL

MUTUAL RELATIONS OF MAGNETS AND ELECTRIC CURRENTS,

Articre 322.] WE now return to the consideration of the
system of two uniform magnetic shells of strengths ¢, ¢ re-
spectively ; and, until otherwise stated, it will be understood
that we are dealing with a medium in which the magnetic per-
meability is unity. As above shown, the potential energy of
mutual action of the two shells, that is the work which would
be done in constructing the shell ¢ against the forces exerted
by the shell ¢’ is

—¢f/‘(la’+mb'+nc') s,

where o, ¥/, ¢/ are the components of magnetic induction, or,
which is here the same thing, magnetic force, due to the shell ¢/,
and the integration is over the shell ¢. The surface integral
represents the flux of magnetic induction of the shell ¢’ through
the shell ¢, or, as we may otherwise express it, the number of
lines of magnetic induction of the shell ¢” which pass through

the shell ¢.
¢ff(la’+mb’+nc’) s

The expression
admits of being put in several other forms of which we shall
have occasion to make use ; viz.

y Sm—

where € is the angle between ds and ds’, taken round the boun-
dary of both shells. We shall denote the integral

ffﬁi"’_‘dsd by M.
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A Sh

Also
’ , ’ oo dx ,dy ,dz
"’ff““ L R "’f(l; &t t g

round the boundary of the shell ¢, where ¥/, G/, H’ are the com-
ponents of vector potential of magnetic induction due to the
shell ¢". It appears from the last expressions that the quantity
of work in question is independent of the form of the surface of
either shell if the bounding curve be given.

If the shells be rigidly magnetised, and if they be capable of

relative motion without change of shape, they will so move as
to diminish the quantity — ¢ ¢’ I/, that is to increase or diminish
M, according as ¢ and ¢’ have the same or opposite signs.
« Exactly in the same way if there be many magnetic shells, or
magnetised bodies, in the field, a rigidly magnetised shell of
invariable shape will, if free to move without change of shape,
g0 move as to increase the flux of magnetic induction due to the
field through its contour.

Evidently any such diminution of the potential energy has
its equivalent in kinetic energy of visible motion of the shells,
or in external work done.

323.] It was discovered by Oersted that the field in the neigh-
bourhood of a closed electric current is a magnetic field. The
definition of this field, usually accepted as the result of experi-
ments, is that the magnetic field due to a uniform magnetic
shell at any point not within its substance is the same as that
due to a certain closed electric current round the bounding curve
of the shell. The direction of the current is the positive di-
rection as defined in Art. 269, taking for the positive normal to
the shells surface a line drawn from the negative towards the
positive face of the shell. The strength of the current is pro-
portional to that of the shell. When we come to treat of the
units of measurement, we shall see that in a certain system,
called the electromagnetic system, the strength of the shell is
numerically equal to that of the current.

324.] An infinite straight line may be regarded as the edge of
a plane magnetic shell, every other part of the boundary of which
is infinitely distant. According to the law of equivalence above

E2
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stated, such a shell produces the same magnetic field as an
electric current in the infinite straight line. Let a small bar
magnet be brought into the field of the infinite shell. Such a
magnet may be regarded as a magnetic shell, or aggregate of
parallel magnetic shells. We might then form the integral

‘/“/‘E’s—sdsd&’

for the infinite straight line with the boundary of the shell or
shells composing the magnet in any given position. The bar
magnet, if free to move, would tend so to place itself as to
make this integral a maximum, and, according to the law of
equivalence above stated, it will behave in the same way when
for the infinite shell we substitute an electric current in the
infinite line. Let us take the direction of the current for axis
of z, and a plane through C, the centre of the magnet, for that
of zy, the origin O being at the intersection of this plane with
the infinite straight line. Then, first, let the axis of the magnet
be constrained to lie in a radius drawn from O in the plane of.
zy, but be free to rotate about an axis coinciding with that of
z. In this case the integral '

ffﬂs—*dd’_o

whatever be the length CO, and whatever angle it makes with
a fixed plane through the axis of z. The magnet therefore
will be acted upon by no couple tending to turn it round the
axis of z. It is found that this is in fact the case.

Secondly, let the centre of the magnet be fixed, and let it be
free to turn in a plane perpendicular to the current. In this
case the integral is a maximum when the positive pole points
towards the right of a man so standing that the current flows
from his head to his feet and facing the magnet. It is found
that the magnet does tend so to place itself. The experiment
might therefore be regarded as confirming the law of equivalence
above stated.

The experiment can also be interpreted in a somewhat dif-
ferent way. The magnet may be regarded as consisting of a
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positive and a negative pole. And the current as exerting a
force on the positive pole in the tangent to a <circle drawn
through the pole round the origin as centre in a plane per-
pendicular to the current, in the direction above indicated, and,
ceeleris paribus, an equal and opposite force on the negative pole.

Since in the first case there is no resultant couple tending to
move the magnet as a whole round the origin, it follows that
the moment of the force acting on the positive pole round the
axis is equal and opposite to that acting on the negative pole
for every position of the magnet. Whence it is inferred that
the force on a pole due to the current in the direction of the
tangent varies inversely as the distance of the pole from the
current. For a magnet of invariable shape the experiment
admits indifferently of either interpretation.

325.] As the magnetic field due to a closed electric current is
the same as that due to the equivalent magnetic shell, it follows
that the mechanical effect of the field on the conductors carrying
the current is the same as its mechanical effect on the shell.
That is, if the electric current 7 be maintained constant, the
circuit, if rigid, tends to move so as to increase or diminish the
coefficient M, that is the flux of magnetic induction through it,
exactly as the equivalent shell would do if rigidly magnetised.

If ¢ be any generalised coordinate on which the value of

M, or
f OS¢ dsds’,
%

depends, the mechanical force tending to increase ¢ in a system
of magnetic shell and electric current (the magnetisation of the
shell and the electric current being both constant, and the

shape of shell and circuit invariable) is i(j)%]-;{. And there-

fore if the system move with ¢ and ¢ constant under its own
mutual forces so as to make ¢ become ¢+ ¢, it acquires kinetic
energy of visible motion of the shell or conductors or both, or

does work, equal to i¢ ‘%6 3

In the corresponding case of two shells we said that this kinetic



54 OERSTED’S LAW. [326.

energy, or work done, was equivalent to the diminution of the
potential energy of position of the two shells caused by the
motion. In the case of circuit and shell now under considera-~
tion, it is true that the forces are derived from é¢ M as from
a potential. Nevertheless, to ascribe to the system potential
energy of position weuld not be a complete account of the phe-
nomena. Because, as we shall see later, the motion involves an
increased expenditure of chemical energy in the battery to main-
tain the current constant over and above what would have been
necessary for this purpose had the system remained at rest. And
the external work done by the system has its exact equivalent
in the additional chemical energy spent in the battery.

326.] If for the two shells we substitute the two equivalent
electric circuits with currents ¢ and ¢/, their mutual mechanieal
action, assuming the currents to be maintained constant, is the
same as that of the shells. They tend to move so as to increase
the quantity

i’f gdsds’, or M.
Any variation of %M has its equivalent in external work
done or kinetic energy of visible motion acquired by the con-
ductors. But, as we shall see later, the motion of the conductors
with constant currents involves in this case an increased expendi-
ture of chemical energy in each of the two circuits equal to the
external work done. So that in the whole chemical energy is
drawn upon to twice the amount of external work done in
addition to the heat generated by resistance in the circuits.
327.] The equivalence of electric currents and the corresponding
magnetic shells affords a measure of electric quantity differing
from that employed in Part I, Chap. IV. For instance, two
infinite parallel magnetic shells bounded by two parallel straight
lines attract each other if magnetised in the same direction. And
therefore two infinite parallel straight currents, if in the same
direction, attract each other with a force proportional to the
product of their intensities. Hence we might define the unit of
electricity theoretically as the quantity which must pass through
a section of either current in unit time, in order that the currents
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being at unit distance apart the force on unit length of either
may be unit force. See Chap. XX.

828.] If any closed curve S be drawn in the field of a mag-
netie shell, the line integral of magnetic force round § must be
zero, whether S cut the shell or not, because the force is derived
from a single valued potential. If, however, the curve cut the
shell once, and so embrace the bounding curve of the shell, we
may take two points P and 7, in the curve infinitely near one
another but on opposite sides of the shell, and the potential at P
will be 27 ¢, and —27¢ at P, where ¢ is the strength of the
shell. Hence the work done by the magnetic force on a unit
magnetic pole in passing from P to P’ always outside of the
shell is 4 w¢, and in passing from P’ to P through the shell — 47 ¢.
If now for the magnetic shell we substitute the equivalent
closed electric current ¢, we see that the line integral of magnetic
force on a unit pole round a closed curve S, not embracing the
current, is the same as in the former case, and therefore zero.
But if the closed curve § embrace the current, inasmuch as no
part of § now corresponds to the space between the faces of the
shell, the magnetic force is at all points of § in the same
direction round 8, and its line integral on a unit pole round S
must be + 47, or —4mi, according to the direction taken.

If the electric current ¢ were an invariable property of the
circuit, this result would be contrary to the conservation of
energy. DBut in fact the electric current can only be maintained
by a continuous expenditure of energy in a battery or otherwise,
the amount of which per unit of time is altered during any
time variation of the magnetic field in which the circuit finds
itself; and we shall see later that the passage of a magnetic
pole round the closed curve § embracing the current must, if the
current be maintained constant, involve the expenditure of an
amount of chemical energy in the battery equal to —4mi or
+ 471 as the case may be, over and above what would otherwise
bhave been expended in maintaining the constant current ¢
against the resistance of the circuit.

829.] It thus appears that the magnetic potential due to a
closed constant current i, if defined with reference to mechanical
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forces only, may have any ene of an infinite number of values
differing from one another by 4wi. It is the work done in
bringing a unit pole from an infinite distance to the point eon-
sidered by any path arbitrarily chosen, and differs by 47¢ for
every time that this path embraces the eurrent.

In the case of the infinite straight current already treated,

Y

the potential is 4witan ot where the plane of z, ¥ is perpen-

dicular to the current and the origin in the current, and we
pass from the axis of # to that of # by turning in the positive
direction, the eurrent being in the direction of negative 2.

330.] The effect of variation of the magnetic permeability u
between one uniform medium and another will be eonsidered in
Chapter XIX. It is sufficient here to point out that the line
integral of magnetic force taken round a closed current ¢ in the
positive direction is 474, whatever be the nature of the medium.
Whence it follows from the relation between magnetic force and
magnetic induction in a field of magnetisable matter (Art. 315),
that the line integral of magnetic induction round the same
closed current is 4 wui.

331.] Now let I denote the current ¢ referred to unit of area,
so that if a be the transverse section of the tube through which
the current ¢ flows, Ja = <.

Let #, v, w be the components of I. Then we have

I‘Cil—x——u,&c

Let 7, %/, ¢/, w’” have similar meanings for the current ¢/. Then

cosed is
e dz do! o dydy’  dzd?
—Tal ,cosedsd Yox fa P ,ds ds’ dsrds dsds dsds’
4 ’ ’
N e

And therefore

/7 4 4
ff—d d'—ffff/fwz*'_’”i"_dmdydzdx'dy'dz'

taken over both currents.
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—ii’ffﬂgfdsds’
7

is the mechanical work which would be done in bringing the
two cireuits with constant currents ¢, ¢ from an infinite dis-
tance to their actual position. Therefore, also,

’ o
* f f f f [f dedydzdx'dy'dzf

represents this same amount of mechanical work.

332.] We should obtain consistent results, so far as closed
circuits with constant currents are concerned, if we assumed that
the mechanical work done in bringing the two elementary currents

udzdydz, W dx’dy’ d

from an infinite distance to their actual position is

Now

4
-_ % dedydz da! dy’ d2,

and so on for every pair of parallel elementary currents, but
that between two mutually perpendicular elements no work is
done. Or, which is the same thing, we should obtain consistent
results so far as closed circuits are concerned, if we assumed
the following law of force between elementary currents, viz.
that two parallel elementary currents if in the same direction
attract, and if in opposite directions repel, each other with a
force varying directly as the product of their intensities, and
inversely as the square of the distance between them, but that
mutually perpendicular elementary currents have no mutual
action.
333.] We have found

4
- f f f f f / Wl 20 4 Gyl dyf

to be the amount of mechanical work required to bring two
closed circuits with constant currents 7, #/ from an infinite dis-
tance to their actual position. Evidently, the work done in
the case of three or more closed circuits will be the sum of
a number of expressions of this form for each pair of circuits.
Now, any single closed current may be regarded as the limit
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of a number of similar and parallel closed currents made to
coincide with each other, and on that principle we might cal-
culate the mechanical work required to construct it. For

1 uu/ A
—§ffff/ wadydzdx dy’ dz/

is the mutual potential energy of two masses of volume density
u and »” respectively, and is finite if # and « be finite, even if
the two masses occupy the same space. If, therefore, I, », v, w,
the currents referred to unit area, be finite, the mechanical

work done in bringing # closed circuits, each with current :_z’

from an infinite distance to coincide with one another is finite.

Further, it consists of

terms, each of the form

————ff(i(iedd’

and therefore, when # is infinite, it is independent of ». We
will denote the limiting value of this expression for a given
circuit or closed curve when # is infinite by — 1 L2

The whole work done in constructing the closed current ¢ will

5 w —1
include, in addition to the above Se terms, # other terms,

each representing the work done in creating the closed current
% in its own field. @~'We cannot assert that the expression

— 1 L7 represents the whole work done in creating the current,
without asserting that the sum of these % terms vanishes when

n is infinite, compared with that of the other bl
an assertion which may be precarious.

If this assumption can be made, the whole mechanical work
done in constructing a system of two closed circuits, is

—3(Lyi 2+ 2 M0 5, + L L,iP).

Now, L, and L, are essentially positive, and it is not difficult
to shew that I, I, > M2, '

It follows, therefore, that the mechanical work done in con-

1
terms,
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are called the #, 7, and 2 components of the vector potential
of 4, the integrals being taken over the whole space occupied
by ¢, and if there were any number of closed currents in the
field, the same integrals taken over the whole space occupied
by those currents, are called the #, 7, and 2z components of the
vector potential of the whole system, and are denoted as before
by F, G, and H respectively. This is on the assumption that
u=1. For it will be shown later, that if u 5= 1, we must take

A= Mffgdwdydz, &e.

336.] Recurring to the two-current field, and supposing that
p = 1, the quantity Z,, or

o

taken for every pair of elements in the circuit of 7;, is the flux
of magnetic induction of unit current in that eircuit across any
surface bounded by that circuit, or, as for brevity we shall say,
across that circuit, and Z,7, is the similar flux for the current ¢;.

Therefore 2
_f(F, +a1 +1,5) s

round the ecircuit of ¢, where 77, Gl, I, are the components of
vector potential at any point of that circuit arising from the
current in it.

L, and L,i, have similar meanings with reference to the

current iy,
I

The quantity M, or
is the flux of magnetic induction across 7, of unit current in 7,,
or the flux across ¢, of unit current in ¢,, and Mz, is similarly
the flux across 2, of 4, in the second cireuit, and Mi, is the flux
across %, of 7, in the first circuit.

Therefore
_f(F'd”+G'dy Hl’f—ll—j)ds

round ¢,, where F/, G/, H, are components of vector poten-
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For in such a field, the condition of continuity necessitates the

equation
% H @- ar o =0
x  dy = dz
at all points where #, v, w vary continuously, and the correspond-
ing equation
1wy — ;) +m (v, —2,) + 1 (w —w,)
over all surfaces of discontinuous variation of #, v, w
Now

F=V’ff g—dm’dy’dz’, where r = +/(z—a') +(y—y' P+ (2—7)*;

whence 3—— f f f )dw’dy’dz’
——E,Lffuul —u,) s+ fffld“ daf dy/ 42!,

The = indicating the summation of the corresponding surface
integrals over all the surfaces of discontinuous variation of #,
and the triple integral being taken over all space of continuous
variation of the same quantity.

Therefore

dF a6  dH , s
by + d?/- + "—'—Eﬂf/{l(u1,—uz,)+m(”1,—‘”2 )+n(w1,_w2l)};ds

w clv dw’ ; ;i
+/.Lfff (dac’ W)dwdg/dz =10}

by the aforesaid equations of contmulty.

338.] If a, b, ¢ are the components of magnetic induction at
every point in the field, we know that

_dH _4d¢ ,_dF dH _d@ dF.
Tdy dz’ @ T dx’ c—%——@,
whence we getb
e db AR Y | e
5T B Y R g
dF dG@ dH
But H"’EZZ"‘%—O»’
. db:—V’F:‘lmAu.

dy  dz
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tubes throughout all space, and that for any such tube the flux
of induction through an orthogonal section is constant. Such
an induction tube may be called a magnetic circuit.

At every point we have the equations o = pa, &e., so that
the magnetic induction is connected with the magnetic force
by the same formal relation as the electric current with the
electromotive force.

If i be the aggregate of all closed or infinite electric currents
embracing an induction tube or magnetic circuit, 4w7 is the
magnetic force in the circuit.

If 4 denote the magnetic induction through a section of the

tube, 4—;—@ is, by analogy to Ohm’s law, called the magnetic re-

sistance of the circuit.



CHAPTER XIX.

INDUCTIVE ACTION OF CURRENTS AND MAGNETS.

AxrticLE 340.] It has been established by Oersted’s experiments
that the magnetic field due to any uniform magnetic shell is
the same at any point not within the substance of the shell as
the magnetic field due to a certain closed electric current coin-
ciding with the boundary of the shell. The strength of this
current in electro-magnetic units is, if the magnetie permeability
be unity, equal to the strength of the shell, and the direction
of the current is the positive direction, determined by taking
for the positive normal to the shell’s surface a normal drawn
from the negative to the positive face of the shell (Art. 267).
‘We shall speak of the current and shell as mutually equivalent.

It was observed by Faraday that if a closed circuit, with or
without electromotive force of its own, be moved in the field of
a magnet, a current is izduced in it; or the current already
existing in it is increased or diminished during the motion,
notwithstanding that both the strength of the battery and the
resistance of the circuit be unaltered. This induced current is
reversed in direction if the motion be reversed, and increases
with the velocity of the motion. It disappears rapidly by
the resistance if the motion cease. There is then an electro-
motive force in the circuit due to the motion, which we may
call the electromotive force of induction.

The same effect is of course produced by moving the magnet
through the field of the circuit, and therefore also by variation
of the strength of the magnet, because any such variation may
be brought about by bringing a new magnet into the field to
coincide with the existing magnet. It is produced by variation
of the magnetic field in which the circuit is placed. On the
other hand, the behaviour of a closed current is not affected by

VOL. 1I. F
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the nature of the magnetic field in which it is placed, if there
be no time variation of that field. From these facts, combined
with those of Oersted, Helmholz and Thomson deduced the
laws of induction between magnets and closed electric currents
by a method founded on the conservation of energy.

841.] If a closed circuit with current 7 be disconnected from
the battery, and the current allowed to decay in its own field, that
is, not influenced by external induction, a certain quantity of heat
is generated in the circuit during the decay. The circuit in
virtue of the current in it has a certain intrinsic energy, which
can at any time be got in the form of heat by disconnecting the
wires from the battery. Let H denote this quantity of energy
for the current ¢. Let ¢ be the current at any instant after dis-
connecting. Then the heat developed in time @¢ at that instant
is Ri?dt, R denoting the resistance of the circuit, and since this
can only be obtained at the expense of the intrinsic emergy of °
the circuit, we have Lol

-CE= - R7?, H=f°}li”dt.
dt 0

For a given circuit the intrinsic energy is a function of i, It
is the same in whichever direction through the ecircuit the:
current passes, and therefore contains only even powers of 7.
‘We shall therefore assume H=1} L:i2, where L is a coefficient
depending only on the form of the circuit, which we assume for
the present to be invariable. '

. di

This gi 2= B
is gives Lz 7 R,
s I
R
and if 7 be the initial current
i=1Ie L t,

and f Redt =3} LI

This intrinsic energy is independent of the nature of the mag-
netic field in which the decay takes place, so long as that field
remains invariable with the time ; but any time variation of the
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ield would give rise to induced currents in the circuit according
to Faraday’s law, and would therefore alter the rate of decay of
the current. If after the current has ceased the circuit be con-
nected again with the battery, and the original current I re-
established, the intrinsic energy is restored to the circuit; and
this takes place at the expense of the battery. It follows that
the chemical energy spent in the battery during the establish-
ment of the current /in a constant magnetic field exceeds the heat
generated in the circuit during the same process by the intrinsic
energy of the circuit with the current 7; and therefore including
" both processes, namely the decay of the current from 7 to zero,
~ and its re-establishment, the field being in each case invariable
during the variation of the current, the whole chemical energy
spent is equivalent to the heat generated'in.the circuit.:

342.] Now let there be any magnetic field, and as arer .
considering a theoretical case only, let it be due to a u ff)m
magnetic shell of strength ¢, which we can maintain co fm)t l‘,,
or vary at pleasure. In this field let there be a circuit connect\éﬂ» :
with a battery; and we ‘shall suppose that either by varying . W
the electromotive force of the battery, or by suitably adjusting
the resistance, we can maintain the current constant, or make it

- vary in any way, notwithstanding the effect of induction in any
motion of the circuit.

Let now ¢, the strength of the shell, be constant, and let the
circuit move with constant current 7 in obedience to the mutual
attractive or repulsive forces between the shell and circuit from
an initial position 4 to another position B. A certain amount
of work, /V, is done during this motion fy the mutual forces.
The circuit having arrived at B, let the wires be disconnected
from the battery, and the current allowed to decay by resistance.
Then let the wires, still disconnected, be moved back from B to
4 without current. This last-named motion may be effected
without doing any workl. Then let the wires be reconnected,

! For although a current will be established inductively in the wires moving in
the magnetic field, yet by diminishing without limit the velocity of the motion
we can, owing to resmtance, diminish without limit the current at every instant
t(_iurmg the motion, and therefore the work done against the electromagnetic
Orces

¥ 2
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and the current 7 restored with the circuit in its original posi-
tion at 4. The system has thus performed a complete cycle,
in which external work has been done by it, and heat has
been generated. By the conservation of energy the chemical
energy spent in the battery must be equivalent to W, together
with all the heat generated in the circuit from first to last
throughout the cycle.

But during the latter part of the cycle from the instant of
disconnecting at B to the complete reestablishment of the
current I at 4, we have to do only with the decay and re-
storation of the current, and therefore the chemical energy spent
is, as we have seen, equivalent to the heat generated.

It follows that the chemical energy spent during the motion
with I constant from 4 to B is equivalent to #, together with
the heat generated during that motion, that is to

B
W +f RI%d:.
A

843.] We infer now that Faraday’s electromotive force of in-
duction caused by the motion of the circuit through the magnetic
field, is in such direction that the current due to it would, if it
existed alone, resist the motion, that is, it is a force in the opposite
direction to / which causes the motion, that is, a force tending
to diminish 7. Let this electromotive force be —Z£’. Then in
order to maintain 7 constant during the motion, we have to
increase the electromotive force of the battery by £. We may
suppose, without altering 2, the number of cells increased in the
proportion £+ E: E. Then the chemical energy spent in the
battery with current I per unit of time is (Z+ £')1, that is,
RI?4-F'I; and the chemical energy spent in the motion from

4 B B
410 Bis / RI*dt + f E'ld.
A A
We have then

fRIgdt+ W__fRI?dt-i—fE’Idt

W= f BIdt

therefore ﬂ = F'I
dt
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N

But by Oersted’s Law

aw d]l[
dt gl i’
W being the work done &y the forces.
Hence EI=1¢ (zM ’
o qbdM

aM
dt
844.] Similar results are of course obtained by moving the
constant shell while the circuit remains at rest. And if the shell
be brought up from an infinite distance with 7 and ¢ constant,
the work done by the magnetic force due to the current is
I¢ M. Now any variation of the strength of the shell, as
from ¢ to ¢+d¢, is the same thing as bringing a shell of
strength d¢ from an infinite distance to coincide with the
original shell. The work done in that process by the magnetic
force of the circuit is therefore 73/ d¢; and this requires the
expenditure in the battery of additional chemical energy IM d ¢,
to maintain 7 constant. We have then in this case £’ /=1IM d¢,
or F=Md¢. And generally if ¢ and M both vary,

ay . dé
¢~— + M

and the electromotive force of induction, or —E’, is —¢p ——

= E’ (M ),
and the electromotive force of induction is — 7 (M ?).

845.] If we were to perform the eycle of Art. 342 in the reverse
direction, disconnecting at 4, reconnecting at B, and moving
with constant current I from B to 4, we should have to spend
external work in overcoming the mutual forces of the circuit
and shell, instead of gaining work as in the former case. In this

case & or ——(M ¢) is negative, or we have in order to main-

tain 7 constant to diminish the force of the battery. So long as
E is less in absolute magnitude than Z, the chemical energy
spent, or (£+ £") 1, is less than EJ, that is, less than ZI%. The
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external work which we do against the forces, or — f Ipdn,is

converted into heat, and the chemical energy of the battery is
saved to the like extent. If B’ be greater in absolute magnitude
than Z, the current I cannot be maintained eonstant unless the
battery be reversed, in which case the chemical processes may be
reversed, as In the case of an accumulator. In such a case the
external work done is equivalent to the heat generated plus the
chemical energy gained by the reversal of the processes. In all
these cases if H be heat generated, C chemical energy spent, and
W mechanical work done éy the forces of the system, C=H+ W,
where W, and in case of an accumulator C, may be negative.
846.] It appears from the investigation of Chap. XVII that,
when the circuit and shell move under the influence of their

own mutual attractive or repulsive forces, 7¢ %[ is positive.

And therefore the electromotive force due to the motion, or
d P k :

—¢ TR would, if it existed alone, produce a current in the

opposite direction to 7, that is a current tending to resist the
motion. This law is called Lenz’s law. It appears here as a
result of the Conservation of Energy. This also appears at
once from Faraday’s experiments. For suppose a closed circuit
without battery to be moved in any direction through the field
of a constant magnet. An electric current is induced in it, which
on cessation of the motion decays, and heat is generated. This
heat can only be accounted for as the equivalent of mechanical
work done during the motion. That is, the induced current
must be such as to resist the motion by which it was induced.
847.] Secondly, let ¢ be again constant, and let the circuit
move as before under the influence of the mutual attraction or
repulsion of the circuit and shell ; but instead of maintaining the
current constant against the electromotive force due to the motion
by increasing the strength of the battery, as in the former case,
let the current be allowed to diminish. And let us so adjust the

battery as that, ¢ being the current at any instant, £ shall be
equal to Ri, or Ei=I:%

AL

T
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In this case the chemical energy spent is all consumed in
heating the circuit, and the mechanical work done 4y the forces
cannot be done at the expense of chemical energy. It is done at
the expense of the intrinsic energy of the system.

For the intrinsic energy at 4 is 3 ZI2. At any other point B in
the supposed course the current 7 is less than 7, and the intrinsic
energy is 3L i*. The difference between these quantities of
energy, or 3 L {12—14%}, is the equivalent of the mechanical work

guined, that is, } L {I*—#} = [igdlL.

Making 7—i = di, we find for the relation between ¢ and 3/
during this process
Lidi+ipdM =0,
or Ldi+ ¢dM = 0.
We might call this process an adiabatic process by analogy to
Thermodynamies. As in the first case we may make ¢ vary
instead of 3/, and if M and ¢ both vary Ldi+d(M¢p)=0.

348.] Thirdly, we may maintain F, the original electromotive
force of the battery constant, that is Z = RI, where I is the
current with the circuit at rest. ILet ¢ be the current at any
instant, then the chemical energy spent per unit of time is i,
and the heat generated is 4%, We have in this case,

aw d
— —m —— (1L e D)
o+ il L)+ Ei—R&
: .d . di % v
that is, zﬂ(ﬂ[d))_ —Lz%+Ew—Rz,

or %(Li+M¢) = E—Ri,

or E— %{Li+ﬂ[¢}=Ri.

We may combine our results into one formula as follows.
The energy drawn from the battery per unit of time over and
above the equivalent of the heat generated is

i At
z oy {Li+ 3 p}.
If E be the electromotive force of the battery
E— 2 (Lisi) = Ei
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Again, the whole energy drawn from the battery, in excess of
the heat generated while the system of the circuit and shell
goes through any series of changes whatever, is

fid (Li+ M)

If the current be initially zero and finally Z, this becomes
1L+ f id (M ).

The mechanical work done against the forces is — [id(M).
The whole work, chemical and mechanical, is ¥ Z 12,

349.] In order to illustrate the interdependence of chemical
and mechanical work in the changes of the system, we will make
our circuit perform a cycle analogous to that through which in
treatises on Thermodynamics the working substance is made to
pass in the working of a perfect heat engine. It will be under-
stood that our apparatus is as purely theoretical as the perfect
heat engine. Let the shell ¢ be maintained constant. Let 31,
be the initial value of M, and (first process) let the cireuit move
from M=M, to M=DM, with constant current 7, the electro-
motive force of the battery being suitably adjusted. The
mechanical work done 4y the forces (which is done, as we have
seen, at the expense of chemical energy) in this process is
(M, — 1),

M1 Ma

Mgy M3
Fig. 45.

The second process shall be adiabatic as explained in Art. 347,
that is, such that Zdi+ ¢ d M= 0, and shall continue from M=M,
to M=M; The mechanical work done Jy the system at the
expense of its intrinsic energy is in this process

fi(;bdM:—fLidi

=1L (#*—i7),

if ¢’ be the current when the circuit reaches 7.
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The third process shall be with constant current ¢ from
M=M, to M=DM,, where M, is so chosen that the circuit can
pass by a second adiabatic process from 2/, to J,. The me-
chanical work done &y the forces in this process is i¢ (M, — ;).

The fourth process shall be adiabatic from M=2M, to M=21,.
The mechanical work done in it is § Z(#2—42), and is equal and
opposite to that done during the second process.

We have then for the whole mechanical work done by the
system at the expense of chemical energy in the complete cycle
Ge(M,— M)+ 7' (M, —DI1,).

Now by the relation
Ldi+¢pdM =0,
in the second and fourth processes we have
& (UL = L (i~ ¥) = § (M,— ),
whence M —-M,=M—1M,
And therefore the whole mechanical work done by the system at
the expense of chemical energy is

8: (I’ ({_i,) (J[ﬁ_ﬂll)’
or TZ{Jl[2¢i—Ml¢i), if it = bi.

Here M,¢i— M, ¢i is the work that would be gained if 7/=0.
If 3Q denote a small quantity of chemical energy spent by
the battery in excess of the heat generated during the process,
8Q = id {Li+Me).
And, as before,

Q= [id(Li+M¢).

We thus see that, comparing our eycle with the ordinary eycle
of Thermodynamies, ¢ corresponds to temperature, Li + M¢ to the
thermodynamic function, M corresponds to volume, and i¢ to
pressure, and instead of the heat of the reservoir we have the
chemical energy of the battery as the source from which useful
work is derived.

Case of two circuits.

350.] Let us now substitute for our magnetic shell of strength
¢ the equivalent electric current. Let this current be denoted
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by 7,, and that in the original circuit by 4,. Also let Z; and L,
be the values of the constant coeflicient Z for the original and sub-
stituted circuits respectively. The action of the substituted circuit
on the original circuit being the same as that of the shell, we
have for the chemical energy spent in the original battery, over

and above heat generated, |é,d {L,é, + Mi,}, by replacing ¢ and

¢ in the formule of Art. 348, by ¢, and 4,.

But by the same reasoning the chemical energy spent in the
battery of the substituted circuit must exceed the equivalent of
heat generated in that circuit by

4yd {Lyi, + Mi,}.

And the whole expenditure of chemical energy in excess of heat
in the two circuits is

4, d {Ld, + Mi,} + [ 4,d {Lyi,+ Mi},
that is, 3 Lé2+Mi 9+ 1 L,3,0+ [¢,2,d0L.
Also the mechanical work done against the forces is

— [ii,dar.

Therefore the whole work, chemical and mechanical, required
to construct the system of two circuits in the given position is,
in addition to the equivalent of heat generated,

YLyi 4 Mg+ Y Ly

This expression we define to be tke energy of the system. 1t is
a property of the system, depending only on the values of ¢, and
iy, and the coefficients Z;, L,, and M, that is, the forms of the
circuits and their relative position, and is independent of the
mode or route by which the system was brought into its actual
position, that is, of its past history. It is equivalent to the heat
which would be generated in the system during the decay of
the two currents in one another’s field, were they simultaneously
disconnected, and the circuits kept at rest.

The corresponding expression for the energy of two magnetic
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shells is (Art. 334) $ ), ilz—ﬂ[ii\i;+ 3 A, 4,% where $,4,%is the
work required to construct the shell 7; in its own field.

851.] If the two circuits move under the influence of their
own mutual forces we have in the first circuit

L%+ M7, = constant,

or Ly di, +d(Mi,)=0, provided the battery in the first circuit be
so adjusted that Z,4,=R,7,2 during any variation of the current.
And, in any case, this relation must hold for any small variations
from a position of rest.

This gives the ordinary laws of induction in the first circuit
due (1) due to variation of the current ¢,, M being constant,
or (2) due to motion of the eircuit 7, with constant current ; viz.

d, di,
Mge— - ¥

dz .dM

or L, d_tl = =iy

in the two cases respectively.

If there be initially no current in the first circuit, as for
instance, if it be without battery, the current instantaneously
induced in it by a sudden generation of the current 7,, in the

second circuit should theoretically be — In this case the

% iq.
current 7,, as it comes into existence, by its inductive effect
diminishes the current in the second circuit, and the electro-
motive force of the battery in that circuit being supposed con-
stant, the chemical energy spent per unit time in the battery
during the creation of the induced current, or E,i,, exceeds
R, ,% the heat generated per unit time in that circuit. The
additional energy spent in the battery supplies the energy % L, 7,
of the induced current.

The law of induction between two closed ecircuits in the
absence of resistance may be expressed as follows. Given 7,
suddenly created, make the energy of the system,

%‘Lti22+‘l][ili2+%‘£2i2’
minimum, and i, is determined.
852.] The cycle of Art. 349 can be performed with two circuits
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as well as with circuit and shell. For let ¢, be maintained constant
in the second circuit while the first circuit performs the cyele.
The mechanical work done at the expense of chemical energy con-
sumed in the first circuit is the same as if the circuit 4, were a
magnetic shell. The chemical energy spent in the second cir-
cuit over and above the equivalent of heat generated in it is

0 / d{Lyiy+Mi}, and vanishes for the complete cycle.

858.] We have hitherto supposed the coefficients Z; L, con-
stant, that is, we have treated the circuits as rigid. But the
circuits may be flexible, or flexible and extensible. In either case
L is variable, and any variation of the form of either circuit
causes M to vary, although the form of the other circuit may be
unaltered.

Suppose the form of the second circuit to be constant, and
the current in it, é,, to be also constant, then we shall have, as in
the cases already treated,

i d : ;
E —Ri = I { L3+ My},

And, as in the preceding cases, we may so adjust the battery
as that either Z, shall be constant, or 7, constant, or £ = R4,

Now we have seen that 37, is proportional to the number of
lines of magnetic induction of the second circuit that pass
through the first circuit. The effect of the second circuit on
the first, if flexible, is to cause any element of it so to move as
to take in as many of these lines as possible, that is, each
element of the first circuit will tend to move across them in
direction at right angles to itself. In like manner we may
assume that the effect of the first circuit on itself is to cause
every element to move across the lines of magnetic induction
due to the circuit itself.

In any case, if the circuit move or alter its shape in obedience
to the forces of the system which aet upon it, mechanical work
is done by it, and this is supplied either at the expense of the
energy of the system (if the batteries be so adjusted as only to
compensate for the energy converted into heat) or at the ex-
pense of the batteries if the currents be constant. All cases are
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Rotation of a conductor in a magnetic field.

355.] Let there be a uniform field of magnetic force F, and a
wire forming a closed plane curve of area « rotating with angular
velocity o round an axis in its plane at right angles to #. The
flux of magnetic induction through the curve is then aF cos wf?,
time being measured from an epoch when the plane of the curve
is at right angles to #. We have then, to determine the current
7 in the wire, the equation

%{Li+aﬁ’cos ot} =— ki,

where R is the resistance, and Z the self-induction, of the wire.
This gives

sz al{; 72 (R sin ot— oL cos wt).
Let % = tana. Then this becomes
(0]
T =— ﬂ—— cos (wt + a),
( R? 4 ? Lz)}
N 2
and Cﬁ: —wa—g———sin(a)t+a);

dt (R4 w?L%)}
and the electromotive force is RH‘LZ , that is waFsin wt.
The induction through the curve is maximum when w? = 227.
The current is maximum when
wt=2n+17—a.
The current is retarded in phase by #—a. And it is owing
to this retardation of phase that work is done in the complete

cycle. For the mechanical work done is — f id (M ), where M ¢
is the induction through the circuit, that is
w?a?F? / ;
_———e—aeiee sln wé cos(wi—+a dt;
VR o [? ( )
and this becomes in a complete cycle, integrating from 27 to 0,
ZFZR a2F2
R2 2L2 >
The work is all converted into heat in the wire.
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-

Compare the corresponding effect when soft iron is magnetised
by a force varying in a cyele. Professor Ewing in Phil. Trans.
vol. eclxxvi. part 2; Lord Rayleigh, Pkil. Mag. vol. xxii.
p- 175

356.] In Arts. 342-348 we supposed the magnetisation of our
shell to be varied, if at all, only by causes independent of the
current. The variations in the magnetic field may however be
due to the electric currents themselves, if, for instance, there be
in the field magnetisable matter which, on creation of the cur-
rents, becomes magnetised by induction. In any such case, if #
be the energy of the same system of currents in a field devoid of
magnetisable matter, and if W be the energy of the induced
magnetisation in its own field, the total energy will be £4 W.
That is, the process of magnetisation tends to check the currents,
and increases the draw upon the batteries necessary to maintain
the currents, by the quantity #.

Concerning the eoefficient of magnetic permeability.

857.] If R be the resultant magnetic force at any point due
to a closed current or system of closed currents in vacuo, we
have

R 4bpd= (dH dG) (dF dH) (dG dF)

If we integrate this through all space within an infinitely
distant surface S, we obtain, since the surface integral vanishes,

fff%]ﬂzdmdydz =_-1_'fff{Fv*F+avfa+zzv2H

__( o +G +IIdz)(dF dG+le}dxdydz

That is, since
dF dG dH
= + =205 &= 0 everywhere,
dy
V*F = —47u, &ec.,

([ rain f/ﬁww

= E, the energy of the system.
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858.] The above expression denotes the energy of the system
in vacuo, or in a standard medium in which the magnetic per-
meability p is unity. Now let a system of molecules capable of
becoming magnetised by induction be scattered through the
field, so as to form a uniform medium with u for coeflicient of
magnetic permeability. The molecules will become magnetised
by induction, and the energy of the same system of cwrrents in
the altered medium will be 7+ #, where # is the energy of the
induced magnetisation.

In order to determine W, let us define the nature of the
uniform medium as follows. If a plane of unit area be taken
perpendicular to R, it will intersect certain of the molecules.
Let @2 be the quantity of magnetic matter on the intersected
molecules which lies on the positive side of the plane per unit of
area. Then p=1+47¢Q by Chap. XI. And the energy of
magnetisation is § Q&2 per unit of volume. Hence the whole
energy of the currents in the altered medium is given by

E= S%fffﬁ"’dxdydz+%fo/R"’dxdydz
= (1+4wQ)ff/%Twadxds

, = pd.

It follows that, comparing one uniform medium with another
with similar currents, the electromagnetic forces on elementary
currents vary directly as p. And if they are expressed in terms
of I, G, H, we must make

= yf/f;dxdydz, &e.

as in Arts. 334, 335,

859.] The system of induced magnetisation is solenoidal by
Art. 316. And in the field of electric currents the solenoids are
all closed, and exert zero force at all points. And therefore the
magnetic force on a unit pole due to the system of currents is
independent of u, as appears from Art. 330.

860.] But if fora closed current we substitute the corresponding
magnetic shell of strength ¢, the solenoids, in other respects un-
altered, are no longer closed, but begin and end in the shell.






CHAPTER XX.

OF SYSTEMS OF MEASUREMENT.

1. Tke Electrostatic Units of Electricity.

ArricLe 361.] In Chaps. IV, V, treating of Statical Electricity,
we found that the repulsive force between two electrical masses of

like kind, ¢ and ¢, at the distance r apart, is ;;,. This law

agsumes the definition of unit of electricity to be that two
such units placed at unit distance apart repel each other with
unit force.

According to this definition, the quantity of electricity which
answers the description of the unit depends on the units of
length, mass and time employed. In mathematical language,
the unit of electricity has dimensions in length, mass and time.
If we denote the unit of length by Z, that of mass by M, and
that of time by 7, we know that force measured statically is of

dimensions ]'—[é Therefore, if e be the unit of electricity so

o ML
defined, % has dimensions 7T on a8 1t is usual to express it,
é? ML
F=Imh

and e=[MPLET]
362.] We found it necessary subsequently to modify the state-

ment that the repulsive force between e and ¢ at distance 7 is

i—;, because it depends, ceferis paribus, on the nature of the

medium in which e and ¢ are placed.
If K be the specific inductive capacity of the medium, we
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found, in Chap. XI, the force to be 1%2. The quantity K thus

affects the magnitude of the unit, because if in a medium where
K =1, ¢ and ¢ at distance r produce any given force, we must
in another medium, in order to produce the same force at the
same distance, use ¢4/K and € v K. But K does not affect the
dimensions of the unit. It is in this relation a mere numerical
factor of zero dimensions.

‘We must then complete our definition thus. The electrostatic
unit of electricity is such a quantity that two electrostatic units
placed at unit distance apart in a medium for which K = 1 repel
each other with unit force. "We shall denote the unit so defined
by e,.

I1. Of the Electromagnetic Unit of Electricity.

863.] Let there be two infinite parallel wires carrying cur-
rents ¢ and ¢’ at distance » apart. The force of attraction on
Chipride

S
expression p denotes the magnetic permeablhty of the medium.
Let e,, be that quantity of electricity which, according to the usual
conception of a current, must flow through a section of either wire
in unit time, in order that, the parallel currents being at unit
distance apart in a medium where p = 1, the force on unit length
of either current may be unit force. Then we may take e, so
defined as the unit of electricity. It is called #ke electromagnetic
unit, or the unit in electromagnetic measure. The quantity p is
here of zero dimensions, for the same reason as K in case of the

length ¢ of one of them is au. 2u 1 in which

electrostatic unit. Hence azz o is of the dimen-
§047 o VrAra?

sions of force, 7 Therefore it has dnnensmns 77 But ¢

has the same dimensions as —. Therefore has dimensions

17
ML
a2 OF €n = [} I3].
364.] We have thus obtained by independent methods two
distinet quantities of electricity, e, and ¢, either of which may be
G 2
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taken for the unit. The numerical value of the ratio which they

bear to one another depends on the units of length and time em-

ployed. Since ¢, is of dimensions M 27~ and e, of dimensions

VI, it follove thab 22 i of dimensions oo = S
I m M7=

dimensions 770 OF the unit of velocity. Now the number by

which any given physieal velocity, as for instance that of light,
is expressed varies inversely as the unit of velocity, and there-

e e
fore varies directly as ™«

(4
Tt is found that the ratio ™ determined by experiments in air

is equal, or very nearly equal, to the velocity of light in air, If
that velocity be denoted by v, that is if it be v units of velocity,
then whatever units of length and time be employed, ¢, = ve,.
This fact is the foundation of the Electromagnetic Theory of
Light as discovered by Maxwell.

365.] If the experiments be made in any other medium than
air, the magnitude of ¢, is, as we have seen, altered : e, becomes

e,/K. Similarly e, becomes “m . Hence, if v be the value of
the ratio 7 as determined in ai}i', where K =1 and p =1, its
general vafue will be %_ In all media within the range of
experiment p is nearly equil to unity. Hence the ratio eeﬂ varies

nearly as T/IE It is found that the velocity of light in different

1
media varies accurately or very nearly as -

Of the Dimensions of K in Electromagnetic Measure.

ed
Kr?

sions %1—; In the electrostatic system, where ¢ = [} I2T-1],

this requires that X shall be numerical, i. e. of zero dimensions.
But if for ¢ we write ¢, the electromagnetic unit, whose dimen-

366.] We have seen that

represents a force, or has dimen-
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sions are ML} we must, in order that the same two forces
may always bear to each other the same ratio whatever be the
units of length and time, attribute dimensions to K. In this

’

ee : : ML ] . 3
case - has dimensions 7T and e¢’ has dimensions M L. Hence

K has dimensions T2 in the electromagnetic system.

In like manner, p in the electromagnetic system has zero

dimensions, but expressed in the electrostatic system it has
. =
dimensions —-

LZ
Of the Dimensions of ¢ the Strength of a Magnetic Skell.

367.] A uniform magnetic shell of strength ¢ and unit area
is as regards its action at points not within its substance
equivalent to a certain current 7 round the boundary of the shell
multiplied by the factor u which denotes the magnetic permea-
bility of the medium. As this equivalence is independent of the
units of length, mass and time, ¢ must have the same dimensions

: . f . : e
as pi. Now in electromagnetic measure 7 has dimensions %, or

M3IAT-1, and i is of zero dimensions. Hence ¢ in electro-
magnetic measure has dimensions /¥ Z¥7-1. The dimensions

of the components of magnetisation 4, B, and C, are those of %:

that is ¥ L-3T-1 in electromagnetic measure.

Of the Dimensions of a Hypothetical Magnetic Pole,
or Magnetism.

368.] Let m denote a quantity of imaginary magnetic matter
forming the positive. face of the shell of strength ¢. Then, m
being given, ¢ varies directly as the thickness and inversely as
the area of the shell. ¢ must therefore have the same dimen-

sions as%, and since ¢ has dimensions M* L# T, those of m are

MALET,
We might have obtained this result otherwise, starting, as in
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Chapter XVI, from the assumption that magnetic matter repels
like matter with a force varying inversely as the square of the
distance, from which it follows that 7z must have the dimensions
M3 LET! for the same reason as the electrostatic unit of elec-
tricity.

We can now find the dimensions of the unit of magnetic
matter in the electrostatic system, a point about which there
was af one time some controversy, as follows. In order to ex-
press the equivalence of current and shell in any system of
units we have,
™ is of the same dimensions as 7 —;—,-

L
72
LZ
m in electrostatic measure, or as we shall call it #,, has dimen-

In the electrostatic system ¢ = M3 L¥7-1, and u = ", whence

sions M3 I3, Were there only one medium in nature we should
. m e ; 31
have written [f] = [—1—,]; and there would be room for Clausius

contention that =, = [M* L T'-2].

869.] We can also determine the dimensions of #, by a different
method, as follows. The force between a shell of strength ¢ and
a circuit with current ¢ is

f ot "

It has the same dlmensmns as ¢, that is, dimensions

7 Za=lpl
This must hold in any system, and therefore in the electrostatic
system, in which e = [M*Z27-1]; and therefore m, = [ M} L*],
as before.

‘When the electric unit is determined by the electrostatic
conditions above mentioned, all the functions of it are said to be
expressed in the electrostatic system. And when it is deter-
mined from the force between two currents, the functions are
said to be expressed in electromagnetic units, and we shall
denote the system selected by the suffixes ¢ and » respectively.
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CHAPTER XXI

THE GENERAL EQUATIONS OF THE ELECTROMAGNETIC
FIELD.

ArricLe 378.] In Chapter XVIII we investigated the electro-
magnetic properties of a field of electric currents, based upon
the experimental law of Oersted, namely the equivalence of
mechanical action of a closed circuit and magnetic shell suitably
related to each other.

In Chapter XIX we deseribed certain electromotive actions,
first discovered by Faraday, in the case of circuits in a variable
magnetic field, the variation of the field arising either from
changes in the intensities of the currents or the configurations
and positions of the circuits; and, reasoning from these experi-
mental data, we investigated the laws of such electromotive
forces, generally denominated inductive electromotive forces.

Maxwell was the first to consider the whole subject from
another and more strictly dynamical point of view, and to shew
how the same results appear to be deducible from the aforesaid
law of Oersted by merely mechanical considerations.

We know that the production of any current field depends
upon a supply of energy from some external source, as for
instance, from chemical combination in the case of battery
excited currents. When there is freedom of motion in any of
the circuits a part of the energy thus derived is converted into
mechanical kinetic energy, and whether there be such visible
motion or not, some portion of this derived energy is converted
into molecular kinetic energy or heat, the amount of this heat
conversion, or dissipated energy, being dependent, by laws already
explained, upon the intensities of the currents and the material
composition of the conductors.

But, in addition to all this, 1t is observed that if in a current
field, whether the parts be at rest or in motion, the battery con-
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~ nexions are at any instant broken, the current manifestations do
not immediately cease, the electromagnetic actions are not im-
mediately suspended, and heat continues for a sensible interval
of time to be generated in the conducting circuits.

874.] Now, as Maxwell says, capacity for performing work is
nothing else than energy in whatever way it arises, and there-
fore we conclude that in a current field there is a certain amount
of energy in excess, and independent, of the energy D which has
been converted into heat in the circuits, and of any purely
mechanical energy which may exist in the circuits themselves, if
these are in motion. Weassume this energy to be electric energy,
partly kinetic, 7, and partly potential /, so that the total energy
in the current field, in addition to any material kinetic energy
of the circuits, is the sum of three distinet parts, being equal to

T, 4+ W+ D,

875.] We know from Chapter XI, Vol. I, that # depends
upon the specific inductive capacity K in different parts of the
field and vanishes with X, also that 0 depends upon the re-
sistance R in the circuits and vanishes with Z.

For the present we will assume that we are dealing with
a field throughout which both K and £ are infinitely small,
and therefore # and D evanescent, so that the total energy
that would remain in the field if the battery connexions were
at any instant severed would be 7, or 7, increased by any
material kinetic energy of visible motion, supposing such to
exist ; this 7, is assumed to ‘be a function ¢ (7,9) of the current
intensities (¢) and the coordinates of configuration (¢)-where the
form of ¢ has to be determined.

376.] Now, if in any dynamical system a force ¥, is observed
to exist, which tends to increase any generalised coordinate of
position (¢), we infer that the potential energy of that system
would be less and the kinetic energy greater in the (¢ + d¢)
configuration than in the (¢) configuration by 7,3 4.

If, therefore, in any current field we observe such an electro-
magnetic force, we infer that if, after breaking the battery
connexions, the circuits were transferred from the ¢ to the
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g + 3¢ configuration, and the same currents were then re-
established in the ¢+8¢ configuration, the total electrokinetic
energy would be increased by F, 3¢, in other words, that in a
field of two ecircuits the draw upon the batteries requisite to
create the current intensities ¢ in the (¢ + 8¢) configuration the
same as they were in the (¢) configuration, must be increased by
F,d¢q,i.e. that 4 _ o ;
dg 4

If the transference of the currents were effected by the un-
checked action of the force F,, that is without breaking the
connexions, the intensities remaining the same, an additional
F3q of material kinetic energy of the circuits would ensue,
making the total draw upon the batteries in this case 2F,d¢.
The energy of the whole field, in fact, being supposed to consist
of the potential energy of uncombined chemical elements in the
batteries, and the electrokinetic energy and mechanical kinetic
energy of the field, the rate of conversion of one into the other
in the actual passage from the ¢ to the ¢+ d¢ configuration is
2 F,, and this is equally divided between mechanical and electro-
kinetic energy.

877.] If the field consists of two closed circuits, and if ¢ be
one of the coordinates determining the relative position of these
cireuits, each supposed to be rigid, we know from the Oersted
law of equivalence of action hetween currents and magnetic
shells that aM

Fy=ii,
q
where ¢, gnd 7, are the current intensities in the circuits, and
M= / f C(;sedsds’, the double integration being taken round
both circuits in the direction of the currents.
Hence we infer that in this case

ar; ., . dM
Tq—= Zl'bz 7q ’
o Te =i, M+ ('iliz f)’

where ¢’ is a coordinate defining the shape of either circuit, sup-
posing it to be flexible.
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878.] To determine Y, we observe that i,i,}/ is either the
product of 7, into the flux of magnetic induction of 7, across any
surface bounded by 4, or the product of i, into the flux of
magnetic induction of 7; across any surface bounded by 7 (the
positive direction of such fluxes being estimated by rules already
given), or it is half the sum of such products, and therefore
that 7', so far as it is a function of the coordinates ¢, of relative
position of the eircuits, is half the sum of such products.

Hence we infer, although not with the same certainty as in
the former case, that so far as 7, is a function of one of the ¢
coordinates determining the shape of the 7, circuit, that is, so far
as 7, depends upon the ¢, circuit supposed to exist alone in the
field, its value would be one half the product of ¢; into the flux
of magnetic induction of ¢; across any surface bounded by 7,
and similarly for 4,, or that

V(66 q) =t LiiP+ 3 L, 3%
where L, and L, are respectively equal to f corﬁdsl ds;"and

f / Cofetlszdsz’, the integrals being taken round the separate

circuits, and that the complete value of 7, is

IR
S REESE

%5124-111:; i2+% i, (s 2
or ;i{il(Llil"'ﬂﬁz) +i2(L2i2+ ﬂ[il)}' (

Art. 333 for the potential energy in a field of two curre
and 1t is, as was there proved, equal to

3 (pty + Pt
where p, and p, are the fluxes of magnetic induction of the
field over any surfaces bounded by the ¢, and 7, circuits re-

spectively. These quantities are sometimes called the 7, and i,
J

components of momentum of the field, and are equal to %
1

dT. .
and 7 respectively.
)

The expression for 7, may, as was shown in the aforesaid
chapter, be also written as
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7, = f(F +G +I[—)d

or Fo= 5/:[ (Fu+ Gv+ Hw) dzdydz,

1 uw +vv + ww
or T.= Efffff/(—T——) dzdydzda’ dy’ 3/,

the notation being the same as therein explained.

380.] If the circuits, being themselves flexible and free to
move, be in connexion with batteries, and if Z, and E, be the
electromotive forces in the respective circuits, we know that the
draws upon the respective batteries in time d¢ are F,7,d¢ and
E,i,dt respectively. ;

But in this case there is generally an increase of electro-

kinetic energy in the same time equal to dd—f‘ dt, and of mechan-

ical kinetic energy equal to ﬂ"(Zt.
i P L
The former of these is equal to —, (—11'12+Mz'1 g+ =2 z'f) .dt,

and the latter is equal to EFq i 7 at, where F, is the electro-

magnetic force corresponding to a (¢) coordinate of configu-
ration, and 2 indicates summation extending to all such co-
ordinates in the system.

If ¢ be a coordinate of relative position of the two circuits,
assuming each to be rigid, we know that F, is 4,4, %, and if ¢
be a coordinate of form of each circuit regarded as flexible, but

]
alone in the field, we know that 7, is 3 [E » and therefore

2 dg
dg 4,2 dL dM i2dL
Equt fise 5 dt1+ L +; (ilt2

Therefore the total increase of kinetic energy in the field electric
and mechanical is

%(%(L1i12+2]l[z'11'2+ng‘22)dt+(l‘ T T = P

2 dt A+
shic) p e, ! 2 4 ;
or W (L2, + Mi,)dt +7, El—t (Lyi, + M) ds.
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And therefore the total draw upon the batteries per unit time is
B g dxe Ly ey :
hy (L%, + M)+ C¥7 (Lyt,+ M)

Equating this to the known total draw per unit time, or
B+ Eyiy, we get

S oA d . ; . & 4 E
E111+E2"2=7'1"ﬁ(]‘1"1+ﬂ[’z) +7’2% (Lx i+ Me,)-

Now Z, and E, must be such functions of 7, 4,, and the
coefficients defining the ecircuits, that on interchanging these
quantities in the expression for Z, the expression for Z, must
result and conversely, whence it follows from the last written
equation that the two following equations must be true, viz.

e
A=awm+mg=£h

E,= dili (L2i2+Mix)= %'
881.] In most of the ordinary cases of current fields which
present themselves for investigation the quantity W, or the
potential electric energy existing in the field is inappreciable
in comparison with 7, the electro-kinetic energy, or in other
words, no appreciable error results from neglecting K. It is
quite otherwise, however, with R the dissipation coefficient.
This is always of sensible magnitude, so that for all except
purely ideal circuits the correct expressions for the electromotive
forces in the two current field are

dp A
E=§+&w
dp. :
Ezz:di:-l- Rz’l«,;

when the potential energy or /7 is neglected.

From the Oersted law of the equivalence of action of a
uniform magnetic shell, and its equivalent current upon any
other shell or current, we infer that if a closed ecircuit with
current ¢ were situated in the field of a magnetic shell whose
magnetisation is always uniform, though with either constant or
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variable strength ¢, the electromotive force Z in the circuit
required to maintain ¢ would be expressed by the equation

E=%(Li+M¢)+Ri.

882.] If the circuit connexions with the batteries were de-
stroyed, the above written equations would become

Ao B 3 2 : W o :
7 (L + Mi)+ R4, =0 or Rii=— 7 (L7, + M),
d ! : P % d 4 !
and d—é(Lz"z"‘M%)‘l‘Rzzz ==10PWOT =N = - (Lyty+ My);
whence from the analogy of the equation B¢ = Z in a steady
ot &y : : :
current, the quantities — 7 (Lyi,+ Mi,) and — %(1}2 iy+ M1y)

are said to be the electromotive forces in the circuits arising
from induction; this use of the term electromotive force is
analogous to the use of the term centrifugal force in ordinary
mechanies.
If only one circuit ¢, existed in the field, the equation for the
electromotive force in it would be
d

B =2 (Li)+ Ry,

and if there were no battery connexion this would give
Ag=-%@my
whence it follows that the coexistence of the second ecircuit 7, in-
creases the electromotive force in the circuit of 7, by — %(M Ig)s
or in the case of a shell by — %(M ¢)-
The quantities — %(Mz‘) and — %(M ¢) are therefore re-

garded as the inductive electromotive force of the current or shell
upon the current 7.

383.] Maxwell has arrived at the same expression for the
electromotive force of induction in the case of two closed circuits,
but from a much more exhaustive and accurate investigation.
He gives in the first place an account of Felici’s investigations
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on Faraday’s Laws of Induction, from which it appears that two
closed circuits 4 and X possess the reciprocal property that the
induction of 4 on X is equal to that of X on 4. In this con-
sists the distinction between the case of two closed circuits and
that of a circuit in the field of a magnetic shell.

Again, whereas it has been assumed by us that the electro-
magnetic force between ecircuits carrying currents is the same
whether the circuits are in rest or motion, i.e. that, when the
intensities of the currents are given, the electromagnetic force
is a function of the coordinates ¢ only and not of their time
variations, Maxwell justifies this assumption by the results of
experiments especially conducted for that purpose.

He then assumes that the current intensity, called by us i, is
the time variation 7 of a coordinate of electric position y.

And he regards his electromotive forces as forces producing
or tending to produce changes in 7 and y in the same way
as impressed mechanical forces tend to produce changes in ¢
and ¢. :

On these hypotheses he investigates the field of two cwrrents
by the application of the Lagrangean equations for ordinary
dynamics, assuming, as in our first case, an ideal field in which
both & and K are zero.

The total electrokinetic energy 7, of such a field is a homo-
geneous quadratic function of the #’s and ¢§'s with coefficients
functions of the #’s and ¢’s.

He shews, as will readily be admitted, that the #’s or
electrical coordinates cannot enter into the expression.

He also shews, from the experimental fact that the electro-
magnetic forces are independent of the ¢’s, that the expression
for 7 must be of the form 7, + 7', where 7, is a homogeneous
quadratic function of the 7’s, and 7, is a homogeneous quad-
ratic function of the ¢’s.

384.] Suppose then that, the field being at rest, all me-
chanical or visible motion is prevented by the application of
the requisite generalised component of force (#')) corresponding
to each generalised coordinate g, where I is therefore equal
and opposite to the electromagnetic force Z.

VOL. II. H
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The only part of the kinetic energy 7'is electrokinetic or 7.
Therefore the Lagrangean equation

d A7\ 4T
a(a) =9
becomes in this case

D e T
S o Fr=_F
ar,
or dqe =F H
whence, by the reasoning above employed, we arrive at the
equation L.i2 . & L.i2
Ty 121 + Mii,+ %
Therefore, when there is mechanical motion, we have
Lyi} oy Ly
I=7 4T = -—2——+Mm,+ —2—+ Ty

where 7, is a quadratic function of the ¢'s with coefficients
functions of the ¢’s, or in Maxwell’s notation

L Ca Lkt
T= 'El 91+ My, 9, +'§£ 9+ T
If, then, the system free to move were acted on by any electro-
motive forces ¥; and ¥,, we should have
dt'dy dy M didy, dy

e
or, slnce —— 15 Zero,
dy

L 3 . :
E‘t(Ll?/l'i'ﬂ[yz): Y, Lo+ Myy) = Y5
i.e. in our notation
d . h d 3 :
p7 (Lyt,+ Miy) = By, 7 (L2, + M2y) = E,.
These results indicate, as previously shewn, the existence of
inductive forces in the two circuits equal to — ‘% (1i;) and
& sk .
pel (217,) respectively.

385.] The total draw upon the batteries per unit of time is,
as we know, F,i,+ B, i,.
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If the variation —(M 4,) vanish after a short portion of the

interval 7, so that at the end of the time ¢ the magnitude of 7,
becomes inappreciable, then (2) becomes

R, f Gydt = (M), — (M)
The quantity f iy dt is called the integral induced current,and

its magnitude depends upon the difference of the initial and final
values of M3,

If, for instance, the two circuits be in fixed position, and a
sensibly instantaneous current ¢, be suddenly excited in C; and
then maintained constant, we have

¢
R, f iydt = — Mi,.
0

And if the current in Z; remaining constant the value of 2/

vary, then ¢
+ R, f iy dt = (M,— BL)i,.
(1]

If the circuits consisted of long straight parallel wires, or of
circular wires such as would result from sections of the same
cylinder, it is easily seen that the induced current in C, is
such as would resist the motion of C;.

This is a particular case of Lenz’s law mentioned in Chapter
XIX.

387.] By reasoning precisely as in the case of the two circuit
fields, we get for a field of any number of such circuits

T,:%f{lf’ +Gd +Hdz}ds

where the integration is extended round all the circuits, and 7,
G, H are the components of vector potential of the whole field
at any point of any circuit.

In a field of two closed currents 7, and ,, it has been proved
that the inductive electromotive force in the ecircuit of ¢, is

dp,
equal to — % , where p, is the ¢, component of momentum of

the field, and is equal to Z,¢, + M3, or L(ZZTTG
) 1
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If there be any number of closed currents it may be shewn, by
precisely the same reasoning as in the case of two currents, that
the inductive electromotive force in the circuit of any one of

them, as 7,1is — s =’ where p = Li+3S M7 or %; that is, that the

d

In the case of two closed currents, 7, and 4,, it was shewn that
%7.1" or Ly, + Mi, was equal to the flux of magnetic induction
through any closed surface 8, bounded by the ecircuit of 7, that is
to say, to the surface integral / f {la+mb+ne}dS, where a, b, ¢

are the components of magnetic induction of the whole field at
any point of S, or to the line integral

f{F +Gdy+lldz}d

round the circuit of ¢,, where 7, G, H are the components of
vector potential of the whole field at any point of that circuit.

So by reasoning in all respects the same, it may be shewn
that whatever be the number of closed currents in the field,
Li4+=Mi or %Z_Zi: is equal to either of the above expressions,
in which @, §, ¢ or F, G, H refer to the whole field.

388.] We proceed now to the investigation of expressions for
the electromotive force in a closed circuit, either at rest or in
motion, in a varying magnetic field.

First suppose the circuit to be at rest.

We have seen that the total electromotive force in any closed

e - d
circuit is — —?, where

d
1= ot st
and the integration is taken round the complete circuit.
That is to say, if o be the total resistance in the complete
circuit caleulated on the principles enunciated in Chap. XIII,
the current 7 in the circuit will be given by the equation
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T dF de dGdy dHdz
‘”-—f{m'a”f'm;”fzm} . @A)

If at each point of the circuit there were an electromotive
force with components P, @, R, and if o, were the resistance per
unit length in the circuit at that point, we should have

3 da d dz
012=P'J§+QE%+R£3

¢ being the same at each point of the circuit and equal to the
value given by equation (A).

The magnitude o, varies generally from point to point of the
circuit, hence we infer that

dF d@G dH
re-Gl Sag i

where f ( + Q’ o R’ )ds =0.

From this equation 1’5 follows that P’ , @, R are derivatives of
some function v, which satisfies the condition that
dF dx  dG dy dH dz  dy
s Y aas Y ads tas

Ly

is constant throughout the circuit, and therefore that the most
general forms of the expressions for the components of the

electromotive force at any point of the circuit are given by
the equations

P=—— — 1, Q=——-'— ’ BR=—e— ——.

389]. In the next place, suppose that the circuit is not at rest,
but is varying in form, or position, or both, from time to time.
Consider any element s of this changing circuit. The electro-
motive force of induction in ds may be regarded as the sum of
two parts which may be separately calculated, viz.
(1) that arising from the intrinsic variation of the surround-
ing field and which would exist if the element ds were at rest ;
(2) that arising from the motion of ds.
The first has for its components the magnitudes
dF da a

)

TI@ T T

)
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or more generally,
d_li' d\[/ 51_61" d\[r dH d\[r

dt  dx’ dt dy Tdt  dz’
dF d@ dH s (e
where — AT > and 7 e the time variations of the 7, G, H

of the whole surrounding field (including the remainder of the
circuit) at ds.

890.] To calculate the second, we observe that it must be the
same as if ds were itself at rest, and the remaining field un-
changed in all other respects, moved in a space animated with
the reversed motion of ds.

Hence, if @, g, 2 were the component translational velocities
of ds, and w,, w,, w; its component rotational velocities, the time
variations of ¥, G, and H, referred to axes fixed relatively to the
element and instantaneously coinciding with those of reference,

would be, for
ar . ar dF
da + dy v+ dz
with similar expressions for G and H, since F, G, H are com-
ponents of a vector.
Therefore the components P, @, B of the electromotive force
in ds arising both from the variation of the field and the motion

of ds are given by the equations,

— 45+ w, @ —w,H,

—P=¢%§+y%+ (;lZF+O)SG w2H+‘g d_;[/,
with similar equations for @ and A.
Since %—gj—:—c and (fif if b, we get
—P = m%g+_/(g+zd —cy+bs+ o, G— m,H+‘le+i‘ld—;k,
_Q_xdF yg%+‘%{—az+cm+wlll—wslf’+d0 ((ii./\’,
—R—wd +yilif +z%—-——bw+ay+w,F le'+dH+ﬂ

891.] The electromotive force round the eireuit, or

[eE+e +r)as
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becomes in this case, since the continuity of the circuit requires
that

dz _ dz dy dy _  dw dz  dz dy dx

da - Mds B’ & NG Yae ﬁg_wlfi—s__w*ZE’
dF\dz dy o \ dz?
f{((oy bz)— B +(( —cw)—— ~‘;—+((bm—a )
—fdis(Faa+Gg+Hz)ds.

And the part under the integral sign in the last term being
a complete differential the term itself vanishes.

For closed circuits, therefore, from which alone our experi-
mental evidence is derived, it is indifferent whether we take for
P, Q, R the values obtained above, or those given by the simpler
equations,

C o g SR R e e

P-cy—bz—-—f—lt—-%, Q_az—cx—%—@*,
R R
B

and these simpler expressions are most usually adopted.

392] We proceed now to determine the electromagnetic
action on a closed circuit or any element of such a circuit in
any magnetic field.

By Art. 326 we know that, if a closed circuit with current
of intensity ¢ be situated in a magnetic field, the total increase
of material kinetic energy corresponding to any variation in
the form and position of the circuit is equal to the corresponding
variation in the integral

f(F +Gd3’ +I{ T )ds;
that is to say to

Z{ dF o dGdy dez) (dF de | dG dy ¢ glild_z)a
Gl T Tk dy ds dy ds © dy ds
dFde  d@ dy | dll dz
+(dzds dzd_; dz d)s,%

f {Fa— + Gady +II§ZZ}
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(,dF  dy dz d@ dz dx
fz{ = + cys—bd—8)6w+(a—+a-—s-—c%)6y

dH . dxe dy
+ (— + ba—a;ﬁ)bz}ds

+fi{(f1§§ )ae+ (F—-—H_)a¢
+ (G——F )8\}/}(18,

that is to say it is the same as if each element ds were acted
on by the last mentioned force together with another whose

components are
z@ ds, © C_l.g ds, 1 ‘iérds’
ds ds ' ds

and also a moment whose components are

(Y -0F) e (PG -nF)a (05— Fil)

—d;d 7—(18, z—d;ds

separately vanish for a closed circuit, the component forces on
the whole circuit are the same whichever view be adopted.

Also, since the total moment round the axis of z on the second
hypothesis is equal to

fz{ dF dG’+de de+( _z

Yas ~ s
—w(a“i" Sl

i.e. to f{y(c—— -—-) g: Zw }ds,

it follows that this is equal to the total moment round the same
axis of the forces existing on the first hypothesis, and similarly
for the moments round # and y

393.] It appears therefore that in dealing with a complete
rigid circuit we may take indifferently for the action on each
element either the component forces obtained in the second
instance with the corresponding moments, or the component
forces given by the simpler expressions

Since dF de f dH
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L ol dz o de T de .y de
z(o%—bd—s)ﬁs, z(azg —cd—;)as, z(bﬁ—aa%)as,
with moments zero.

So long as experiments are conducted with rigid circuits it is
impossible to decide between the two results, but certain experi-
ments on flexible circuits have been interpreted as pointing to
the conclusion that the electromagnetic action on each element
is a single force perpendicular to the element, and therefore
that it is given by the component forces last written.

894.] In these investigations we have supposed that we were
dealing with circuits in linear conductors (like copper wires)
either rigid or flexible, and have determined the electromotive
forces and electromagnetic actions on each element from the
condition that such forces and actions shall be consistent with
certain known experimental results when the whole circuit is
considered.

If, instead of a single linear circuit, or an aggregate of de-
tached linear circuits, we had to deal with a continuous con-
ducting mass, we should infer that at each point of such a
mass there is an electromotive force whose components are the
P, @, B determined by the preceding investigation, and there-
fore that elementary currents will be set up within the substance,
such that if #, v, » were their components and o the resistance
referred to unit of area at any point,

ou=2P, v =@, ocw=R.
If u, v, w satisfy the condition
du dv  dw
p + d—y <+ = 0
at each point, we may divide the whole mass into closed circuits
of appropriate transverse section a from point to point, and
such that 7a is the same throughout each circuit, where

I= W+ 4+wk
But 7a corresponds to the ¢ of the linear ecircuits hitherto

considered, and
.dx dx
zads = I(—i; ads = udxdydz, &e.
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Therefore each volume element dzdydz of the substance is
subject to electromagnetic action either represented by forces
X, ¥, Z and moments L, M, N, where

X:{ e %'* o bw)}dwdydz,
= (Hv-—G’w)dmdydz,
&e.,

or by forces perpendicular to the element and the magnetic in-
duction, viz, X = (ot buc)dacly
with similar values for ¥ and Z.

895.] These results have only been strictly established for a
field of closed currents. Maxwell, indeed, maintains that with
the extended meaning of current described, Art. 263, every
current in nature is a closed current, and, whether this be
conceded or not, it seems clear that in any field the displace-
ment current, if it exist, should be included with the condue-
tion current in estimating the phenomena.

In point of fact, most substances in nature are neither perfect
conductors nor perfect insulators, the large majority combine
both properties, and therefore admit, as explained in the article
above mentioned, both of conduction and of displacement in
different degrees.

If P, @, and R are the components of electromotive force
at any point of such a substance, there will be, supposing the
substance to be isotropic like glass or resin, an electric dis-
placement at that point whose components f; ¢, and % are
K K
47r
called the dlelectnc inductive capacity ; when the substance is
wolotropic like a crystal, the relations between displacement and
force are more complicated.

Hence the total components of current #, », w will, in ordinary
substances, be determined (as shewn in Chap. XIV) by the
equations

Q, and —R respectively, K being a scalar quantity

df dg dh
u—p+ ’ v—_fq+d—t-, 'w—-r—l-—t3
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where p, ¢, r are the componenf‘srof the true conduction curreht,
and are determined in accordance with Ohm’s law by the equa-

tions p=0CP, ¢=0CQ r=CR,
C being what is called the ¢ conductivity’ of the substance, and
the reciprocal of o the specific resistance per unit of area.

896.] The quantities /, g, and /% are in fact connected with p,
¢, and 7 by the equations

K
$= an0? 9= e? i 70"

The ratio E,K will vary according to the nature of the sub-
stance, from zero in perfect conductors to infinity in perfect
insulators.

This remark is not inconsistent with the statement that in
electrostatical questions we pass to the perfect conducting limit
by making K infinite. The apparent inconsistency is due to the
different units employed in the two cases, as has been already
shown.

The recognition of the displacement components f; g, # with
their time differentials £, g, 4 necessitates the introduction of the
electric potential energy W/, hitherto omitted for the sake of sim-
plicity, in the investigation of the inductive forces of the field.

If we regard, as above, f, g, 4 as possessing the properties of a
true current, it will follow that the component inductive electro-
dF e
IR " I

- [—fl_tb_r when the %, v, and w in the expressions for £, G, I are

composed of the conduction and displacement component cur-
rents, or are p+f, ¢+, 7+ A respectively.

The dissipation D or heat conversion depends only upon p, ¢, 7,
and the potential energy # only upon f, g, %, the former being,

in fact, /‘ff (fa (P +¢*+72) dt) dadydz,

and the latter being
i—;\/‘f (P4 + 1) dedydz.

motive forces of the field are still of the form —
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397.] The magnetic force and magnetic induction are iden-
tical at all points where there is no magnetisable matter.

If there be such matter (the magnetisation being due only to
induction) then, as we know from Chap. XVII, the components
a, b, ¢ of magnetic induction are connected with the components
a, B, y of magnetic force by the equations

a=pa, b=pp, c=py,
were p is a scalar quantity called the magnetic permeability.
In this case we have
ﬁl—c-—d—bz dmpy -t-ig—iz—c:hmv ﬁ—§g=47w.w
dy dz S G S ) g
For in this case
a=d+d, B=p'+p", y=v+Y
where o/, B/, ¥ arise from the magnetic action of the currents in
the field, and therefore satisfy the equations

dy g o’ dy a8 dd

dg}/’_dz = 47U, ‘-&z—_?i——:‘i %—-@=4mv,
as proved above.

And o”, B”, ¥ arise from the induced magmetism, and there-
fore satisfy the equations

i ,y// BII do” dy’ 4dp” do”
dy  dz de dw de dy

The reciprocal (i) in the current field is analogous to the

coefficient K in the electrostatic field.
As the general value of the electric potential in the latter is
expressed by the equation

el pdedydz
by O S0

so the general value of the #-component of the vector potential
is expressed by the equation

F= M/‘/‘fudxfydz,

with similar values for G and H, and the components of

magnetic induction are

_dH _ag .
—-E; —@’ Coy
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6 and ¢ . These conditions together with equations (I) are
satisfied by the assumption

F,=y.ff S dndy d, G,=psz Y dody d,
H1=pff ?dwdydz.

The difference of the magnetic forces (ay, B,,y.) and (o, By, v5)
in the direction of the normal on opposite sides of the surface is

47 {l(A—A")+m(B—B’')+n(C—C")},

=%y s
where and="""¢ and 47rA'=“'“, la’, &e., &c.
Therefore
’ V'—l H',—l ’ 7 ’
ay =a2+-M—l(la+mb+nc)— o 1 (o’ +mb" + ne),
%:ﬁ +... &ec. |
Kop
Also —’,=£l~‘;
n
d_a p—1 wW—1
.—=-—+l{ la+mb+ne)— la’ b '}. II
= 1 b 00) = Lt )} ()

Hence F, G, I at any point of the field are to be determined
from the equations
‘P=F+F, G=G+6, H=H4+IH,
where F,, Gy, H; are determined as above, and %, @,, H, are
determined from the equations
N2 F e Ve G =2V =108

together with the three superficial equations corresponding
to (II). '

899.] The total energy Z in any field of electric currents in
which there is no material motion consists of three parts :

(1) The electrokinetic energy 7, which is equal, as we have

shewn, to 1
Efff{ﬁ‘w+6’v+ﬂw}dxdydz.

(2) The dissipated energy or heat D, which is equal to

fff %f “0”+9’+T2)dt}dwdydz.
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dE dT dD dWw
f S8 RN i
Therefore g 7 et 7 + 7 0

400.] If there be material motion in the field, then we know

that the time variation dT" must be increased by the quantity

f/ Pu+ Qv+ Rw} dwdydz,

where P/, @', R" are the additions to be made to P, @, £
arising from the motion of the element.
Now if we are dealing with a field of closed circuits, we know

that (fff{p’u+Q’v+R’w}dwdydz)

is equal to v f (dF da dG'dy dH dz) d
PR PR TR P TR T
where the line integral refers to any one of the closed circuits.
Also if ¢ be a generalised coordinate of form or position of the
; d{ 235 j?, and similarly for %70 and (tli_tlg
But in this ease there is, as above proved, material kinetic
energy Tm, such that

dF dx dG dy dH dz
Ef(dt wtaa T a s

circuit

dr dG dH
where il iy have the last mentioned values.

Whenee it follows that

fff{P’u+Q’v+R’w}dwdgdz+ %T-—'-"=

And we get as before
dE _dT, dD  dW  dT,
Pl R MR R
* As shown above, Art. 891, .
SS S {Pu+ Qv+ Rw} dzdydz in a field of closed circuits

=/ [/ {(ci—b)u + (az—cd)v+ (bi—ag)w} dodydz.
Also, by Art. 392,

dT’" =/f[{ X+ Xj+2:} dedydz

—fff{(cv—bw)a:+ (aw—cu)g + (bu—av)i} dedydz,
whence the result as in the text.

=0
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each point of § independent of the motion of the element at
that point *.

402.] In the case of a substance in a varying magnetic field
where there is no material motion we have seen that P, @, R, the
components of electromotive force at any point, are determined
by the equations

po dF_d¥ o d6_d¥ o 4 _dy
T T at de’ —chel T S
gP Ty gn
Therefore = +c—l:1; + Ez-—_v ¥,
since cﬁ, i
> i P
But we also know that
K K K
f=4-7rP’ QEQ’ h=E‘R;

whence it follows that
a7 df dg | dhy ’
Tkt aa ol .
Now if p be volume density of electric distribution in the field
at the point considered, we know that

df  dg . dh_
and therefore %ﬂ p=—V=iy.

Whence it follows that y is the potential of the free electricity
in the field.

403.] Again, if there be material motion in the field we have
proved, Art. 389, that

AF 4G  dH

—P=u Y +9 I + 2 %
with similar expressions for @ and R.

If the substance be of invariable form we know that o, w,, 0,
have the same values throughout, and also that

* This proposition was first demonstrated by Professor Poynting, D.Se., F.R.S.,
in & paper published in the Transactions of the Royal Society of London for 1884.
It being proved, as above, that the time variation of the energy within a closed
surface is expressible as a surface integral over that surface, Professor Poynting
assumes that the flow of energy through each surface element i the argument of
that surface integral. This theory, with many interesting consequences, has met
with general acceptance.

dr d
—cy+ b3+ w,G—w,H+ iy + %,

1






CHAPTER XXII.

THEORY OF INDUCED CURRENTS ON CONDUCTING SURFACES.

ArticLE 404.] In Chapter XIX we considered the case of in-
duction of electric currents in linear closed conducting circuits.
If an electric current be generated in one circuit by a battery,
we find that simultaneously a current, called the induced current,
is generated in any other closed conducting circuit in the field.

Similar phenomena of induction present themselves if instead
of linear conductors we have in the field solid eonductors or
hollow conducting shells of any shape. The problem now pre-
sents itself, to determine the laws of this induction.

405.] In Maxwell’s view, as already stated, the total current
at any point consists of (1) the true conduction current whose
components are denoted by p, ¢, 7, and (2) the displacement
current whose components are f, 4, 4. And all currents as thus
conceived are closed currents, so that

du dv dw
PR PR
universally, if = p+f, v=g+4§, w=r+4

Again, if P, @, R be components of electromotive force,

p=CP, ¢=00Q r=CR,
KdP ., KdQ ; KdR
Icaa Tma Tama
if C be the conductivity, K the specific inductive capacity, of the
medium.

In the present investigation we regard space as sharply divided
into conducting and non-conducting space, C being infinitely
greater than K in the former, and zero in the latter. Also the
K in dielectric space is inappreeciable compared with C in con-

0

ductors, being proportional to 713, where 7 is the velocity of
light in the dielectric.
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It follows that in forming If;\ G, H, the components of vector
potential of the currents by the equations

F= p.ff ;dwdydz, &ec.,

we may neglect all the displacement currents /> 6, h as con-
taining the very small factor K, unless the time variations of the
electromotive force are comparable in rapidity with the vibrations

which constitute light. If that be the case f, or ZJ% g, may
be appreciable although K be inappreciable.

We may then in calculating F, G, I, on which magnetic
phenomena depend, treat the conduction currents as the only
currents, and as alone satisfying the equation of continuity

duw dv dw _
wtiyt®m T
with its corresponding superficial equations. (See note at end.)

406.] A distribution of electricity on the surface of a con-
ductor is on this theory to be regarded as the terminal polarisa-
tion of the dielectric. The displacement currents will generally
cause the superficial distributions and their statical potential to
vary. Now the variation of the statical potential depends on
the number of electrostatic units of electricity which pass through
_unit area in unit time. It, and the forces derived from it, will
therefore generally be appreciable, and have to be considered in
our investigations, although the magnetic effect of the same dis-
placement currents, which depends on the number of electro-
magnetic units, is inappreciable.

407.] Induced currents are always decaying by resistance : and
any conclusions reached on the hypothesis of there being no re-
sistance cannot of course correspond to actual phenomena. But
the currents are undergoing variation from two causes, (1) by
induction, (2) by resistance, and for mathematical purposes we
shall, where necessary, assume resistance to be zero, in order to
calculate the time variation of induced currents due to induction
alone.

0,
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Of Current Sheets and Skells and Superficial Currents.

408.] Any surface in a field of electric currents to which the
resultant current is everywhere tangential shall be defined to be
a current sheet. 'The space between two current sheets very near
each other shall be called a current shell, and the perpendicular
distance between the two sheets its ¢4ickness.

If at any point P on a current shell a line be drawn on the
sheet at right angles to the current, and da be an element of
that line, % the thickness of the shell at P, then the ratio which
the quantity of electricity crossing the area /da per unit of time
bears in the limit to da is called the superficial current at P, or
the current per unit of length. We will, where necessary for dis-
tinction, denote by #,, v,, w, the components of the superficial
current, retaining #, v, w for the component currents per unit of
area.

Of the Current Function.

409.] If we take for a current sheet the plane of #y, the con-

dition of continuity becomes, as is easily seen,
du, dwv,

dw t dy <
If that be satisfied at every point, there must exist a function

0.

¢, of # and g, such that », = %9; and v, = — ‘% This is
called the current function.

More generally, if the condition-of continuity be satisfied for
any current shell, there exists a function, ¢, of #, g, and 2, called
the current function, such that at each point on the shell

_, % d¢
T iy
_9¢_ 399
Sl B
— 20, d¢
B S

which satisfy both conditions, &, + mv,+nw, = 0, and, as will be
seen, the condition of continuity.
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_ffu‘ds_ff( 99 _mi%yas,
= [[30 -0 2)as
yig —ff( b ——-)dS

If the surface § be closed, we have by Art, 271,

/f n——m—)¢dS—O &e.
F=ff¢(m%_n @);ds,
G=ff¢(ni—z oy -l-dS,

_ff¢(l ! ~ds;

so that 7, G, H are linear functlon of the ¢’s with coefficient
functions of the coordinates. Evidently the same is true of the

ar

derived functions dF, — &e.
dy

dz

CoroLLarY. The vector potential due to any spherical cur-
rent sheet is tangential to any spherical surface concentric with
the sheet. For, taking the centre for origin, let z, 7, # refer to a
point on the sheet, #, 9/, Z to a point on the concentric surface ;

and let = (x— w')’+(y — )+ (e—2 )

Then _/f¢z/ ¥ 4s, _ffqb’”z’ o
H=ff¢yxpfyds;

and therefore #’F+ 4 G + 2/l = 0, which proves the statement.

And therefore

The Energy of a System of Current Sheets.
411.] The energy of any system of current sheets can be put

in the form
27 =fff(Fu,+Gvs+Hw,)dxdydz

extended over all the currents. But for every current sheet,
W,y ¥, w, are subject to the condition fu,+ mv,+nw, = 0. The
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«

expression contains therefore more variables than it has degrees
of freedom, and it becomes desirable to transform it, by substi-
tuting ¢, the current function, as the independent variable.
Given any system of current sheets, let us apply the theorem
of Art. 271, using the function F¢ for P of that article. That

gives
fF¢d£ds=ff(m % —n%)(F(ﬁ)dS,

the first integral being round the bounding curve of each surface
and the second over all the surfaces. That is,

fF¢ ds_ffF( ——-—n ¢)dS+ff¢>( ————-n———)dS

Treating G¢ and H¢ in the corresponding Way, we obtain
//{F(nd—(b- )+G(z——— —-)+H( l@)}ds
o -

_f¢(F— +G +Ildz)d
The first member is equal to 27.
We will now suppose all the surfaces closed. Then the second

term of the right-hand member vanishes, and therefore for any
system of closed current sheets,

dH a6 dF df dG@ dF
i AT R e b
Also if Q be the magnetlc potential and —al
d@¢ di dQ dH dF dQ (i | B (0

B e ey M e kR

Therefore
dQ df) asd
2T=_ﬁ l’__. +m —4n— A
4)( dy )

=—f/¢——dS

412.] Tt is necessary now to show that %% is continuous through

any current sheet. For this purpose it is sufficient to take the
tangent plane at any point for the plane of #, . We then have
dQ d&Q dF dG

dv — dz _dy  dmw
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N
i F=fff%dmdydz, G:fff;dwdydz;

that is, 7 and G are the potentials of imaginary matter of
densities % and v respectively. Therefore by the general theory

of potentié,l functions, d—]fand ﬁ, corresponding to tangential
dy dx ia

; ¥
components of force, must be continuous, although %Z- and =

may be discontinuous, at the surface. Therefore - is con-

dv
tinuous. It will be observed that 7' is expressible as a quadratic
function of the ¢’s with coefficients functions of the space coor-

dinates. For at every point ‘2—5: %—f, &c., are expressible as
linear functions of the ¢’s, and therefore % is so expressible.

Comparison with Magnetic Shells.

413.] The vector potential due to a magnetic shell of strength
¢ over a closed surface S, ¢ being taken as positive when the
positive face is outward, has for components

F=/]¢(m%—n%);d&
a=/f¢(n;—5_zgg)}ds,
H:ff¢(z%—m%);ds;

which are the same as the components of vector potential of a
current sheet with current function ¢ over the same surface.
It follows that the components of magnetic force or magnetic
induction due to the magnetic shell at any point not within the
substance of the shell are the same as those at the same point
due to the current sheet. And therefore the magnetic potential of
the magnetic shell differs from that of the current sheet by some
constant at all points external to the shell ; and by some, but
not necessarily the same, constant at all points in the enclosed
space.
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414.] The magnetic potential due to any shell of uniform
strength ¢ over a closed surface § is zero at all external points,

and —47¢ at all internal points. Such a shell corresponds to
no system of electric currents. The magnetic potential due to
any system of currents on § is the work done in bringing a
unit magnetic pole from an infinite distance to the point con-
sidered, and may (Art. 329) have any one of an infinite series of
values differing by a constant according to the route chosen for
the pole. It is not necessary for our purpose to define this
magnetic potential, as we are concerned only with its first
differential coeflicients, which are unambiguous. It would not,
however, be difficult so to define it as that the magnetic potential
due to the currents shall be equal to that due to the corresponding
system of shells at all points in external space.

415.] If § be any closed surface, Q,the magnetic potential due
to any arbitrary magnetic system outside of S, there exists a de-
terminate distribution of magnetic shells on §, whose magnetic
potential is equal to —Q, at all points within 8.

For let ¢ be the density of a distribution of matter over §
whose potential has the value Q, at all points on §. That
determines ¢, and the potential of the ¢ distribution is equal to
Q, at all points within §.

Let ¢ be that function of 2, , and 2 of negative degree,
which satisfies the condition VZ¢ = 0 at all points external to
8, and the condition —?Z%) = ¢ (the normal being measured in-
wards) at all points on §. This function ¢ is possible and deter-
minate by Art. 275. Then ¢, so determined, is the strength
of the required shell on S, being taken as positive when the
positive face is outwards.

For let @ be the magnetic potential of the system of shells on
8 whose strength is ¢. Let 7 be the distance from any point P
within 8. Then at P

Q= —ff¢%(;)ds,

the normal d» being measured inwards.
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But since P is within § V*(3) =0 at all points in the

external space. Also V2¢ = 0 at all points in the external space.
Therefore by Green’s theorem applied to § and external space,

ff([) %(;)dS—f/f¢V“(l)dxdydz
_f/1d¢dS f/f Vipdxdydz.
And therefore

ff¢dv( ) _— f/1d¢
and therefore 4 __ffd)a(—)dS;
L _ffl dd)
i

= -0,

416.] CoroLraRY. There exists a determinate system of currents
on any closed surface S, whose magnetic potential, together with
that due to an arbitrary magnetic system outside of S, has some
constant value at all points on or within §, namely, the system
of currents whose current function is ¢, where ¢ is the function
found by the method of the last articlee. We shall call this
system of currents #ke magnetic screen on § to the external
magnetic system.

It will be easily seen that we might reverse the problem, and
find a system of currents on § whose potential together with
that of an infernal magnetic system should have the value zero
throughout the infinite external space.

Egample. Let § be a sphere of radius a. Then the-value
of &, on § may be expressed in spherical surface harmonies,
including generally a constant term.

Then at any point on or within §

Q,=4,+24,7,.

But also Q_—ff1d¢dS_ fldd)

also Q=-Q =—-4,—24,7,.
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“

Therefore, by Art. 66,
a¢ _ _ 4,

And therefore in external space, at any point distant » from the

centre, 1 2n+ 1 n+1
""74}7 417 nt1 ( ) w ¥
and on §
o an g Sy kil iy
47 41 n+1

A4 :
The constant term E(; corresponds to a constant magnetic

shell over 8, which has potential —4, at all points within §,
and cannot be represented by any system of electric currents

on 8. For every other term f f Y,d8 =0; and therefore we may

take for the current function of the currents forming the mag-

netic screen
! l s2ntl 2n+1

47" ntl
from which the current at any point can be determined by
expressing Y, in terms of the usual surface coordinates.

417.] Before entering on the consideration of the general
problem of induction on surfaces, we will treat a simple case, that
namely in which we have a conducting spherical shell §, and
electric currents are generated wholly on an external spherical
surface §, concentric with &8,

Let %, v,, w, be the components of the given currents on &,
u, v, w those of the induced currents on §, %, G,, H, the com-
ponents of vector potential of the given currents, F, G, H those
of the induced currents. Let a,, @ be the radii of §, and §
respectively. Then the electrokinetic energy of the whole
system is given by the equation

o =fff{ (Fot F) (uo+u) + (Go'*'G)(”o'*"”)}
+ (Hy+ H) (wy + w)§ dedydz,
extended over all the currents both original and induced.

As the effect of induction alone apart from resistance, the
induced currents would come into existence according to the law

J.
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ddT _

didu = °

ddr _

dédv

ddr_

dtdw

with the condition that induced currents can exist only in the shell.

If we take the common centre of the spheres for origin, this
condition is

0  at all points on S,

fu+ 3—/fu+-z-w=0,
a a a

at each point in the shell.
It will be found in this case that if we determine #, v, w by

using the equations = 0, &ec., without regard to the con-

ar
dt du
dition, the values so found, in fact, satisfy the condition, and
correspond to a system of closed superficial currents on 8. They

are therefore the solution of the problem.
Si dT—-F& b ki —d—ﬁy—o & ditionall
ince — = F, &e., by making = — =0, &c., unconditiona ’y,

d
we obtain %1—?9 L %: 0, &c., and therefore since the motion is

from rest,
F,+F=0, G,+G@ =0, H,+H=0,
at all points on &.

Then the currents #,, v,, %, have a current function ¢, which
can be expressed in a series of spherical harmonics referred to
the common centre of the spheres. It is sufficient to treat one
harmonic term in this expression. Let therefore ¢ be a solid
harmonic of order z. Then, taking the centre for origin, %, v,
w, are the values on §, of the functions,

B
" a,dy a,dz
gt i i
W= de  adw
ydp =d¢

And therefore #,, v,, w, are spherical harmonies of order ».
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other closed surfaces §,,;,...8,, to be regarded as conducting
shells, on which closed currents are free to form themselves by
induction.

Let Q, be the magnetic potential of the given currents, Q
that of the induced currents.

Then " _ff(p(dﬂ %‘%)dso
_fqu( T dQ)dS

in which the first integral relates to the surfaces §,...5,, on
which ¢ is given at every point, and the second relates to the

For integrating by parts throughout the space within S, we have

f/:/ dH dG +(flf %)’+(dg d }dxdydz

ff{(mH—nG)(——— + (P - ZH)({(l: ‘flf)
+(16- mF)(E—(-i—F:}dS
_f/ (FVF + GV G+ HV* H)dadydz

f/fr-—+G +Hdz)(g ‘fZG (;H)dzdydz

If F, G, H be the components of vector potential of the currents u, v, w on 8,
determined by the method now under consideration, and of the external system,
the first term of the right-hand member is zero, because the vector potential is
normal to S, the second because there are no currents within S.

If the condition of continuity be satisfied by #, v, w on S, the third term is also

zero, and therefore the left-hand member is zero, and therefore % = Q_Cf’ &e.,

at all points within S. de
Therefore there exists a function x of z, ¥, z, such that within 8

deddex

Emger dy’ T T d
And since F, G, H are components of the normal, x is constant over S.
Al o 4T G aH _
X=@% "dy T@ "

at all points within §. Therefore x has the same constant value at all points
within 8. Therefore F= 0, G = 0, H = 0, at all points within S, and A = 0 at
all points on S. The method suggested can therefore never lead to a solution,
unless F =0, G =0, H =0 lead to a solution. This cannot be generally the
case.
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a complete screen. We are here considering only the law of
their formation.

419.] On this hypothesis, and neglecting for the present the
resistance, the magnetic force will be zero at every point within
any of the surfaces §,.,,...8,; it remains to consider the
electromotive forces.

Since the magnetic force is zero at every point, we have,
writing F, G, H for the ecomponents of the complete vector
potential, due as well to the original as to the induced systems,

ddF dd@ ddH__ddF dd@ ddH

dydt ~ dwdi’ dwde  dedt’ dadt  dydi’
at all points within the surfaces §,.,,...8,. It follows that
there exists a function , of @, 7, and 2, such that

_4F_dy a6 _dy _aH_dy

R T Sy | d e
and ddF d@ dH
VS a\@tetE ) >
at every point within any of the surfaces B, 50y S
aF 4@

all | .
Now o/~ and — v being the components of an

electromotive force, produce, according to the theory of electro-
statics, on the surface of the conductor § a distribution of
electricity having potential v, and therefore causing at all
points within § an electromotive force equal and opposite to

adF aa dH o o
the resultant of — o L - F and — S This distribution,
and its potential , will be invariable with the time as long as

dF
oy &e., are invariable,

We are thus led to expect that, in response to the variation
of the magnetic field outside of a conductor, there will be in-
duced on the conductor (1) a system of electric currents re-
ducing to zero the magnetic force, and (2) a distribution of
free electricity on the surface reducing to zero the electro-
motive force, at all points within the conductor.

420.] The potential function y at which we arrived in the last
article requires further investigation.
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statical distribution whose potential is x. For let P=P +P,,
and P, =§—X, then the forces P,, @,, R, are derived from the
w
potential x, and produce the effect stated. 7, @', R’ form wholly
closed curves within &, and do not affect the potential.
d¥, 4G, dH,

4R3.] Let now = 7 9, —d? AL be the components of the time
variation of vector potential of any magnetic system outside
of 8. Lt —, be their associated function for S.

dF d G dH

Let — i il e be the components of the time variation of
vector potential of the system of currents on § which forms
the magnetic screen to the external system. Let —y be their
associated function for §, then for the two systems together we
have a vector whose components are

d d d
Gt F), S(@46), = (H,+ 1)

with an associated function —(y,+v). And sinece by the

magnetic screen
d(F,+F) _ d(G, +G)

| - N &e.,
it follows that d(F +F) d(‘l’o+‘!’)
dt
(6, +6) d(wo+~ir)
dit dy
_MH 4 H) dWe+y) _
ds dz g

at all points within &, or replacing 7, + F by F, &e., and Vo + ¥
by y, we have dF  dy

The associated function to — -Zi—t » &e., is equal to the potential of

that distribution of free electricity on the surface the statical force
due to which is equal and opposite to the force whose components
ar

are ~ &e.
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\

And therefore since :
dF 4@ dH
T S T Ry
are components of an eleetromotive force, we have a statical
distribution formed on & whose potential is — .

There may of course be any free electricity in the field. But
we have to do with it only so far as it appears to be required by
the conditions of our problem. And from that point of view v
is a single and determinate function of 2, g, 2, which is known

when &ec., are given.

F
dt’
424.] According to this theory, superficial currents, and none
but superficial currents, are continually being created on any
solid eonductor by direct induction. We may regard the solid as
made up of an infinite number of thin conducting shells, succes-
sively enclosing one another. The same currents are generated
on the outer shell from instant to instant as if it were a hollow
shell, and these are on their creation, and were there no re-
sistance would continue to be, a complete magnetic screen,
effectually preventing the interior strata from becoming affected.
But in fact the currents in the outer shell decay by resistance,
and cease to be a complete screen. By this means the interior
portions of the solid become gradually, but perhaps within a
time sensibly instantaneous, pervaded by currents.

The Effect of Resistance in Conducting Shells.
425.] We have hitherto supposed resistance zero, and calculated
the effect of variation of the external magnetic field. It comes
next in order to consider the effect of resistance alone without

variation of the external field.
In any system of currents in a conducting shell Ohm’s law

requires that the equations

Ga = AATH c”l_‘?
a'u——’;ur,——ﬁ—dx:
o dG@ d¥
=== ——— A
¥ ki b d  dy (4)
o dH d¥
ow= w‘:: ——

T e
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in which o denotes the specific resistance, be satisfied at every
dF dG dH
at’ dt’ dt
Let us suppose the shell to be of uniform material and o
constant. Then we have by differentiation
du dv dF dG’ dH,
ds Tdn + ) & dt ( )
at all pom‘ns Wlthm the substance of the shell. If therefore the
currents are derived from a current function, and if 7, G, and H
relate to any varying magnetic system, including the currents
in the shell themselves, it follows that VZ¥ =0 at all points
within the substance of the shell.
But also multiplying equations (A) in order by /, m, #, and
adding, we have
ar d@ dH d¥

point by some value or other of — > and P,

+ V¥ =0

= — o (lu+ mv + nw)

=0

and therefore ¥ is by definition the associated function to

aF dG dH

Gt by a0 0
"Any system of closed currents in a uniform conducting shell

derived from any arbitrarily assigned current function can be

caused by the electromotive forces due to some varying magnetic

system, including the currents themselves, with the associated

function belonging to those forces.

If, however, it be prescribed that 7, @, H relate exclusively to
the system itself, that is, if it be a system decaying in its own
field in the absence of external forces, the equations (A) cannot be
satisfied unless o, or the thickness of the shell, be suitably chosen

: di g dF 4G df
at every point. For in this case g nd — kb and there-

fore also Z—;ﬁ’ » &e., are expressible as linear functions of d;;b
Assuming them so expressed, and ¢ and ¢ and % arbitrarily

given, the equations (A) express two independent conditions

» which we denote as heretofore by .

which the single unknown quantity g—f has to satisfy at each
point on the surface. This is not generally possible. But if 4,
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the thickness of the shell, or o,\ be also disposable, then o or 4
and ;ﬁ are determined by those equations.

We may conceive a system in which these conditions are
satisfied, and continue to be so during the whole process of
decay, in which therefore equations (A) hold true when differenti-
ated according to /. We might call such a mode of decay of
a system of currents a nafural decay. The complete solution of

any such problem involves the determmatlon of (i) or ¢ as a

function of the time, which can only be effected in spemal cases.

426.] We will here consider the case in which the currents
are such and the resistance is so adjusted at each point of the
conducting shell as that all the currents decay pari passu,
bearing at every instant during the process the same proportion
to one another.

If this be the case, we shall have R
du, _ dv, dw, UN;
e e T A

where A is a constant proportional to the resistance. ‘A@Ehe"
same law must hold for all linear functions of #,, v,, »,, so tha

dF do aQ )
dt }\F &c, ;iT———A(I), alld Td—t-——)\g,
and since 7' is a quadratic function of #,, v,, »,,
ar
T =—2AT,

expressing the rate at which heat is generated in the decaying
system. Also if 7}, G,, &c. denote the initial values of those
functions when Z = 0, we shall have at time ¢

= Fae=20 Lo yand T—_ T ves2rt,
The constant A is called the modulus of the system.

Any system of currents in a shell which has this property of
decaying proportionally in its own field shall be defined to be a
self-inductive system.

427.] We proceed to investigate the conditions that a system
may be self-inductive, and its properties when it is so.
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Let us denote by y the associated functlon as defined in Art. 420,
dF 4@ PG af
P A s
Also let x be the associated function to —F, — @, and — H.
If the system be self-inductive,
%T = —)\F, &e., and (fl_\.’llcj = —)\-(ji—)m(, &e.

The equations (A) become in this case
Gt % dy
zua —A(F-l" %),

to the vector whose components are —

b
Uws=)\(H+ c(li_x)’

d
o.'va':)\ (G+ d_;(),

and therefore

dew & o
’LI,. = /v‘ = wa = h—hl . . . . (B)
428.] Now if for any conducting shell we choose an arbitrary
current function ¢, the quantities #,, v,, w,, ¥, G, H,and x are

all determinate at every point as functions of ¢. The vector

d d d
5 G+d—;( #4528

whose components are ¥ + G+ s H +?Z- is necessarily in

the tangent plane at every pomt because
IF+mG4nH = — d—x
dv
by definition, but it is not generally in the same line with the
resultant current. But unless it be in the same line with the
resultant current the equations (B) cannot co-exist, and there-
fore the system cannot be self-inductive.

The equations (B) then express the condition which the current
function ¢ must satisfy, in order that the system of currents
derived from it in the given shell may be capable of being made
self-inductive. They express only one condition, namely that
two lines, both ascertained to be in a given plane, shall coincide.
It may be expressed by the single partial differential equation

dx~do dy\d¢ dxyd¢o
(F+ Pt P+ Bl g =
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at each point of the surface. This is a partial differential equa-
tion in ¢ only, because F, G, /I and x are determined if ¢ be
given.

429.] As there are as many disposable quantities, namely the
values of ¢ at all points on the sheet, as there are conditions to be
fulfilled, namely, the above partial differential equation at every
point, we may assume that for every surface § there is at least
one function ¢ which satisfies the condition. We shall see later
that if § be a sphere, and in certain other special cases, there are
many. If ¢ be any function which fulfils this condition, then
F, G, H, and x, derived, from it satisfy equations (B),

FeX gp X g X

dx d dy o

= = ne suppose,
Wi Vg W, @, supp

at each point on §. But @ generally varies from point to point
on the surface.

In order to make the system with ¢ so chosen actually se//-
inductive, we must so choose % as to satisfy equations (B) or

% = AQ at every point.

If o be constant, this determines the relative thickness at
every point which the shell § must have in order that it may be
self-inductive with the current function ¢.

If for any system of currents on a surface the tangential
component of veetor potential coincides with the current at
every point, the system can be made self-inductive by properly
assigning the thickness of the shell. For % is made equal and

opposite to the normal component of vector potential by defini-

tion, and therefore the vector whose components are +Z , &e.,
is the tangential component of vector potential.

Examples of Self-inductive Systems.

430.] (1) a sphere of radius a.
Let ¢ be a spherical harmonic of any one order, as . Then
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and therefore #, v, w are spherical harmonics of order #. And
therefore, by Art. 66,

ima

= m—l U,
__ 4ma
— é—nTi v,
__4m7a
= Zn—-]-I w,
and F: G: I ::u:v:w at all points on the surface.

The vector potential then coincides with the current, and
X = 0, ¥ = 0, and the shell, if of uniform material and uniform
thickness, is self-inductive with ¢ = 4¥, and 4 constant.

(2) 8 a solid of revolution about theaxis of z and ¢ any function

of z only which makes 6—2—‘: always of the same sign throughout 8.

For the currents are in circles in planes parallel to that of z, 7,
and so evidently are the lines of resultant vector potential, and
therefore the vector potential coincides with the currentat every

E 1 : |
point, and [-d%) being of the same sign throughout § the currents

are in the same direction round all the cireles, and so therefore
are the lines of vector potential. In this case x = 0 and ¢ = 0.
(3) In any case if ¢ be a function of z only, and if x, being the

associated function derived from it, %‘ = 0, the system is self-
inductive. .

For both the resultant current and the resultant of F + %,

&c., are in this case in the intersection of the tangent plane with
a plane parallel to that of 7.

F+§5 G+-d—x

Hence = = N i
Us Vg
ad B 3R
dz

An example of this is given later, namely, an ellipsoid with
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the axis of z for one of its axes of figure. And it is shown that
in this case the thickness of the shell at any point must be pro-
portional to the perpendicular from the centre on the tangent
plane at the point.

On Self-inductive Systems generally.

431.] We have seen that in self-inductive systems every linear
function of w, v, and w decays according to the same law. Now
Q, the magnetic potential, is such a linear function. Therefore
the variation of Q due to resistance alone, there being no varia-

tion of the external field, is given by ‘Z—? = —AQ.

But the variation of @, due to variation of the external field
in the absence of resistance, is given by
aQ 4o,
-~ ~dg
Q, being the magnetic potential of the external field.
Therefore for the whole time variation of Q, we have
aQ aQ,
b it AQ — =
from which © may be determined as a function of ¢ whenever
the law of variation of the external field is given.

Exampie I.  Let %—0 be constant. Then the equation be-
comes

aQ, A~
% +AQ =C,
C
or 9‘=)T<1—E-M)'

If we make A# infinitely small while C7 remains finite, this
represents the ideal case of so-called impulsive currents, that is,
a system of finite currents supposed to be created in an infinitely
short time, and C¢ represents the impulse. In this case the
equation gives Q = Ct, and Q is independent of the resistance.

If, on the other hand, we make AZ¢ very great compared with
unity, as we always may do by sufficiently increasing the resist-

ance, or the time, we obtain Q = g That is, Q varies inversely
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as the resistance. The resistance in this case plays a part
analogous to that of mass in the motion of a material system
under finite forces from rest.

Suppose, for instance, there be several conducting shells, and
a magnetic system external to all of them, whose magnetic

et a9, .
potential is made to vary so that 7[0 is constant. And sup-

pose that the systems of currents generated in the shells are
self-inductive ; then, according to the result last obtained, the
currents in the shells will, as the time increases, become in-
versely proportional, ceferis paribus, to the resistances. This
result agrees with the assumption with which we started, that
induced currents may be regarded as existing in conductors only,
because, although no substance is a perfect conductor or a per-
fect insulator, the resistance in so-called insulators bears a very
high ratio to that in metals.

Exaumpre I1. Let the potential of the external magnetic field
on or within the shell § be given by
), = 4 cos k¢,
where « is constant, and 4 constant as regards time, but having
different values at different points. Then at any internal point
we have, if the system of currents be self-inductive,

d Q> =0
T + s 2 +AQ=0.
Let A = kcota.
A CRS /)
Then —dT-i-—dT+KcotaQ.—0,
and Q,= 4 coskt.

To solve this assume
Q = (coskt+ g sinkz)d’.
Then we have, neglecting constant factors,
— A sinkt— A’sin k¢t 4 g4’ cos k¢ + 4’ cot a(cos k¢ + ¢ sin k¢) = 0.

And therefore q = —cota,
and A4 A"+ A cot?a = 0.
or A = 1 — A sin%a.

=2 1 4 cot®a v
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Therefore at any internal poinf:

Q = — Asin®a(coskt—cota sinkt)
= A sinasin(k{—a).

And for the whole magnetic potential at any point within §
Q,+Q = 4 {coskt+sinasin(kt—a)}
= A cosacoskt—a.

The field is diminished in intensity in the proportion cosa: 1,
and retarded in phase by 2—(17; of a complete period*.

432.] If X be very great compared with «, a becomes nearly
zero, and sin @ = a = 5)( In this case the internal field has the

same intensity, because cos a = 1, and nearly the same phase,
as the external field. This is the state of things to which we ap-
proximate as we diminish indefinitely the thickness, or increase
indefinitely the specific resistance, of the conducting shell. Now
we may conceive a solid conductor to consist of a number of
infinitely thin shells successively enclosing one another, and
apply the formulae above obtained to each shell. Let the shells
be of such thickness that each is self-inductive with the given
currents. Then the same phase is reached in an inner shell at a

time g, that is % , later than in the shell immediately outside of

~ it. 'The ratio which %, the thickness of the outer shell, bears to
thig difference of time, is in the limit the velocity with whick a
disturbance of the type in question penetrates the solid. This

velocity is then AZ, that is % in the notation of Art. 429. This

relation holds true so long only as we can neglect the inductive
action of inner shells upon outer ones.

It is assumed in the ahove investigation that the system
of currents induced in the shell at any instant by the variation
of the field is self-inductive. This, if true at any instant, is true

* This problem is treated by Professor Larmor, Phil. Mag., 1884, for the
special case of a spherical sheet.
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at every instant, because the values of Q at all points in or
within the shell are multiplied by the same factor cos «Z.

433.] Any two or more self-inductive systems of currents may
co-exist on a conducting shell ; and if they have the same
modulus, or value of A, they combine to form one self-inductive
system with that same value of A. For let F, &c. relate to one
system, and 7, &ec. to another. Then at any point on the surface

F+ f%‘- F,+ %

o
- = =
h A u, u,

d

= 3

U+ u,
and therefore %, + %, is the component of superficial current in a
self-inductive system with A for modulus. And so on for any
number of systems.

434.] We can now treat the following case. Let a conducting
shell whose surface is a solid of revolution, revolve with uniform
angular velocity w about its axis of figure in a field of uniform
magnetic force, — P, at right angles to that axis. Let the axis
of rotation be that of 7, and the direction of the force that
of z. Let us take any plane through the axis fixed in the
conductor for the plane of reference, and let time be measured
from an epoch at which the plane of reference coincides with
that of . Then if @ be any point on or within the conductor
distant » from the axis, and such that a plane through the axis
and through @ makes the angle § with the plane of reference,
the potential at @ of the external field is Prcos(wf +0).

By the change of position of the field relative to the shell we
bave induced on the shell at any instant a system of currents
which is symmetrical with respect to that particular plane
through the axis which coincides at that instant with the plane
of zy. Let us suppose that the system of currents induced at
any instant by the rotation is a self-inductive system. We have
then a series of self-inductive systems successively created, sym-
metrical with regard to successive planes through the axis fixed
in the conductor.

J
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436.] We might in any of the preceding cases suppose a core
of soft iron within the shell and separated from it by a thin
lamina of non-conducting matter, The magnetic potential of
the field in which the core is placed is, as we have seen, of the
form A cos acos(wt—a). The core will be magnetised by in-
duction but with a retardation of phase as compared with the
field in which it is placed *.

If we were to assume that the magnetisation bears a constant
ratio to the magnetic induction, we should have for the deter-
mination of Q an equation of the form

dQ

W+)\Q+C’cos(xt+w) =0

where C is constant, which would lead to a solution of the same
form as before.

As the relation between the induced magnetisation and the
magnetic induction in soft iron is not perhaps sufficiently estab-
lished, it may not be safe to draw any but the following general
conclusions, viz. (1) the magnetisation of the iron will be always
retarded in phase as compared with the field in which it is
placed, and therefore as compared with the external field ; (2) if
this retardation be not very great the magnetic field due to the
core will at all points on the shell be of the same sign as the
external field, and the effect of the core will be to increase the
currents induced in the shell.

Further, as soft iron, although magnetisable, is a conductor,
there would, were the surface of the soft iron continuous, be also
induced currents on it which would create a magnetic field of the
opposite sign to that of the induced magnetisation, and so tend
to diminish the induced currents in the shell. But this may be
obviated by making the core consist of insulated iron wires
running in directions at right angles to the currents in the shell.
This is usually done in forming the core of the armature of
a dynamo-machine.

437.] The treatment of special cases is reserved generally for
the following chapter, but in order to elucidate a general prin-

* We assume here and throughout the chapter that the oscillations of the field
are not too rapid.
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ciple of some importance, we will again anticipate one of the
results there proved. It is shown, namely in that ch pter,
that if currents of the type ¢ = 4z, where 4 is constant, be
generated in an ellipsoidal shell of which one axis coincides with
z, the system will be self-inductive when the thickness of the
shell at any point is proportional to the perpendicular, =, from
the centre on the tangent plane at the point. The component
currents per unit of area are then

g Az
b:;y’ 'v=——a7, w=10;

2
or if S—w y

i + e’
_ds d({) dSd¢ 24y
“dydz dz dy—' A
If the equation to the given ellipsoid be

2 2 2
o= % +%+ci2 =-l
2 2
then ;::52 + Til/bz
is the equation to a similar, similarly situated, and concentric ellip-
soid &, whose linear dimensions are to those of the given ellipsoid
as7:1, And we shall suppose <1, and & an inner ellipsoid.
It can now be shown that if we form on the ellipsoid & a shell of
uniform material similar to the given shell 8, then the generation
of the given system of currents on the given shell § will cause
by induction a system of currents of the corresponding type, but
in the reverse direction, on the inner shell 8. Forlet F, @G, H
be the components of vector potential of the given cwrrents in
the outer shell, x their associated function. Andlet 7, @', 1" be
the corresponding functions for the induced currents on the
inner shell.
Then, since the given system of currents is self-inductive,
we have

+:22_1 or S=17

G = Nl
)\(F+ d—x) = 3% = o,
at all points on S, A being the modulus. Now by the definition
v (F+ )=,

L2
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at all points within 8. Also, # being the function 14—2~, Viu=0
b
at all points within §.
Therefore
A(F+§Z)=au
at all points within the ellipsoid §, and therefore at all points
on the ellipsoid &".

That is, dF dy

dt  dx

at all points on &, substituting —d—F for AF and —y for Ay,
as in Art. 427,

That is, the continuous increase of the given currentson § acts
as an electromotive force tending to produce the reverse currents
—u, —v, and —w on .

But since this system of currents on § is self-inductive, its
own self-induction will not cause currents of any other type to
appear in &. This type of currents will therefore be induced
with the opposite sign to those in the outer shell.

438.] We have dealt with the case of an ellipsoid only. But
the same method may be extended thus. Let § be any homo-
geneous function of positive degree in #, y, and 2z, and § =1
a given surface.

Then we may divide the space within & into a series of similar
concentric and similarly situated shells, each being between two
surfaces such as § = ¢ and § = ¢+ de, where e< 1.

Let us suppose that in each of these shells, if a conducting
shell, a system of currents with ¢ for current function would be
self-inductive. Let an inner conducting shell be so formed.
Let an outer shell be formed on 8, i.e. between § = ¢ and
8§ = ¢—de, and let the given type of currents be generated in it,
Then it can be proved by the same method as we employed in
the case of the ellipsoid that a system of currents of the type
¢ would be generated by induction in the inner shell, provided
only that the functions % and v, or

S dp_dSde
dz dy dy &z’
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NorE to Art. 405.—It may be objected to the reasoning in the text, that although
the displacement currents in any finite space have inappreciably small magnetic
effect, yet that of the displacement currents in all space may nevertheless be appre-
ciable. Let us then consider three points R, @, and O in space, and let the

R v (o}
Q
Fig. 46.

vector potential F be required at O. Let an elementary current » be excited at Q.

That causes an electromotive force ~ 7 g? at R, if QR =1/, and therefore an
45117371: at R, and therefore the vector potential at O

45 1, Zt? , if OR = r. The whole vector potential at O
derived by this process from the elementary current » at @ is found by inte-
grating the last expression for all positions of R in space. It is therefore

e 2
_.‘ég:? /f/ 4——"751n9d9d¢dr+ff/”ﬂSIDGdad‘Pdr}

where @ is any finite radius measured from O.

The first term, or external integral, is not inappreciable even when multiplied
by K. But if @ be within the sphere of radius @, the value of the external
integral is independent of the position of @ within that sphere. If the elementary
current at @ be part of a closed current wholly within the sphere a, there will for
every element # be a corresponding element —w. Hence it follows that if the
sphere a includes all the closed currents excited in the field, the vector potential
at O derived from them does not contain any terms derived from displacement
currents induced in external space. And the effect of all the displacement
currents induced within the finite sphere @ is made inappreciable by the factor
K
5

elementary current —

contains the term —






152 GENERAL FIELD EQUATIONS. [441.

The equations, differential or otherwise, already established
between these quantities will be employed without special
reference to them.

It is only in a few substances, such as soft iron, that the
magnetic permeability (1) has a value differing sensibly from
unity, and in the examples treated of by us we shall assume that
such substances are excluded, or that u is always unity, unless
the contrary is distinctly stated.

441.] The components of the total current referred to unit of
area must satisfy the equation of continuity or, as it is sometimes
called, of no convergence, viz, :—

i 2 e e O
at every point. e NS v

If w, v, w be replaced by their equivalents p+f, g+4, r+4

respectively, this equation of continuity becomes

dp d A d dh
£-+%+gé+%- 3£‘+0T§j+&;)=0’
k d d dr de

1.e. 67]:%+3§+25+37=0’

the interpretation and truth of which are obvious.

If w, v, w vary discontinuously over a surface S, the values
on opposite sides of that surface being #, #’; v, v"; w, w’ re-
spectively, the condition of continuity requires that

Wu—w')+m(v—2)+n(w—w)=0.

In all regions throughout which », », w are finite we have the

equations
ViF= —47u, V@ = —47mv, VH= —47w.

If u, v, w become infinite over any surface S, and the corre-
sponding current components referred to unit of length be
Uy U,y W,, the last-mentioned equations are replaced by
dF dF’ d@ d& dH dH’
dv _dv dv dv dv~ dv
where F and F are the values of ¥ on opposite sides of &,
and similarly for G and H*,

* The suffix s is rarely adopted, it being left o be understood when the currents
are superficial, i. e. referred to unit of length. By some writers also the equations

—47u,, = —47v,, = —4d7w,,
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and is therefore determined by the equation

dmed’=K {—~(ZF+mG+nH)__‘_”}

dy’
7/ Ryl il o .
X { dt(lF+mG+nH) s }
subject to the equation of continuity

Up+f)+mlg+9)+n(r +h) = Up +f) +m(d +g) +n(’ +1).

The elimination is somewhat complicated, and for our subse-
quent purposes is only required for two cases, viz. (1), where on
both sides of the surface K is zero, in which case we get

dG dII ,d d
(o’ —v)(l e ¥

788
dt ) O'T— and € = 0.

and (2), where on one side K is zero and on the other o is
infinitely large, in which case we get

4w, dd_dy_ay
K

] : 2 S ()
but since in this case o or — is infinitely less than —1—, the equa-
P C K
tion reduces to

ol B . ek B

K dv dv

the same as in ordinary electrostatics.

The first case corresponds to that of two adjacent conductors,
and the second to that of a conductor in contact with a dielectric.

443.] We have proved in the preceding chapter that at any
point in the field at which the electromotive force is finite,
the intensity of the displacement current in electromagnetic
measurement is infinitely small, and at all points within a
conductor it disappears in comparison with the true conduction
current. :

In all the cases therefore contemplated in the following in-
vestigations which have reference to good conducting substances
in dielectric and practically insulating media, we shall assume, as
in the preceding chapter, that the only currents are conduction
currents and limited entirely to the conductors. The displace-
ment currents, f, 9 %, will be treated as non-existent in estimating
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Also, as above shown, for any current sheet § = ¢,

F=ff%(m3—;)—m%)d8

= [[o(m g —n 3)338

with corresponding values for G and H, and also

sz=ff¢c%;ds.

445.] We have already, in Chap. XVIII, investigated the
magnetic field in the neighbourhood of an infinite rectilinear
current, and we now proceed to do the same for the field due to
certain given systems of currents on certain closed surfaces.

This is completely determined when F, G, H are known at
every point, also since at all points not situated on the surface
the magnetic force is derivable from a potential Q the investiga-
tion will include the determination of Q at all such points.

For example, suppose the sheet to be spherical with radius
a, then the values of #, v, w are given by the equations

_zdd y do P n d¢ =z d¢ w_y.dqb x do

— e — e ¢ —— —.— ema —

Tady ad’ T ade adx’ Ta'ds  a dy’

where ¢ is the current function.
F, G, H must satisfy the potential conditions
VAR =G = Ve TE=10
everywhere except at the surface, must be everywhere finite and
continuous, and satisfy the condition of no convergency
aF 6
a T dy b T
at all points.
At the surface, if ', @, H’ denote the values of F, G, H
within the surface and 7, G, H without,

Since F, G, H are potential functions it follows that the
solution of the problem is unique, and therefore that any
solution is the general solution.
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without the spherical sheet, and
o
u()T.

within the sheet, where M is some constant, and ¥, is a surface
harmonic of the degree .
The surface condition

AR TP,
e i ke

gives, corresponding to each term of the degree ,
i 21 + 1 M M

a %
for the current function on the sheet.
And the equation

14
Q=—-2(Pn)

gives, if © and Q' be the value of Q at points without and
within the sheet respectively,

=5%(g)my,., and Q’:—(i+1)%[(§)‘Y.-.

If, as is sometimes more convenient, the system be determined
from the form of ¢, and we assume

¢p=4Y;
on the sheet, we have
4ma ”” 5 i7a N
T2t A() Yo P =2"i1‘1A(“)Y"
4 241
—22’:1 ( ) sz'=_2‘+14 A()Y.

If Y, be the zonal-surface harmonic with axis z of the first
order, and therefore ¢ be of the form 4 cosf where 6 is the
angular distance from the axis 2, then outside of the sheet

47 Aa? 4w Ada® '
Q— 3 :’-2 Yf—?'TCOSG

and inside of the sheet

Q= -—-8?7%1‘0050.
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If produced by coiling a wire round the sphere, we must re-
member that the direction of the coils must be reversed on
crossing the equator, because of the change of sign in 2, that
is in sin 26.

The density of the coils in different latitudes is easily calculated
as in the last case (see Maxwell’s Electricity, vol. II. Chap. VIL

448.] If the sheet were an infinite plane, we might treat it as
a particular case of the spherical sheet by supposing the radius to
be infinitely increased, but it is more interesting to investigate
it independently.

Taking the plane of the sheet for that of , 7, the several
equations become

) =%;—5, V= -ﬂ, w=0,
and therefore H = 0,
ViF = VG = 0.
F and G everywhere continuous and finite, as also their differ-
ential coefficients, except at the sheet or when z = 0, in which case

T B N
Do dp e e e
4 4
and since by symmetry el —@, and G ot , these
dz gz o
last equations become
dr G
—Jz—_—21ru a:—.?vw.
The condition of no convergence gives us
ar , do_
vty ™
All these equations are satisfied by the assumption
dP dpP
— @—a G=— Ew—’

provided V2P = 0 everywhere except upon the sheet, P be every-
where finite and continuous as well as its differential coefficients,
except upon the sheet, and at the sheet

i{:-—zﬂ'(b

dz
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449.] Finally, consider the case of a shell in the form of the
ellipsoid e 22
q + :Zz + GT -1
Here if = be the perpendicular from the centre on the tangent

plane at z, g, 2,

1 =R & wY . wL
= — = —> = —
P b2 pe

Let ¢ be equal to — A4z.

Then u=Awd v=—Avm’£%, w=20

b’
(#, v, w being currents referred to unit of length), and therefore
H=0.

The quantities ¥ and G must satisfy the equations V2F = 0,
V2@ = 0 everywhere except on the sheet, must be everywhere
finite and continuous, as well as their differential coefficients,
except on the sheet, where these last satisfy the equations

iF aF y 4@ 4 w
&~ 3 SEARAEEN Gy T = AN

Now we may prove, as in Chap. XVII, Art. 318, above, that

the conditions determining F, F’, G, G’ may be satisfied by taking

o
A‘% and Alb‘qu) for #¥ and F,

ab®

do
and _Azgc_ and — 4 & do’ for ¢ and G
a’ *ad dd, }

where da’

aA ® dA

ey (I)(): ]
A V(@ +X) (BN @+ ) o V(@+ NN (@A)

whence, if @sinf = 7, and w rcos¢, y =rsing;
5

S AT )
and therefore . V,”u+ (?u =0;

therefore (Vi+mPu =

where m is the reciprocal of the infinitely la,rge radius of the sphere divided by
the infinitely large order of the spherical harmionic,
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o)
o fue L1 215

450.] We should have obtained a s1m;11ar result, mutatis mu-
tandis, by taking currents in planes parallel to those of 7, 2z and
2, @ respectively, whence it follows by superposition that if we
had a system of currents such that at every point

Bo 7 Cw y
V=38, dd,F  d®,  dd,pt’
wtew wtw
o Ow x A= 2
Y= 4%, d%,at a®, L a®, cT -
" da? bt
ds y Bza- z
=de, dd,p dd, dd,a’’
B g B ap
1. e. if the eurrent function be of the form
Az By Cz
d®, Q+d¢0+@ a%, B,
aet T de da*  da® T B

the interior of the sheet will be a field of constant force in the

direction of the line e o

it B o
Again, with the same ellipsoidal sheet let us take
1 p=142"
Then U= — Aﬂ;yz > v =A':-2mz’ w = 0,

whence, as before, H = 0.
Now employing the same notation as before, we have

ad id
V(92 ) =2 4 ( dbz) +aV' (v ) =2 (Jdbﬁ)
Similarly v? ( yz JE—) = 2% zdib ),

p d® dod
V(v (g - ) = {dz(ydbz) dy(z )}’

and it is easily seen that the right-hand member is zero.
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have seen in the last chapter that unless the current function
¢ satisfies a certain condition, this law of proportional decay will
not hold true and the type of currents will not be maintained
throughout the decay.

In other words, the direction of the electromotive force at
each point in the sheet will not be coincident with the direction
of resultant current at that point, and in cases where this con-
dition can be satisfied, 1t will in most cases necessitate the
existence of a distribution of free electricity over the sheet.

In spherical sheets of uniform thickness the condition can be
satisfied for currents of all types without the aid of such a dis-
tribution.

Thus, in the case of the spherical sheet with the notation
employed above, we have

dF  dy aF  dF
O"M——d—t—% and d,r—"dT—-—‘]:’ﬂ’u

at the sheet, with corresponding equations in G and H, v and »,
o being the resistance per unit area on the sheet, whence

( d) o cE_dP’ dP} _ay
dy Y g dr dr dt da’
d d ¢ ¢dP 4P\ dP d\[/
(”E"‘ZE){Z? Zz'F"'dr) dt}_ Iy’
Ve~ "dy 3 & dr dt} &’
vdy ydy = A tﬁ[/___
s a dx % a dy +E.dz =ar

at the sheet, and since V%) = 0 everywhere except upon the

sheet, it follows that y = 0 everywhere, and therefore if —
be denoted by 2 we have e

dP dP aP
M w) s
at the sheet, and therefore if the original value of ¢ were (4,),7.
we should have T
RAT + oy 2i+1 dt et
2i+l)

it
’

Therefore = (4 1)0
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unchanged in magnitude and direction, and the plane moved
parallel to itself with the velocity R towards the negative
direction.

Of course exactly similar results hold on the negative side
of the sheet, the field of decay being obtained by moving the
sheet in the positive direction.

453.] Finally, consider the case of the ellipsoidal sheet

Ty
atpta=l
with the system of currents
u=A%, D= —Aw%, w=0,
or the current function — 4z.
Our equations become
Awy a®, dad_ dy
g 'bT = 477“60 b dt %g
dwe d®, d4  dy
i e 47 abe v AT + i’
ay
0= i
Assume that o varies inversely as = and we get, wntmg S
for o, sd dd, dd dy
b—z—tm'ab dbz P L e ORI (1)
3 doddy _ dy
(-———4 d2 %)w— '(—:l?. o e LU SNI0E (2)
ay
O = g LU L (3)
Eliminating y between (1) and (2), we get
dd, 1 1
47mbc(d 5 + de dt =sd (——+——)7
dA / ,
& e (Gt + G G =FAGE + ) E=io
whence we have proportional decay of the type e, where
1 1
G )
A=—

abc ( db’ )
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455.] Hitherto we have confined our attention to cases in
which given systems of currents have been supposed to be estab-
lished in conducting sheets of certain forms, and then allowed to
decay by the dissipation of their energy into heat under the in-
fluence of their mutual action.

We have now to consider the more general case of such con-
ductors placed in a given magnetic field, varying from time to
time according to any assigned law, and to investigate the
properties of the total resultant field arising from the given
magnetic field, or, as we shall generally call it, the external field
and the field of the induced currents in the conductor, as these
last decay by dissipation under the influence of their mutual in-
ductive action and that of the external field.

As a simple example of the application of the field equations
to such a problem, we will take the case of an infinite plane
conducting sheet in a variable external field, and will assume
that a system of currents, with current function of any type, has
been established in the sheet by induction.

Let #, v, 0 be the component currents in the sheet at any
instant, #, G, 0 the components of their vector potential, and
Q their magnetic potential.

Also, let F,, G), H, Q, be corresponding quantities arising
from the given external field, these last being given functions
both as to space and time, while the former are quantities to be
found.

Our equations are therefore the same as those of Art. 448
above, with the substitution of #+ F and G + G, for F and G.

Therefore we have at the sheet

CNGR - GF R _d@ 4@, dy
CUTESE T WG, N T e
0= %, _ad¥
k= dz

ar d@
5:—21”4, %_—Zm;,
dP dP
F—@, G —CZ_,
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ddF dG dp dG dF, dG o
d“z(@—dx) dt( Tdo dt( 2 el
da*Q d dQ d dQ
- =T @)
dy d’y_dyo
or Ra—z-—ﬂ—d—t"

y and y, being the magnetic forces at the sheet normal to the
plane arising from the induced and external field respectively.

Since ‘fl—\ll + (iZ—!t{ = 0 at the sheet, and V’y = 0 in other parts
of space, it follows that y is not generally zero, and it cannot be
determined until F, G, and H, (assumed to be known) are
actually given in terms of @, g, 2, and ¢

456.] The solution of the problem, therefore, involves the
determination of Q as a function of #, 7, 2, ¢ satisfying the con-
ditions Q finite and VZQ = 0 at all points of space not upon the
sheet, and the equation (A) at the sheet, or when 2z =0, Q,
being a given function of 2, g, 2, and 4

For example, let the given external field be that of a unit pole
moving normally to the sheet with the velocity ().

Let a,, §,, ¢, be the initial coordinates of the pole and a, &, ¢
its coordinates at any time #, then we have

a=a, bi=:05, ¢ = ¢,+wt,
1

"/(x a ao)2 +(y—b,)*+ (z ey "o"""’t)2

If equation (A) can be solved for all values of z, g, 2, and ¢,
the value of Q thus found will of course satisfy (A) at the sheet,
and if it also satisfies the remaining conditions it must be the
required solution.

But the general solution of (A) gives

dQ dQ dQ,

Y

1
b= = > suppose.

b

dx T dt T dt

i.e. changing the variables from , 7, 2, ¢ to 2, y, {, ¢ where
z=(-Rt _dSZ_d.(20+]d.(2
dt — T dt dg

or
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where ¢ is to be replaced by 2+ R¢ after the integration of the
second term on the right-hand side. Hence in this case
1 B 1

or = ———— e —

This value of Q satisfies equation (A) everewhere and therefore
upon the sheet, as well as the condition V2Q = 0, but on the
positive side of the sheet it becomes infinite at the point a,, b,, ¢,
i.e. at the pole, it is therefore inadmissible as the value of Q on
the positive side of the sheet.

If, however, we write for Q, Lo Q instead of -;« where

v
7 = ¥ (@—ay) + (y—b,) + (2 + ¢, + wit)’,

i.e. if 7/ be the distance of @, 7, z from the optical image of the
moving pole in the sheet, we observe that equation (A) on the
sheet, 1. e. when z = 0, is satisfied provided

29, i i@y b sdi-a

[ 205 etse iiner Sy
Whence, as before,

Q= /+R c dt’ 7/=\/(x—ao)2+(?/_60)24'((""”—"‘—5)"""0)2

And this value of Q is finite at every point on the positive side
of the sheet and satisfies the condition V2Q = 0.
Therefore the required value of Q is
w 1
w—R 1

on the positive side of the sheet.

Since @ = — %};- » the general value of P satisfies the condition

AP T A
P———E?__Et-f&zodz,

whence, reasoning as before, we should have found

Pt
we—

= log (" +2+4¢)
on the positive side of the sheet.
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457.] For any practical applicétion we must take w negative
or the pole approaching the sheet from an infinite distance,
whence we get on the positive side

w

'P=_w+R log (" +2+¢),
dP w 1
o P R S SR
dz w+R 7 L,
w 1 _dQ w z+c
o el s T

Therefore at the pole there is a repulsive force from the disk

equal to gt

i¢ w +E

If the pole were not moving normally to the disk but with
component velocities, #, v, w, the equation in P would become
—P =log (+' +2+¢)

¢
+R / : ’
0 x/(m—ao—-ut)2+(y—bo—-'ut)2+(C—Rt+wt+co)2

or —P=log(r'+z+c)

R v ula—2)+v(b—gy)+w—E(c+2)
(& {V ;P 73 f
where V2 =w*+v?+(w—R)?,
whence Q& = — %—? reduces to

W+ +wr—Rw) v + V{u(a—x)+v(b—y)+w(c+2)}
7V A{rV+u(a—z)+vb—y)+@w—R)(c+2)}

, 458.] Again, suppose the external magnetic field to be that of
a unit pole describing a circle parallel to the sheet with uniform
angular velocity (w).

If the origin be taken at the projection of the centre of this
circle on the sheet it follows that £, and therefore also Q,
are functions of the time merely so far as they are functions
of the angle (¢ suppose) between the radius rector of the pro-
jection of the point to which they refer and the radius vector of
the poles projection, and that

dt = "

W
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If therefore (a) be in this case the radius of the circle de-
scribed by the pole, and we use the Q, function as above de-
seribed, we have

1
(= = =, suppose,
: x/r2+a’—2mcos¢+(z+c)“ p’ "
and =log(p+ata+ =22,

p
where §—§¢ is written for z in the expressmn under the in-

tegral signs before integration and 2+ — qb for ¢ after integra-

tion, (») being the distance of the prOJectlon of the point on
the disk from the origin.

Whence Q or — % at any point can be found. The in-
tegration cannot be effected in finite terms.

459.] The question last treated may also be investigated by
the application of the formulae of electromotive force in a
moving conductor.

For example, let there be a plane conducting disk infinitely
large revolving with uniform angular velocity » about a normal
in a given magnetic field. :

If y and y,, a and a3 and B, be the components of magnetic
force at any point in the plane of the disk arising from the
induced currents and the given magnetic field respectively, the
components of the electromotive force of the motion are

dy dy/ de dy/
(7+70)(7t‘—3—x*’ "‘(7+Yo)(‘it*—@” o
dy de  dy/
—(a+a0)(7t-+ B+8, %_@’
where V= F +Gdy+H—-
: dt dt

It is usual to include the \[/ with the potential, if any, of elec-
trical distribution in one symbol y, so that, if the origin be
taken at the point where the axis meets the disk, in which case

dy de daz

%=w$, %=—'(Oy, ?d?._—‘o,
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it w—{(F'i'Fo)J (6 +6.) =}

dz
CE{(‘“ )d +(G+Go)dt}
ay
_ dz
Similarly in this case
dfy - db.. g AP d, 4P 4B,
FE DI Moo v o) i W

ll
s

ja{ -"’-(1’+P0)}

=- g—e{ww—(umwyd (P+2y)}
d
Tere) G Err)}

_

e

S d\y
Similarly for e

Proving that the , as determined from the above written
equations, is in this case the y/, omitted from the electromo-
tive force of the motion and not that of electrical distribution.
See above, Art. 403,

461.] In Chap. XXII we proved that every magnetic system
external to a given closed surface § may be replaced by a current
system upon 8§ whose magnetic effects at all points within § are
exactly equivalent to those of the given magnetic system, but
that the electromotive forces arising from the § system and of the
given external system are not necessarily equivalent throughout
the interior of §, but may differ from each other by forces derived
from a potential function.

In cases of conductors, solid or superficial, placed in any given
magnetic field, we may often simplify the investigation of the
inductive action by supposing the field replaced by this equi-
valent current system upon any properly chosen closed surface §
surrounding the conductors.

This surface is generally referred to briefly as the equivalent
sheet, and the currents thereon as the equivalent currents.
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«

If, starting from this equivalent sheet and current system as
known, we arrive at any results concerning the induction pheno-
mena on the given conductor surrounded by &, we conclude that
the same results hold true for the state of the conductor in the field
of the actual magnetic system, provided only a suitable additional
electrostatic charge be placed upon the conductor neutralising
the above-mentioned difference of electromotive force which may
exist between the original field and the equivalent system.

That is to say if, in the case of the conductor under the
influence of the eguivalent system, we find a certain current
function ¢ and electric potential v, then in the case of the con-
ductor under the influence of the acfual system we should have
the same current function ¢, but generally an electric potential
function y +, different from .

If the conductor be a spherical surface, and the equivalent sheet
a concentrie spherical surface, the potential ¥ is always zero, and
the same is true for an infinite conducting plane under the
influence of an infinite parallel plane equivalent sheet.

462.] We will briefly reconsider the induction phenomena in
infinite conducting planes influenced by given current systems
on parallel plane sheets,

In this case the equations of Art. 445 above hold true with
the additional condition JI,=0.

Therefore we get Ly g2 0, and since V2y = 0 at all points not

dz
on the plane we have =0 everywhere.
Therefore
dF aq d dF dG Pl dF, dG’
) dt ) dt dx
Also Cle + ng = 0, since the currents are closed upon the
equivalent sheet, and therefore 1f' L et %q = 0 at any instant,
we have 4
dF d@q
) = 0,
and therefore s + % = 0 always.
dz ~ dy

VOL. II. N
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But if the equivalent current system be suddenly excited, we
know that in this case there is an impulsive excitation of currents

on the plane such that ¥+ ¥ = 0, G+ G, =0, and since %ﬁ’ + %
is zero it follows that a + - ak i3 80 also,and therefore i + — e =0
dx ~ dy dz " dy =

throughout any subsequent variation of the equivalent systems.
Hence, if # and v be the component induction currents on the
plane at any instant, = .
=Ty
or the equation of continuity is always satisfied, and we may
always find a current function ¢ such that

u=£ii’ 'U—'_—'—@!
dx

In this case the condltlon to be satisfied by P at the sheet is
dEPrd udeh dodin
v > B e el el g e @
and by reasouing similar to that employed above, the value of P
may be proved to be that satisfying the equation

=0,

Lo e vt
dF/
or 0P =T NTVR ac

where B is the value of P arising from the image of the
equivalent sheet behind the plane of (#, 7), the integration being
performed with ( constant and z+ R¢ being substituted for ¢
after the integration,

463.] This result is capable of an interesting 1nterpretat10n

In the first place, the sudden excitation of the equivalent
current system gives rise to the impulsively excited currents in
the plane such that #= —F and G=— G, at all points on the
plane, and since the #’s and G’s are potential functions it follows
that = — F and G= — G, at all points on the negative side of
the plane, i.e. the side opposite to the equivalent system, and
therefore that upon that side the induced system forms a perfect
magnetic screen to the given system (i.e. the assumed equiva-
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lent system), or the effect of the induced system on the negative
side of the plane is the same as if the currents on the equivalent
sheet, otherwise unaltered in magnitude and position, were ex-
actly reversed in direction.

By symmetry it follows that the effect on the positive side of
the plane of the induced currents in the plane is the same as
these reversed currents of the original system each formed with
the optical image of the original currents behind the plane, and
therefore on the positive side of the plane the magnetic effect of
the induced currents is the same as the exact magnetic image of
the original system on the equivalent sheet situated at the
optical image of this system in the plane.

Suppose now that the given external system having been
suddenly excited remained constant, we have seen (Art. 452)
that the corresponding induced system would decay by resist-
ance in such a way that its magnetic effect at the plane and all
points on the positive side of the plane would be the same as if
the induced system retreated negatively from the plane, other-
wise unchanged, with the uniform velocity R.

If however the given system vary with the time, then when
the current function is ¢, the value of P, arising from this sys-
tem at a point , 7, 2, reckoned from an origin in the plane, is

[[2:as, where r=nfo—sity=vivisi
Zy, Yo %, being coordinates at a point in the equivalent sheet, and
dS, being an element of that sheet, and therefore from the
image of this system in the infinite plane under induction the
corresponding value of P is given by

sy
P:ff¢r’o where #/=x/z— a7 +y—g,’ +(5+7)"

d8, being an element of the image and therefore equal to ds,.
If therefore at some instant 7 from the origin of time ¢ be

varied by % 3¢, the corresponding increase of P, or 8.2, is given by
49 br.ds

dt
ffE
N 2
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At the time ¢ this image has retreated to R (f—r) from its
position at v, and therefore the total value of P at the time #

is given by :
(t—'r ds,

_—ff(‘/‘\/m :1:""+y Y2 +(z+R(t—-r)+z)2)

or performing the integration with regard to ¢ by parts,

el
w—2t +y—yt+2+ 2

([ e

—P+Rf ak —2 0,

because =0 when r=0 or {—r==2

464.] In the particular case of a moving pole of intensity ,
suppose the motion to be parallel to the plane.

At any remote instant from the time considered let the pole
suddenly start into existence at a very great distance from the
region of the plane at which the inductive effect is being in-
vestigated.

The immediate inductive effect is a system of currents on
the plane equivalent at all points on the positive (or actual
pole) side to an equal pole at the optical image of the given
pole. If now the given pole move parallel to the plane with
any given velocity » through spaces #37 in successive equal
intervals of time 87, the effect is the same as successive creations
of small magnets of moment 7z 3¢ in the line of motion of the
pole, the direction of magnetisation being that of the pole’s
motion. The corresponding induction effects are equivalent to
the creation of successive optical images of these magnets on
the opposite side, and combining these with the recession of these
images with velocity & as representing the decay by resistance.
The result of the process, supposed to have continued for an
infinitely long time before the instant considered, is at that
instant the same as an infinitely long bar, terminating at the
instantaneous optical image of the given pole, inclined to the
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plane at the angle tan™! e and magnetised parallel to the plane
sheet. i

When the motion of the given pole is inclined to the plane
sheet the general result is the same, but the inclination of the
magnetised bar is different. When the pole describes a circle
parallel to the sheet the magnetic effect of the induced currents
is that of a helix on the right cylinder whose transverse section
is the deseribed circle, magnetised in the direction of a tangent
to this cylinder perpendicular to the axis inclined at the angle

1;:34n‘1—fi to the plane, and terminating in the instantaneous opti-

cal image of the pole.

The whole investigation is given with much instructive detail
by Messrs. Mascart and Joubert in their treatise already quoted,
and the results arrived at are identical with those obtained by
the preceding analytical treatment.

465.] In the last chapter we investigated the case of the
spherical conducting sheet in any field.

If the field be replaced by the equivalent system on a con-
centric spherical surface, the equations of Art. 451 hold with
the substitution of P+ P, for P.

Hence, as in that Article, we have {=0.

dB - dP: d
A.lso R (217 — 2;—) = %-(P-*'PO) at the Sheet.

P, at any given instant must be expressible in a series of
spherical harmonics, and therefore at any time Z must be of the

form =4, (5) Y,,, where 4, is a given function of 7.

Whence, if 4, be of the form A cos(x¢+a) where 4, is
constant, we get, as in the Article referred to, ” and P’ being

external and internal values of P respectively,

il 2 DR
P=—Aocosﬁcos(kt+a—ﬁ)yn('z‘) K 1ftanﬁ=( n:k) ¥

P'= —4,co8f3 cos(kt+a._/3)y”(i'_)".

_ 2n414,
¢=— i —a—-cos/S‘cos(kt+a—B)Y,,.
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466.] For the particular case of a uniform field of force
Fcos (&t + a) parallel to z, we have ¢ of the form Cz.

In this case therefore, as shown above (Art. 446), the currents
are in circles parallel to the plane of #, 7, and by what was
proved in the article referred to, the interior of the shell is a
field of uniform force parallel to 2, and the external field is that
of a simple magnet at the centre of the sphere with axis in the
axis of # and moment at any time ¢ equal to

3 Fa® cos 3 cos(kt+a—B) where tan,8=3R

alk

467.] The case of a conducting spherical sheet of radius (),
revolving with constant angular velocity (w) about a diameter,
coinciding with the axis of z in a uniform magnetic field leads
to exactly similar treatment.

For let the sheet be at rest and the field revolve round the
same axis with the same angular velocity reversed, the. relative
motion is the same.

With the same notation as before, we get at the surface of the
sheet the equation

R( =)= (P EB)

If ¢ be the azimuthal angle between a point fixed with refer-
d¢

ence to the revolving field and a point in space,we have 7

and therefore AP
. 177 )— d<p (P+L)

If £, be expressed in a series of spherical harmonics, the most
general form of that of the #* order is, as we know, a series of
terms of the form

Ay :(6) cos (ke + a)(%)".

If we assume for P a similar expression, the term in P of the
#*® order and type, £ will be

vox@® (L)
and that of 2’ will be
VOX@)(Z) 5

=w,
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-

and the above written equation Bécbmes
—(2"7“) i Pl SR oy

do
e (22+1)R
or writing p for T )

‘% bkt == Rd, sin (b - a).

And therefore, as in the last case,

= —4,cosBcos(kp+a—p),
where tan g=p.

If the given field be one of uniform force F, parallel to the
axis of revolution, 7, assumes the form 4 cos6, and is independent
of ¢. 1In this case therefore P is zero, and there is no induetion
of currents in the sheet.

If the uniform force # be perpendicular to the axis of revo-
lution, 7, assumes the form

4 8in 0 cos(¢ + a),
and P becomes
— 4, cos3sind cos(p+a—p).

Within the revolving sheet therefore the field is that of a
uniform force perpendicular to the axis of revolution, and in-
clined at the angle B to the original line and with intensity
diminished in the ratio of cosB to unity, where
3R

tanﬁ = ;:0—.

The induced currents on this sphere are the same as if the
sphere were fixed in a field with uniform force FcosB in the
direction aforesaid.

By what has been already proved therefore the internal field
of the induced currents is one of uniform force, and the external
field is that of a small magnet at the centre of the sheet, with
axis parallel to the aforesaid direction and moment equal to

3 Fa®cosB.

In the particular case of the spherical shell revolving round
the axis of z with uniform angular velocity (w)in a field of uniform
force ay, B3, 7,, We may also proceed as follows.
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468.] We know, Art. 446, that the system of currents derived
from the current function

¢ = (Adx+ By +C?)a,
i. e. with components,
Bz—Cy, Cx—Az Ay— B,
produces upon and within the spherical surface a field of uniform
force, whose components a, 3, y are

87a 87a 87wa
3_'A, T'B, a:nd T'O-

The equations of Ohm’s law are therefore with such a system
of currents on the shell,

é:i’:_a(ﬁz—yy)z(y*-'%)mw—ﬂs' o e e (l)

2 emad=amor-,. L@

3a

(ay—B2) = —al(a+a)a+(B+8)y}— 2. . (3)

Eliminating v between the first two equations, we get

8ma

Showing that y and therefore Cis zero, and that the current
funetion is reduced to

3
Az+By or %-(aw+,@y).
The elimination of y between 1 and 3, 2 and 3, gives

3o 3o
4—77&‘3 = w(a+a0), and —ma—- w(ﬂ’i’ﬁo),

13 3o
whence, writing p for — Traa e get
a’+B8} _ﬁ_= By+pa, P

2 [ et
' 14p° : a a,—pB,

If E"—=ta,ne, P—:tanﬂ, and p =tand,
a, a

Va+ = Val+pBrcosd,  tan 6 = tan(e+d).
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., ¢ 1
If now for o we write = and for — E 7 1 ol
: i 4ma % ; O 7 02}
write p, our Ohm’s law equations become da

Bz dyr

—Spc—z = wyocv-— %,
az d
3}” = =Y Y— (Ty\k’
= ot __."_’
s (Br—ay) = w{(a+ao)w+(13+ﬂo)y}
Therefore —spf3 (cT + 07) =w(a+a)),
1 1
SI)G(T + T) =0 (B+5,)
or 8])( : & )B & a+ao’

sp e T
:(52— + Ez‘)a —'ﬁ‘i‘ﬂo;

therefore PB+a =—a0, pa—pB =3,
where n==(= _)
whence we arrive at similar conclusmns to those in the case of
the sphere.

470.] In the case of the revolving sphere of Article 468 the
quantity y is identical with ' or Fi + Gy + Hz.

For we get from equations 1, 2, 3 of that Article

=2 70 2
V= @) sz(ay —Ba).

Also in this case
% x K
F==72+B+8)5 O=v3—(a+a)]

x
H = (a+a) s~ (B+B) 35
T =—wy, Y = 0w, £2=0.
And therefore, since
3o 3o
w(a+ ay) =Z—ﬁ, and w(B+8,)=— ru .

Ta a
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12 + Gy + Hz, or {/, reduces to 3
L (@ +1f) + 52 (ay— B2,

i.e. to Y, whence we know that there is no distribution of free
electricity in this case.

In the case of the revolving spheroid of the present Article,
Fa+ Gy + Hz or y will be found by similar treatment to differ
from y by a quantity of the form

p (— — —)z(ay Bex).

Indicating an electrical distribution with potential of the form
Mzy — Nzx upon the spheroid.
And therefore with values Mzy — Nea within, and

dd do aPd do
v’ "~ de* da® ~ dc’
Jl[szq) —d, —Nzx- d—r_%
d* ~ dé da*  dc?
without the spheroid, and of superficial density of the form
My —N'zx

upon the spheroid.

471.] Hitherto we have applied the general field equations to
the investigation of the phenomena of induction in closed con-
ducting sheets of special forms situated in a variable magnetic
field. The same general principles hold good in whatever be the
forms of the sheets, but except in special cases their application
presents very great analytical difficulties. As any closed currents
are generated in the external field, a system of closed currents
constituting the magnetic screen to the external field comes into
existence, by induction, in the sheet.

The effect of the finite resistance of the conducting sheet
is to cause these induced currents to decay by dissipation of their
energy into heat. In this process of decay they vary, and thus
exercise mutual inductive influences. In certain special systems,
which may with propriety be called self-inductive, their intensity
at any time ¢ from their first establishment diminishes accord-

ing to the ¢™*' law, where A is a coefficient depending upon the
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shape and resistance of the conductor, and these special systems
alone are easily amenable to mathematical treatment.

As shewn above, Art. 431, in the very important class of cases
in which the external system varies periodically, the field in the
interior of the sheet also varies periodically but with retarded
phase and generally with diminished intensity.

472.] When we pass to the consideration of a solid conductor of
any form the same general principles hold, but their application
becomes very complicated.

Thus, the first effect of the excitation of the external system
may be regarded as the establishment of superficial currents,
constituting a perfect screen as before, and if the resistance were
evanescent this screen would be always maintained and the
currents would always be on the surface. But the effect of the
resistance is to impair this screening influence, so that if the
external system remained unchanged the superficial currents
would vary by resistance, and thus by their variation modify their
own intensities and induee currents in the interior mass, which
would again modify the superficial currents. If the external
system also varied the problem would be still more complicated.

The problem of induction currents, therefore, in a solid con-
ductor in a varying magnetic field is one of great analytical
difficulty even in its simplest cases, as, for instance, where the
conductor is bounded by infinite parallel planes or concentric
spherical surfaces. For these cases it has been treated with great
generality in special papers to which the reader is referred *.

473.] By way of illustrating the general treatment, we proceed
to investigate the question under very restricted and special con-
ditions.

Consider a solid conductor of any form situated in a given
varying magnetic field.

At all points within the conductor

VF =—47u, V@ =—4mv, VH=—47w,

* See, amongst others, a paper by Professor C. Niven in the Pkil. Trans. of the
Royal Society, 1881, part I1; also a paper by Professor H. Lamb, Phil. Trans.,
R. 8., 1883, part II; and a paper in the Philosophical Magazine, already quoted
in the text, by Dr. Larmor, January, 1884.
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infinite distance from the conductor, and to be, along with its
differential coeflicients, continuous at all points.

Suppose P, to be capable of expression in a series of terms of
the form Age™ P (, y) cos kt,
where (since V2P, =0 within and in the neighbourhood of the
conductor) we must have

2 2
%2 + ggﬁ ch mﬁ) ¢ = 0.

Assume for the value (P’) of P within the conductor the ex-
pression (¥ (2) cos Kt +x (2) sin kt) b. ™,
and for the value (P) of P without the conductor the expression

{4 cos (kt)+ B sin (kt)} pe—™,
since P outside vanishes at infinity and satisfies V2 P=0.
h ion

The equatio Z%-VQP'—'—(%(P'*'R)

becomes therefore

0;\2!’ + 2m ——\k)coskt+ (d } + 2m X) sin k¢

_ﬂ { =X () coskt+ (4, + (2)) sin &t },

whence by equating coefficients of sin£? and cos#? we obtain
two equations for the determination of Y and y.
475.] The general solution is somewhat complicated *, but if,

as frequently happens, 4—35 be small, so that its square and higher
powers may be neglected, since Y and x depend at least upon
the first power of %—K, we may neglect them when they appear

on the right-hand side of the above equation as multiplied by
X

—— , whence y (2) = 0 and
2
fi_ +2m _;(_mA = Ad,, suppose,
or x_-——(z+0)+6" gk,

* The approximation is equlva.lent to neglecting the action of the induced
currents in the conductor in comparison with that of the given external field.
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and be finite everywhere and continuous, as well as its differ-
ential coefficients, and in the external space satisfy the equation

VEARI=20}
I, also satisfies the equation
A= )

and therefore may be expressed in a series of spherical harmonics
with coefficients functions of the time.
Let any term in £ be of the form

r n
4, Y,,(a—) cos (kt),
and let the corresponding terms in P be
n n
¥ (”’)(2) Y, cos{kt) + x (r) (2) Y, sinkt
for the internal space, and
a n+1 0+l 3
4 (;) Y, cos ki +B(;) Y, sin «¢
for the external space, then the equation
O i i i
el R

within the sphere becomes

ey 2 dy  nla+1)
PR
d*x , 2dx n(n+1) :
+(dr" trar 72 X) b

= ? {x (r) cos kt — (4 ,+ ) sin kt}.
477.] If i g small, and its squares and higher powers be
o

neglected, the equation is satisfied by neglecting the term

i ('r)(;;)"Y,, oS K

in the assumed expression for P internally, and determining x
from the equation

d? d 1 4

dr* " rdr ¢? T
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478.] The case of the sphere revolving in a constant field
with uniform angular velocity o about the axis of 2 is reducible
to the last case by a process similar to that employed in the case
of the spherieal sheet, the equation

o d
= V'P=— 2 (P+P,)
being replaced by

d
== 2P == ey —
477 AP — md¢(P+P0),

and for every term in P, of the given field of order » and
type x, and therefore of the form

A" Y cos ko,
we get the approximate expression, neglecting squares, &e., of
47k

, for P internally,

_ 270k 1? a L
= % §2n+3 2n+1}A Yk sin (k),
and for P externally
3 47wkd, )
et (2n+1)(2n+3)o ; Pisin (i)

For instance, in a field of uniform force 4, parallel to ,
—Q,=4,rY]cos P,

P,= ;.fagodr =ad, T ¥icos,
2 2
and P internally =—— (— - —) ad,rsing.
g

479.] The case of the revolving solid sphere may also be in-
vestigated by the direct application of the equations of electro-
motive force in moving conductors. These are

a'u_ya)m—di:
d
trv:'ywy—%, R 7 (.

o'wz—w(aw+ﬁy)-—(2—\zl’,

where a, 8, y are the total force components.

!

3
£
'
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where 4, B, C, C" are to be determined from the condition of
continuity of F, @, II and their differential coefficients.
It is easily seen that the results agree with those already
obtained.
480.] In the case of the spheroid
wz—_l_yz o

=]
al c? ?

rotating round the axis of figure in a field of uniform force, the
equations are all satisfied by the assumption of the component
currents at each point

u=A—z;, v=0, w=——A£2:
¢ a
> 1 1\ wa,
provided 4 (;2- + &—2) =
Therefore
2
Vire _2E0 & oy g ST
o al+c o at+c?
Assume that s
e o= 4
= g a2+c“¢(w’ Y, 2)2,
Jre 4Twa,
= P 'm"”(mx Y, z)m

We have to determine ¢ and v, so that
Vi (2¢) =2 and V:(xy)=w.

If we divide the spheroid into an infinitely large number of
similar spheroidal shells, the parameter in any case being A, the
value of ¢ (z, 7, 2) may be assumed to be ¢ (A), i. e.

w2+ 2 zZ

¢ (7:?- L GT ]

and that of ¢ (2, 7, 2) to be

2y’ 2P

‘I’( o + c_’)

Let ¢ and  be of the form
2 2 2 2
k{g—c%;ly- ar z_} and k’{w o za},

c? c? ¢

% and # constants.
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to the required approximation tang is very large, so that squares
of cotB are to be neglected,

s o 47rrwdm B 4Trmawdm
3o 3o
g L dm
and the moment is zirﬂ%(:_m—.

The total external field is therefore that of a small magnet at
the centre with moment equal to
27ata,o [1 2wata,w
300 ‘/; o - o0 150o
and direction of magnetisation perpendicular to the axis of revolu-
tion and to the resolved part of the constant force of the field
perpendicular to that axis.

A similar treatment may be extended to the case of the
spheroid by dividing it into an infinitely great number of similar
concentric spheroidal shells.

The external field of the induced currents in each revolving
shell is readily determined by the results of Art. 480 in terms of
the parameter A and dA.

Whence, by integrating from 0 to 1, the total external field
may be found.

482.] In this and the preceding chapter we have considered
cases in which an external magnetic field is made to vary, and
closed electric currents, with or without changes of statical
potential, are thereby induced on conductors. In another class
of cases the given variations are those of electromotive force, the
primary phenomena being the oscillations, forced or natural,
of electric distributions on the conductor. To these cases great
importance has recently been given by the experiments of
H. Hertz (Wiedemann's dnnalen, 1887-1889) repcated and
extended by Dr. O. Lodge, Professor Fitzgerald, and others.

Let us then suppose a conductor placed in a field of oscillating
electromotive force—and, as before, we will suppose the system
to be self-inductive, that is, one in which the value of any func-
tion at time ¢ is formed by multiplying its initial value by the

V1
factor &L,

b

1
|
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In any such case the whole system may be divided into tubes
of flow invariable in form. Let +g¢ be the quantity of elec-
tricity of the distribution cut out by any given tube on the

surface of the conductor. Then —gtz denotes the current in

that tube. Let P be the electromotive force of induction, R
the resistance in the tube in question, 7,, 7, the potentials at
its positive and negative ends respectively. Then, if fcospf be
the external force in the tube,

P+R +V = fcos pt.

But since by hypothesis all the currents throughout the system,
including the displacement currents in the surrounding dielectric,
continue to bear the same ratio to one another, £ may be put
2
in the form )\[‘%, where A is a coefficient depending on the
geometrical relations of the system.
For the same reason we may write 7/, — 7, = %, where ¢ is a

constant as regards time for the tube in question. So our
equation becomes

d + Rcé—+q E=afeicospiiia reiiaiin Sat - (A)
a solution of which is
dq (—1+ )\cp ) : Rep }
{ch "+ (L= Aep)? 3 Sin pt 4 ReP+(1—AepP cos pt ¢ fep.

o
between the cur-

? 2 T
There is a difference of phase tan—!
rent and the external force

If Aep? =1, or p= , that is, if the periodic time of the

«/ Ae’
external force be 7 +/Ac, there is no difference of phase. In this
case the conductor is said to be iz wnison witkh the external system.

483.] If the given distribution be formed on the conductor
under an external force, and that force be suddenly removed, our
equation becomes

dg
dt‘+RCZt—+q AN T (B)
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the solution of which is )
g = 3q,("'+ ™),
RBe & R—4Ac

where m; =— 2Tc + T’
prs Re vV R**—4A¢
Ll SO0 2)\¢

If R%c%> 4)he, this gives subsidence without oscillation. If

R2¢? < 4Ae, the solution assumes the form ¢ = g e *‘cospt,
where

p- el Re
= 2A¢’
A 4hc— R?c?
s g YYoRTen

The time of oseillation is %, and if R?¢? is negligible compared

with 4 \e, this becomes 7+/Ae.
Further, we may write the equation (B) in the form

—Aep?+ Repy/ =141 = 0.
And as an equation of this form holds with the same p for every
tube of flow, it follows that Ac and Re must be the same for
every such tube. This is the condition that the assumed pro-
portional variation may be possible.

It appears thus that to every conductor with such a distri-
bution of electricity as we have supposed, there corresponds, if
B be small enough, a definite time of vibration, called by Hertz
its fundamental tone. It is only in very special cases that the
numerical value of this time can be calculated. Hertz (Wiede-
mann’s Annalen, 1887, No. 7) considers the case of two metal
spheres each of 15 cm. radius connected by a straight wire 150 cm.
in length, and }em. radius. For such a conductor Ac and Ee
must be the same for every tube of flow by symmetry. Hertz,
on certain assumptions, finds

7y he = %_OZB seconds.

o A .






CHAPTER XXIV.

AMPERE’S AND OTHER THEORIES.

ArricLE 484.] Ix the preceding chapters we have found that
two closed circuits with currents 7 and ¢° possess energy of their

mutual action %’ f co: € ds ds’, taken round both circuits in the

direction of the currents, and the energy of any field of closed

currents is
%fff(Fu+ Qv+ Hw)daedydz.

The proof of this rests ultimately on experiments made with
closed conducting ecircuits, where no account is taken of the
variation of the statical distributions of electricity or the statical
potential. It is only for eircuits of this character that we are
strictly justified in using the above expression for the energy.
We may call a system of such circuits a purely magnetic system.

485.] Generally in any field of currents we have what used to
be called unclosed currents, that is, statical distributions forming

on the surfaces of conductors, and variations of the statical
potential.

According to Maxwell’s theory the circuits are nevertheless
all closed, if we take into account the displacement currents
in the insulating or partially insulating space, and the energy
of any field of currents is still represented by

%fff(Fu+Gv+Hw)dwdydz,

u, v, and w including the displacement as well as the conduction
currents.

Maxwell’s theory, as thus extended, is consistent with experi-
ments. It is possible however to explain experiments with closed
circuits on other hypotheses concerning the laws of force or of
energy between elementary currents. Ampere’s law especially,
as extended by Weber, has met with very general accept-
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ance. And Helmholtz' treatment requires explanation with a
view to the electromagnetic theory of light.

‘We therefore propose to devote the present chapter to the con-
sideration of some of these hypotheses. We shall assume that
every pair of current elements exert on each other a certain force,
or possess energy of their separate action.

When we speak of a force acting between two current ele-
ments, we must be understood as meaning a force acting between
the elementary conductors in which the currents flow in virtue
of those currents; for we cannot conceive electric currents as in
any other sense the subject of mechanical action. But for
brevity we shall follow the example of other writers on the
subject by speaking of the action as between the currents.

486.] We shall employ the following notation. If CP or ds,
C' P or ds, two inﬁnitély short lines, represent the directions
of two elementary electric currents, then in our notation

cC =r,
LPGEE =10,
LPC'C=¢,
P’
P
& y
C c’
Fig. 47.

and the angle between CP and C'P'=e. Evidently with this
notation

dr

cos 0 = =
dr

7 IAN )
cos @ = 7

dr dr dir

ds ds ~ " dsds’’

and we shall denote by ¢ the current in ds, that is the quantity
of electricity which passes in unit of time through a section of
ds. Similarly i” shall denote the current in ds”. In the ordinary
notation w, v, w are component currents per unit area of the
section, so that ids corresponds to u dydzdu.

cose = g;(rcos()') — =
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If ds be an element of a closed circuit, s’ any elementary
straight line, then

fcos 0 cos 6 _fcos e

4
For fcos() cos @ S fcos 0r cos @ s

5
=— f — rcos 0’ ds
_-—_-—f;d——s(rcosf)’) ds

by integration by parts, the integrated term disappearing for the

closed circuit i
= f ds’.
%

487.] The four quantities 7, ¢, 8, ¢’ completely define the rela-
tive position of any two elements of electrie currents. If therefore
these elements possess energy of their mutual action, or exert a
force on one another, this energy, or force, must be capable of
expression as a function of 7, ¢ ¢, and &', together with ids
and /'ds’.

488.] It is assumed generally in these investigations:

I. That the effect of any element of a current on any other
element is directly as the product of the strengths of the currents
and the lengths of the elements. That is, it is proportional to
1dsd'ds’.

IL. That every elementary current may be replaced by its
components.

That is, if  CP, iCQ be two elementary currents, both starting

Q R from C, and if CR be the diagonal of the
Z parallelogram RPCQ, the two currents ¢CP,
1CQ are for all purposes equivalent to the
¢ P g .
Fig. 48. smgle? current ¢ CE. o
This we shall call the law of composition.

It is found by experiment that the effect of a sinuous current
CPR can, by diminishing the dimensions of the currents, be
made to differ as little as we please from that of the straight
current CR. Hence we infer the truth of the law.
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If ds be the length of the elementary current at C, ds, and ds,
its components, we shall denote by ¢, ¢, and ¢, the angles which
they respectively make with ds. And in like manner the
suffixes ; or , applied to any function of 7, ¢, 6, #/,ds, and ds” shall
denote that ds, or ds, is concerned in its formation.

489.] DerxtioN.—If £ (7, ¢, 8, 6') ds ds’, or shortly £, besuch a
function that for any whatever two components of ds, as ds,

and d82 , fds = fldsl +f2d82;

f is said to obey the law of composition. We can now prove the
following proposition.

If #(r, € 0, &), or shortly /; be any function which obeys the
law of composition, and is symmetrical with regard to 6 and ¢,
J must be of the form

¢ (r) cose+(r) cosd cost,
where ¢ () and y (r) are undetermined functions of .

By hypothesis fds = f,ds, +f,ds,,

ds ds
or f=f‘7ds—l+f’?ﬁ' g L (1)
By projecting on d¢’,
cos € ds, = co8 €,ds, -} cos €,ds,,

ds ds,
or cose:cosel——‘;‘-+cose,gg’-- e e Y)Y

Now let ¢ vary, 0 and ¢ remaining constant. That is, con-
ceive ds’ to be the radius vector of a cone of which C’ is vertex,
and r the axis. Then as d¢" changes its position on the cone,
€ changes, and ¢, ¢, change with it, but 7, 6, and ¢ are un-
affected. Then by differentiation from (1) and (2),

& _df,deds, | df, deds,
de dededs " de,de ds
ot
and these equations being true for any three directions in any
plane, and whatever the lengths of ds, and ds,, we must have
1 df_ 1o df_ 1odf

sine de  sine de,  sine, de,

sme_sme
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is, given 7 and ¢, independent of € and of 6, and is

sin € de
therefore a function of » and 6 only. 'That is,

Y B 0), i

sine de

where ¢ is an undetermined function.
Again, by projecting on 7, we have
cos 0 ds = cos 0,ds, + cos 0,ds,,

or cos @ = cos 6, i+cosﬂgfl WO 0 o
and, as before,

f= f,d81+fzdf“ SR R

Let 6 vary, e and ¢’ remaining constant. That is, let » be the
radius vector of a cone whose vertex is C’, and whose axis is
parallel to ds’. Then as 0 varies, 0, and 6, vary with it, ¢, ¢, €,,
and ¢’ remaining constant. And by differentiation of (4) and

(B)wehave  gr  af as,ds, . af, 40, ds,

dé cﬁﬁfﬂ dé, T
do, ds, db, ds,
sm@-sm@la—é—g- G’Oﬁd
And by the same reasoning as before,
. i S S e L
sind 0~ sin6,d6, sinf, db,’

ar .
e I TRl given 7 and ¢, independent of ¢ and 6.
1 4f :
Hence mz@— —‘I‘('r,G), AR SRS O - . (6)

where ¥ is an undetermined function.
From (3) and (6) we have

af o
E;:—(D(r,ﬂ)sme,

af s¥.7
i — % (r, 0)sin 6.

And by integration,
JS=@(r,60)cose + ¥ (r, 6) cos b,
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There can be no constant of integration, as x (r, ), because
such would not obey the law of composition.

Now if f be symmetrical with regard to 6 and ¢, ®(r, 6)
cannot contain ¢, and is a function of » only. Let it be ¢ (7).
And ¥ (r, ¢) must be of the form y () cos @, where yr(r) is a
function of 7 only. We find then that £, if it satisfy the con-
ditions, can have no other form than

¢ (r) cos € + Vr () cos 0 cos ¢,
where ¢ () and () are undetermined functions of 7.

490.] We will apply this theorem as follows. Tirstly, let
idsi'dsf be the force which the element ¢ds exerts on the element
7ds’. 'We shall assume that this force acts in the line », so that
action and reaction are equal and opposite. The force must
then be symmetrical with regard to 6 and ¢, and therefore must
satisfy the conditions; and therefore we may write

J=¢(r)cose + Y (r)cosdcost.

To determine the forms of the functions ¢ () and  (r), we
have recourse to another experimental law, namely,

III. In similar systems traversed by equal currents the forces
are equal. They are therefore independent of the linear dimen-
sions. From this we deduce that

p)="2%, amd Y= :’_,

because ds and ds" and + all vary directly as the linear dimen-
sions.
Hence we get

a b
fa— {Fcose +r—2cos6cos(9'}:

where @ and & are constants.

491.] We now proceed to Ampére’s method of determining the
ratio between ‘¢’ and ‘4’ To this end we have recourse to yet
another experimental law. It is proved, namely, or supposed to
be proved, by experiment, that

IV. The force exerted by any closed circuit on an element
of another circuit, resolved in the direction of that element, is
zero, or the resultant force is at right angles to the element.
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We will discuss hereafter the experimental evidence which is
supposed to establish this law. In the meantime, assuming its

3 ; 5 g
- which is Ampére’s result.

For the resolved force in direction of ds’ due to the closed
circuit of which ¢ds is an element is

trath, it can be proved that g =

if% cos € cos &ds + if%—cos()cos’&'ds
r 7

=if% rcos@'—‘%—('rcose’)ds+z' %cos@cosze’ds

! N b .
f2¢’d (rcos @) ds+zf cos 0 cos® #ds
2 2
= izﬁifws—e;ﬂ ds +btf cos 0 cos?® @ds,

,,.4

(since on integrating by parts

f2r3d (r cos &) ds,

the integrated term disappears for the closed circuit,)

= (b — 322) zf—:; cos 0 cos? 6’ds,
and according to law IV this is to be zero for every possible

closed circuit. This requires 6 = i;, which is Ampere’s law.

492.] The method of quaternions is admirably adapted to the
discussion of questions of this kind. We will therefore, follow-
ing in the main Professor Tait in his work on Quaternioﬁs give

another proof of the proposition that & = 3 satisfies the ex-

perimental law IV. \

The force on the element ds” is the integral, that is the re-
sultant, of all the vectors whose type is

b ; 2
Fcose+—cosﬁ‘cos€ )dsds,

each in direction between ds’ and an element, ds, of the closed
circuit,
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493.] The resultant vector / i depends only on the position

and shape of the closed circuit and the position of ds’, and is in-
dependent of the direction of ds’. Tt is a property of the closed
circuit, having given magnitude and direction at every point
in space. It is called the directriz of electrodynamic action for
the circuit in question.

It is remarkable that this vector, determined by Ampere’s
method, is identical in direction with another vector which we
have determined from totally different considerations, namely, the
magnetic force due to the cireuit.

For the directrix, as we have seen, is the resultant of vectors

whose type is Z zds, one for each element of the circuit. The

type vector is normal to the plane of » and ds, and of length
proportional to their product into the sine of the angle between
them.

If we take the element ds” for origin, and ds be at the point
Z, 7, %, the components of this type vector are

dy dz dz  da dux (l dy
o T 4 T T PO T
75 2 frs ) - 3
and the z-component of the integral vector is
dy dz
f sV
’]'3 »
T d@
that is, 6;; 5 , F, G, H being the components of vector

potential of the closed circuit. But this is the #-component of
magnetic force due to the circuit. Hence the directrix and the
magnetic force are identical in direction.

Further, we have proved that, according to the theory of Chap.
XXI, the mechanical action upon any closed circuit s of any
other closed circuits may be represented by a force on each
element of ¢ perpendicular to the element and to the magnetic
force of the field at the element. But this is the direction of
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the integral force exerted on the element ds” by the closed eir-
cuit ¢ according to Ampere’s theory.
494.] If we were to assume that each pair of elementsids, ¢'ds’

had a potential of their mutual action ¢4’ S(;S—e dsds’, there would

be a force of translation in the line joining them equal to

— it 5% dsds.
Now the resullant of these forces for all the elements of the
closed circuit s on the element 'ds” is not, generally, at right

angles to ds’. But the inlegral expression
i f 5 E dade

does, as we have seen, lead to a resultant force at right angles to
ds’. The explanation of the apparent inconsistency is as follows.
‘Assuming a separate potential for separate pairs of elements and
a force derived from it, we tacitly assume that each element can
be displaced unconditionally in any direction without reference
to any other elements, whereas in calculating the energy of
closed circuits we tacitly assume that no displacement of any
element can take place except conditionally on the circuit re-
maining closed. In the one case the displacement of the element
PQ into the position P’Q’ is the substitution of Q" for PQ, in
the other it is the substitution of the broken line PP'Q’'Q
for PQ.
495.] It follows from these considerations that if both circuits
are closed, Ampeére’s law of force, and the assumption of potential
ff co: - dsds’, both lead to the same result in calculating the
force on any element of either circuit. Therefore no experiments
with closed circuits can conclusively establish or disprove Ampere’s
law. It does not appear that law IV, which is the basis of
Ampére’s theory, has been conclusively established by experiments.
The experiments usually relied upon as establishing law IV are
made with closed circuits; for instance, the experiment relied
upon in Briot, ‘Théorie mécanique de la Chaleur.” We have
there a circular current, and another closed circuit in the form of
P2
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a parallelogram, one side of which coincides with the perpen-
dicular to the plane of the circle through its centre. It is found
that a current sent through the second closed circuit does not
tend to move the circular conductor round its axis. But by
symmetry this must be true for any law of force which has a
potential. The experiment cannot therefore be relied upon as
establishing Ampére’s law. Again, in the experiment described
in Maxwell, 2nd edition, Vol. IT, § 507, modified in § 687, we have
two cups of mercury on a plane, and a wire passes through them,
and is bent between the cups in the form of a circular are. The
wire between the cups forms part of a voltaic eircuit, the current
entering through the mercury in one cup and leaving through the
mercury in the other cup. If any other closed circuit be brought
into the neighbourhood, it is found not to move the wire round an
axis through the centre of the circle of which it forms part. In this
case any movement of the wire round the axis would not alter
the position of the current, but would merely place a different
portion of the wire in position to carry the same current. It
cannot therefore alter the potential of the electrodynamic forces
if they have one.

Concerning Weber's Hypothesis.

496.] Weber gives a physical explanation of Ampére’s results
as follows. He assumes that two quantities of electricity, or, as
we may say, electrical masses, ¢ and ¢/, have, in addition to their

statical potential %, also a potential due to their relative motion
equal to e
—ed —(- )
4r\dt

where C is a constant. This gives a repulsive force in 7 equal to
, O sdrd 0 d%
— ée 4—1‘2(% +ee é—'l-‘?iﬁ,
or as we may write it
r dt?
Let us now assume that an electric current consists of equal
quantities of positive and negative electricity moving with equal
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velocities in opposite directions. Then considering ¢ in d¢ and ¢’
in ds’, and r the distance between them, we have

dr dr ,dr

TR B
v and ¢’ being the velocities of ¢ and ¢ respectively, and if v and
v’ be constant, d’ By dte Iy

- g Zl?*"‘ 4 T g

and therefore the force between ¢ and ¢ is, omitting C,
.
__{ :-{-7)’2 s’2+2m/d da’}
s { )+1/2 )+2w"ilf—5dl .
ds’ ds ds
The force between e in ds and —¢ moving with velocity —¢
_in d¢ is found from the above by changing the sign of ¢ and /.
It is therefore
3 { LA, dir , d’r }

I S . s oy
ds® Rl ds’? i dsds’

dr? dr\? dr dr
" —{ @)+ (@) gt

The force between ¢ in ds and the system of ¢ and —¢ in 4’

is found by adding together the two expressions. It is therefore
o g 07y drdr
dsds’ 27* ds ds’

By symmetry, the force upon —e¢ in the element s moving
with velocity —v is the same as the preceding. And writing
i for ev and ¢ for ¢+/, we find for the force between the two
current elements ¢ds and ¢’ ds’

4t dr  2id/dr dr
Tr dsdd ~ 1? dsds’
: 27 d*r  dr dr
that 18, —F{zrm—as—ﬂsl’
which differs only by a constant factor from Ampére’s force.

497.] We have assumed » and ¢” to be constant. Let us now
suppose ¢/, the velocity of ¢ in ds’ and of —¢ in the reverse
direction, to vary with the time. Then, as before,

dr dr dr

Eé= v("i—"g-l"‘/‘d?'




214 AMPERE’S AND OTHER THEORIES. [497.

But %Z—: )+ ( )+2”d¢d’
do’ dr
dt ds’

And therefore the force exerted by +¢” on e contains, in addition
to the expression above found for it, the term
ee’ dv’ dr
2r dt ds
ed’ A/

] A e 4
that is, e cos 6 ds’.

dS,

But from —é and _%Z will be derived the same term; so

that the force on ¢ due to the change in the velocities of ¢ and
—¢ will be a repulsive force

e’ dv'
— — — cos 0’ ds’ in direction r;

r di

4 ’

d 2 S .
and therefore e_:._ TZ% cos 0 cos & ds” in direction ds.

Similarly the force on —e in direction ds reversed, due to the

change in velocity of ¢ and —¢/, will be
e—:} %, cos 6 cos 0 ds’.

But these two equal forces, on e in direction s and on ¢’ in the
reverse direction, constitute ¢ie Electromotive force in ds due
to the time variation of ¢/, that is of the current in ds’.

The electromotive force in ds due to a closed circuit of which

ds’ forms part is
s ,dv’ [cosf cost’

4
e o 3 ds,
N4 4
a5 d_a /‘cos 0 cos @ i,
dt r

“that is, as shown above Art. 486,

f gt Y
] ar . B SsEy
That is — 7 if 7 denote the resultant in direction ds of the

vector potential of the closed circuit. This agrees with the

P G G—— .
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laws of induction by variation of the primary circuit above
obtained, Chap. XIX.

For further investigations of this kind the reader may con-
sult among others the works mentioned in the foot-note.*

498.] It will be sufficient for our purpose here to follow the
more general method of Helmholtz, in order to investigate the
effect of unclosed electric currents, if such exist in the field.

The energy of two elementary currents ids and i'ds’ may be
assumed to be symmetrical with regard to 6 and ¢. It must
therefore be of the form

¢ (r) cos € + Y (r) cos 0 cos ¢,
The experimental law III shows, as before, that ¢ () and ()

are of the form % and 3— respectively, where @ and & are constants.
If the currents be all in closed circuits, this can be reduced to
one term involving co"ﬁ . For, for any closed circuit in relation to
an element ds” of another circuit,
ds’ f COSGEOS 0 —ds f 2% £ ds, as above shown, Art. 486.
And therefore the assumed energy when applied to closed

cireuits is reduced to 2o f f cose. .
: 0 B
2 gty term involving Qs_rco_s__ in the expres-

sion for the energy is matter of indifference so far as closed cir-
cuits are concerned.

In any case we require only to know the ratio of the con-
stants ¢ and 4. We may therefore put the energy in the form
adopted by Helmholtz,

e 42 14k cose 1—« cosﬂcos@’} i’ ds’
o { 9 r 2
1—« d*r
g ",
A{ coS € + —— 2 edd }zdszds,

* Stefan, Sitzungsberichte, Vienna 1869.
Carl Neumann, Ueber die den Kriften Electrodynamischen Ursprungs
zuzuschreibenden Elementargesetze, Leipzig, 1873.
Helmholz ¢ Crelle's Journal,” vol. 72.
Clausius, ¢ Phil. Mag.,” series 5, Vol. I, p. 69. Vol. X, p. 255.
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where 4 is a constant employed by Helmholtz to denote the ratio
of the electrostatic to the electromagnetic unit of electricity,
7 and ¢ being expressed in electrostatic units; and « is an un-
determined constant. Also 7 and ¢ include as well polarisation
currents as true conduction currents.

499.] The firstterm involving c—";—f is the same as the expression
for the energy determined by the method of Chap. XVIII, and

leads, as we have seen, to % 42 f f f (Fu+ Gv+ Hw)dzedydz as the
whole electrokinetic energy of the field.

2
The second term involving c{% can be shown, on Helm-

holtz’ principles, to depend on the existence of free electricity in
the field, and on variation of its potential with the time, and
therefore on the existence of unclosed currents, if free electricity
in motion have the properties of a current.

‘We may write

Vo8 = (W G Sl ).

And if 7 denote the distance of the element of volume da’dy dZ,
in which the component currents are #’, ¢/, #’ from the point
@, y, # at which the component currents are ; v, w, then, in
forming the expression for the energy of the whole field, the
second term becomes

- , dr & dr
ERIHIIAC SR I A e
dedydzdxdy’dz.
We shall now assume that a surface § can be described en-
closing the field, so distant that the flow of electricity through
it, or (fu+mv+nw), where 7, m,n are direction cosines of the
normal to 8, is zero at every point.
Then taking our stand at the point #, 7, ¢, from which the
distance is denoted by 7, let us form the integral

f f f(u L d’ w’%)dm’dy’dz’

throughout the space within S

R
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Integratmg by parts, it becomes
ffr (W + mv + nw') dS

—fffr(c%? d:+dz,)dw’dy’dz’ ZHL

of which the first term is zero by the condition concerning §.
500.] If all the currents are closed,
dw A | dw
Tttt e
at all points, and therefore the second term also vanishes, and
therefore also the integral (B) vanishes, and the second term in
the expression for the energy of the field vanishes.
But if there be unclosed currents, and if an electric current is
equivalent to a transfer of electricity, then in Helmholtz’ theory
dw & dwf dp
A AL e T
where p is the volume density of free electricity in the element
da'dy’ d7, and the integral becomes

ap 45,
fff . do/ dy/d,
that is, - —/f/ Vz—d:c’d;c/dz,

if 7 be the potential of frec electricity.
Again, applying Greeén’s theorem to the surface § and the en-

closed space, with the functions » and ‘il’;’ we have in the nota-
tion of Chap. I,

i f f ;V‘Zl:’ds f f f V*-—-—-dao’dy’dz’

dVd’I' dV 2 3
ay o ag ff Virdel dy 32,

of which the two surface integrals vanish if § be distant enough,
because whatever free electricity existin the system, its algebraic

sum being zero, f —-d8 must be zero if taken over any suffi-

ciently distant sphere described about @, 7, 7 as centre.
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‘We have then

g f f f Vdedx’dy’d R f f LY v dut dyfde
= — ——fffiﬂdw’dy’dz',

since Vip = ;

or ff/( d ,+ r)dw’d;z/dz
Cig s
= 27[] oL aldy i,

showing the dependence of the second term in the expression for
the energy of the field on free electricity and on variation of its
potential.

501.] Let us assume

ff/lddedez_q:

dav
2
or V\P_zdt

Then we proceed as follows. We have

JI I e o g ol e v o )

dadydzdx’ dy’ dz’
_fff{ Q+w%£}dwdydz.

Integrating the last expression by parts throughout the space
within §, and neglecting the surface integral, it becomes

dv dw
=ff) i
- dp
that is, f f f ¥ 7 dady dz,

p being the volume density of free electricity, that is,

1 dyzs
- Eﬁf\lﬁ;V Vdzdydz,

: 1 ,dV
that is — E/:[/*Pv e dadydz.
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dF 1—« d d¥
ol e AT
AR R
aa 1—x d d\]f
A
e A
dH  ,1—x dd¥,
AT e Ba
to which may be added the statical forces
@ar o
T de dy dz

502.] According to Ohm’s law, we have for the diminution
of the current by resistance in every element of volume,

av . ,dF —« d d¥,
TR T ”“"A T2 dida’
and for the heat generated in the element per unit of time,
R (v +0* +w?),

where Z is the resistance at the point where the component cur-
rents are v, v, w
If we write

l—x a¥ o Kd\I—' P 1—k d¥

we may obtam the equations of motion in the form given by
Helmholtz, viz. in any body presenting electrical resistance,

F'=F +

’
—l‘i‘u—j—V+A2 F
and since
d¥
2 = V2 2
dru=—V2F ViF 4 2 V T
azv
— i 72 e
= VF+(1 K)dwdt’
e P e o= RNT s, SR g =
e riag e P dx+A dt)’
dG’ Helmholtz’
20 ton i
T K)dydt R( I
av
I (1— _=_____ Ll
P (1 K)dzdt R\% dt
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4
potential involving the term cisi;ﬂ' We are not aware

that this is supported by any experimental evidence.

504.] Helmholtz further proves that, if « be negative, the
expression for 7' may under certain circumstances be negative.
To this end we first prove the following theorem :—

For any system

f[/dFdexd 0 _ffdedededz
dF 4@
[ qymavee=[[ 7o as- 7 ia;
dF i@
-3 ff o dydz_ffF%ds—ffmedxdydz,

the surface integrals being taken over the above-mentioned dis-
tant surface §. But these surface integrals are of the order — 3,
and therefore vanish if § be distant enough. Therefore

/‘/‘ dFdexd dz_/fdedG
Similarly, ff 0 de dydz _/fdedewdydz,

dedydz,

&c. = &e.
: dF d¢  dH 4V
Again, = + s Co e T T
For since —fff—dm’dy’dz &ec., and i dm”&c’

aF 'E_F‘i{{_ fffu~+v — +w d} da’ dy’
dz dy
el f f Y i f f L yawar - f f L aut dyf
r ) r r
1 ,dv v’ dw 2 70/ 1"
+fJf 22 G+ o) e

of which the surface integrals are over the surface §, and there-
fore vanish if that be distant enough.
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Also, as we have seen,

fff(%)zdmdgdz fff(‘”' 1 4+ 225 dadyae
T CNC e
[
=fff ok + -)2+(‘y—7-)}dxdydz

dFdG AFdH  dGdH :
+f./f(dydw P T )dddz . e

by the theorem above proved

Multiplying (2) by ——, and then subtracting from (1), we
obtain

fff(Fu+Gv+Hw)dwdydz
4wfff§(dF dg) (dG dH) (dH df)}dwdydz

4ﬂfff( )dxdydz

And therefore
o7 = Aﬂfff(Fu+Gv+Ew)dwdydz

Cs ff f(ﬂ)zdmdydz+ f f f (5 )dxdydz
fff{(dﬁ' ey dHy?

dH dF\?

fff( )davdyd + dw | dz }dwdydz

500.] To recapitulate the results of this investigation.—
We have

(1) f f f (Fut Qo+ Ho) dodyda,
R R
ff 4 )daadydz
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According to Maxwell’s theory this assumption is untrue if
u, v, w include the displacement currents.
(2) On Helmholtz’ assumption concerning the energy of ele-
mentary currents,

27 = 42 f f f (Fuuct G+ Hu) dadydz + E- DL f f f (&) dwayas
_Aszf{ . d) -2y (‘ZT ‘jg)}d wdyds

‘:—:‘ff‘/(gt—) dedydz.

Under certain circumstances this expression for 7' may become
negative if  be negative, as in Weber’s theory it is. The contro-
versy whether this is or is not physically possible is discussed
in Maxwell’s Chapter XXIII. It is possible perhaps to imagine
a system of moving electrified masses which shall make 7' in the
above expression negative if x be negative. In any case where
the electrostatic distributions are due to induction, as in the
cases treated in Chapters XXT and XXTI, the term

f/f( ) dudyds

will be inappreciable compared with the magnetic energy of
conducting circuits, and therefore cannot affect the sign of the
total energy.

The difference between the above treatment and Maxwell’s
consists in the assumption made by Helmholtz and Lorenz, that

du dv dw __  dp

B Oy . &
where #, v, w are the components of the total current. Ac-
cording to Maxwell, R T T
iyt @
is always zero with this meaning of u, v, w
B e -

DR being components of the conduction current only.

VOL. 1I. Q



CHAPTER XXV.

THE ELECTROMAGNETIC THEORY OF LIGHT.

506.] In Maxwell’s theory the electric current at any point in
given direction consists of two parts, viz., the current of con-

duction p, and the time variation of electric dlsplacement f

In the investigation of the induction of electric curren’os in
conductors we have treated of cases in which the displacement
currents have no appreciable influence on the conduction cur-
rents. We now come to treat of cases in which these conditions
are reversed, the conduction currents may be non-existent, the
displacement currents having the field to themselves. Maxwell
shows that in a medium absolutely non-conducting, but capable
of dielectric polarisation, electric disturbances may exist, and
are propagated through the medium with velocity varying as

——=, where K is the specific inductive capacity of the medium,

¢
and p its magnetic permeability, and that light consists in the

oscillations of dielectric displacement in such a medium with the
corresponding magnetic oscillations.

The subject has been treated by H. A. Lorenz, Professor J. J.
Thomson, and others.* We proceed to show, following in the
main the method elaborated by Lorenz, how some of the phe-
nomens of light may be explained on this hypothesis.

* H. A. Lorenz, Ueber die Theorie der Reflexion und Refraction des Lichtes

Schlomileh Zeitschrift XXII, XXIII.

J. J. Thomson on Maxwell’s Theory of Light, Phil. Mag. series 5, vol. ix.
p. 284.

Rowland, Phil. Mag., April 1881, June 1884.

Glazebrook, Report on Optical Theories, British Association 1885, and works
there cited.

Hertz Wiedemann’s 4Annalen, 1887-1889.
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From these we derive the general equations

(LW ﬂ)=@+ﬂ_ﬂ_dzﬁ
at du dtz dy T de? dady  dwde
(d ay ) &6 d'¢_ d*H_d&F )
at dy dz” d#  da®  dyde dydz’ [

ddy M & ST ET a0
dt dz dt® d* * dyt dwdz dydz

It may be observed that Helmholtz’s system, Art. 498, ete.,
leads in the case now under consideration to equations of the
same form with 7/, @, H' of Art. 501 for ¥, G, II.

508.] As we only require a particular solution, we may

agsume = 0,

f=ppcosE
g=qpcosE} (I)
h=rpcosE

where p is the amplitude of displacement, p, ¢, » its direction-
cosines, and

E= -——(vt—(lw+my+nz) = (t wﬁiﬂz)
T being the periodic time, A the wave length, and » the wave

velocity, so that

WK =1,
Also we have
A
F_--—,vppsmE
2A :
G=—mqpsml? RO (1]
I = — — rpsing

All points in any plane whose normal is / m, # are in the
same phase at the same time. Any such plane is called the

plane of the wave,
Since
df dg dh df  dg dh
B Ty T O e G e
we have
dr d4dG@ dH

dac+ y+dz

= 2
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Hence it is inferred that light consists of an electromagnetic
disturbance.

510.] It comes next in order to explain on this hypothesis
the phenomena of reflexion and refraction, when light passes
from one isotropic medium into another, separated by a plane
from the former.

Let p,, py, p” denote the amplitude of the vibration for
the incident, the reflected, and refracted waves respectively ;
and in like manner any other function shall be distinguished
by the suffix or accent according to the wave to which it
belongs.

Let us take the plane of incidence for the plane of 2z, and
the plane of separation for that of 2. In that case,

l=cos, m=0, n=sind.
2w x i
Then Fi= —f(t—;cos 6—; sin 6),

or if the origin be not arbitrary, we must add an arbitrary
constant 7y, and write

27 @® s
E =T(t—; cos 0—;31n0—t0),

and for the refracted wave
B i (t———, cos 0’—7 sin 6/ —¢,).
In order that on the plane of separation # = 0 the phase
of the refracted light may not differ from that of the incident
sin 6 sin ¢

light, we must have T
ging v K
o sing’ — o K’

the well-known law of refraction. This is in no way dependent
on the theory as to the nature of ligcht vibrations.

The problem then is, given the direction, 6, of the incident
wave, 7y, ¢, 7, the direction of its dielectric displacement, and p,
the amplitude, to determine the two unknown quantities p, and
¢’y the amplitudes of vibration in the reflected and refracted

waves respectively.
For this we require two relations. One we can obtain inde-
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pendently of the direction of displacement in the incident wave,
that is, of p,, ¢,, 7,; the other depends upon their values.

The energy per unit of volume is proportional to the square
of the amplitude of displacement and to —11? The energy that

crosses unit area of the plane of separation in unit time towards

s A o 1
the refracting medium is, since - 7%,

for the incident wave p.2v*cos,
for the reflected wave  —p,?v*cos,
for the refracted wave P’ cost’.

We may assume that the energy flowing towards the plane is
on the whole zero. That is, there being equality of phase for the
three waves on the plane of separation,

(P2 —p.2)vPcosl = p"v/3cost,
or, having regard to the law of refraction,
(P2 —p,)sin®f cosf = p%sin®@cosd. . . . . (1)
This is one relation.

This also expresses the fact that the energy of a wave of the
incident light is equal to the sum of the energies of the corre-
sponding waves of the reflected and refracted light.

511.] The form of the second relation will depend on the
direction of dielectric displacement in the incident light. We
will treat separately the two cases, Case I in which the dielectric
displacement is perpendicular to the plane of incidence, or

S =R O NI = O g =01 COS 2,
and by symmetry f; =0, /" =0, &ec.; and Case II in which
the dielectric displacement is in the plane of incidence ; that is,
fo= —p,sinfcosE, g,=0, h,= p,cosdcosk.

Any actual case may then be dealt with by combining the two
solutions.

Case I. The electrical theory requires that the electromotive
force in either direction parallel to the plane of separation, shall
be the same on either side of that plane. Now the electromotive
force at right angles to the plane of incidence on the side of
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S $
is f’r (9o+91), and on the side
of the refracted wave —]‘%/,, whence we obtain
9o+ 9 _ i 4
A ek
or (9o+9)) v* = '™
That is, neglecting common factors,

(Pt py)8in%0 = plsin@%. . . .- LR
Combining this with (1), we obtain

the incident and reflected waves,

(po—py)sinf cosd = p'sin@cos?,. . . . . (3)

and from (2) and (3
@ ) _ sin(0'—0)
P1 = Po m %
,  sin?0
fres W(Po'*‘f’x)'
These results agree with those usually given for light optically
polarised in the plane of incidence.

COROLLARY
7 .
a,+a, = (py+p,) To sinf cos B,

47
K

o =p. sin@ cos K.
And therefore
a,+a, =d.
Similarly it can be shown that
Yotn=v,
and B+ By =0=p.
That is, the magnetic force does not change discontinuously at
the plane of separation.

This result, which we have deduced from (1) and (2), Lorenz
treats as an independent relation, and uses it instead of (1).

It will be observed that the energy passing in unit time
at any point through unit area of any plane is proportional
to the product of the magnetic and electromotive forces at the
point and to the sine of the angle between them. See Art. 401,
note.
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512.] Next, let the dielectric displacement be in the plane

of incidence. In that case
9o=0, fo= —p,sinfcosE, hy= p,coslcosk,
with corresponding values for ¢;, &e. Then we have, as before,
(p2—p, ") sin®0 cos@ = p”sin®@ cos®. . . . . (1)
For the second condition we take
Sotfi= 1

that is, by the electrical theory the dielectric displacement per-
pendicular to the plane of separation is the same on either side
of that plane. This gives

(oA p)BIN 0-= p’sindl. .\ o bl e (2)
Combining (1) and (2), we obtain
(po—p,)sin?0 cosd = p’sin®@cosd’. . . . . (3)

Whence z
__ sinfcosf—sinf cosd’ sin20—sin2¢ tan(¢’— 6)
= P im0 cosO+sin@cos?  [*sin20+sm2d p°ta.n(6’+ 6)’
p= SEiln_Ilg, (Po+p1)-

These results agree with those usually given for light optically
polarised perpendicularly to the plane of incidence. From this
and the results above obtained it is inferred that dielectric
displacement in the plane of incidence corresponds to optical
polarisation perpendicular to that plane, and vice versa.

As in the former case, we can deduce from (2) and (3) the
continuity of a, B, and y. Or, following Lorenz’s method,
assuming the continuity of these functions, we may deduce (1)
as a consequence.

Py

If g —w, be the angle made by the direction of displacement

with the common section of the plane of the wave and the
plane of incidence, and if w,, " have corresponding values for
the other two waves, we find, combining the two cases,

cosO+ ¢
tanw, = tanw, =%
cosf—
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513.] The path of every incident and refracted ray is rever-
sible in direction, so long as the relation

sin 0 K

sin@ — /\/ K
gives real values for cos 6 and cos ¢, so that if light is incident
at angle ¢’ on the right-hand side of the plane of separation,
it will be refracted at angle 6 on the left-hand side. If, in
this case, the amplitude of the polarisation in the incident ray
be m,, and that of the reflected and refracted rays m, and »’
respectively, we shall have

(1) For dielectric displacement perpendicular to the plane of

incidence,

WIS sin(0—¢)
1T s+ 0)
sin?¢/
w = e (g +m,).

(2) For dielectric displacement in the plane of incidence,
sin26’ — sin26
0§in2¢ + &in20
it
~ sind

m, =m

(M4 m,).

Comparing these values with those obtained for the direct ray,

_sin(¢’—0)
P1=Po sin(9’+ 0)’
sin%f
/= gi-nref(Po"'Px);

3 24 sin260—sin26
- pl_p°sin29+sin26”
e 7SI )
P i sin()’ <p0+Pl)7
we see that in both cases

p
my= ——=my, p'm’ = (p}—m).
Po 2

7
If %sin 6>1, ¢ becomes imaginary, though siné = —Z— sin 0
remains real. For these values of 8 we have total reflexion.
For application of the theory to the resulting phenomena see
Lorenz’s treatise above referred to.
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514.] We have assumed the medium to be at rest. We may
however conceive it to be moving relatively to the source of light

,1n

: : 1
with veloeity 7, very small compared with the velocity Vid
the direction of wave motion. The effect of a motion of the
medium in the plane of the wave will not be considered.

Let the direction of wave motion be that of y, the direction of
displacement that of «, we shall then have by the field equations

Chap XXI,
dF
df K ( dy ddFy _ _( dy
dy didy/” 4m\ dy dt)
Also in this case éfi—f = 0, and
dy _, 9,
@ = 4‘ﬂ'd—t 3
df d df
whence d_—” =K (dt’ dydt)

Assume f'= a cos B
and E== (t 24t

where # is a constant.

2 1 |4
This gives 3 = K(l — -),
|4 1 V’
e TIIAN T
in which the + sign must be taken, and 7 being very small
1 14
compared with ) V= —— + — or the velocity of the
: VE ~/K ’ o

light is increased by half the velomty of the medium relative
to the source.®

On the Passage of a Wave through a Partially Conducting Medium.

515.] If the conductivity be finite instead of zero as hitherto
supposed, Maxwell’s theory gives us

* See a paper by Professor J. J, Thomson, ¢ Phil. Mag.’ 1880.
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K 5
p=0P,f=Z—ﬂ-_P,u=p+j; ete. ;

df d %
also Pr= —7‘—2—:—, F=/ff— dedydz,
dar dg dh
' Kfff {dw dy * s v

df dg dh
2 =
and therefore V= { A }
du dv dw dF dG dH _
Also 3—5 + d'—y -+ ;i; = 0, and therefore E—‘ S d—‘/— o ;l'z'

From these equations we get

w= 4_"gf+f', ViF=—dn {4”0

+fs

V2f_ VRP,_ :l_{_i V2F___ VZ\II};
™

df, g df, d df dg  db

2f — — D

and therefore V2f= 47w (= +Kd£2 (dw £ dz) oo oGl
Differentiating equation (1) with regard to #, and the cor-

responding equations in ¢ and % with regard to 7 and z re-

spectively, and adding, we obtain

o dg  dh d  dg  dh
e Odt atata)tE dt“(dac @)=
For a wave normal to #, all the functions —Jf ’ —f d’g , ete. are
dy’ de’ dy

zero. And therefore we have for the normal displacement f; in
such a wave
a a’
V‘Ef-—'— %{:

and therefore from (1) 4x C df+K :llt:‘f =10
Therefore either /'= 0 throughout, or else £ varies as e~

Now if the conducting medium be bounded by the plane of gz,
light flowing from that plane, and if on that plane the functions
be periodie, they must be periodic at all points within the
conducting medium. In any such case then f must be zero
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. =
throughout, or, given Maxwell’s formulz, there can be no normal
displacement.
Tor the transversal displacements we have

dg d?
29== — )
Vig = 4710’dt +Kdt’
: d% _ dg , d%
that 18 (':l—w“é—‘lﬂ' Od—t +Kdt—z'

We may assume as solution
27 x
TR Y AL R 4
g = qgpe—°T" v"’cosT(t v)’
where 7' is the periodic time; whence

padak s, . /THOD
S e a0’

in which the positive sign must be taken.

v

And if 1%2 be very small,
B cie

A 4

We may call a wave in which at any given point all the
functions are periodic functions of the time, but affected by the
factor €270« a stalionary wave. We see that if the wave be
stationary, it can, on Maxwell’s theory, have no normal dis-
placement,.

516.] Let us now consider the case of a wave of light passing
from an isotropic non-conducting medium into a partially
conducting medium, separated from the former by the plane of
y2. Let the plane of incidence be that of 2z, and let us take
the case of optical polarisation in the plane of incidence, or the
dielectric displacement in direction .

If the dielectric displacement in the conducting medium
be pcos B, the magnetic force in that medium consists of
two parts, one derived from the displacement current, and the
other from the conduction current. The value of its z-component
is then (using the same notation as before)

270
V74

x—‘/l%’—’ (p’ cos E + ¢’ sin E) cos &,
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517.] We shall now find, as the consequence of our theory,
that, if the magnetic and electromotive forces be continuous, as
we found them to be between two insulating media, there must
be a difference of phase between the reflected, the refracted, and
the incident wave at any point on the plane of separation.

For let us assume

for the incident wave, g = acosE;
for the reflected wave, g = a,cos £ +b,sink ;
for the refracted wave, g = a,cos &/ 4 b, sin Z.
Then we shall have
(1) by the continuity of electromotive force in y,
((a+a,)cos £ 4 b sin E) sin?0 = (a,cos & + b, sin £) sin? ¢’ ;
(2) by the continuity of magnetic force in z,

(a—a, cos E —b,sin E)sin0 cos0 = (a,cos £ + b,sin &) sin¢’ cos ¢
27C
&%
Equating coefficients of cos Z and sin £, we have four equations
to determine the four unknown quantities a, 4,, a, 6,.

The existence of the second term in the right-hand member
of (2), which is introduced by the conduction, forbids us to make
&, = b, = 0, which would reduce the three waves to the same
phase on the plane of separation. We have in fact a difference

+ (a,8in £ —b,cos E) sin 6’ cosd’.

of phase between the incident and reflected wave taxn"lj—‘ and
1’

ffaih /
between the incident and refracted wave tan—! f-

2

518.] We have preferred thus far to use real quantities as far
as practicable. But the treatment of problems of this class
is frequently much facilitated by 'the employment of the ex-
ponential instead of the circular function. As for instance in the
case of

Reflexion from a metallic surface.

As the medium treated of in the last article becomes a pure
conductor, let us replace the circular function cos Z by the corre-
sponding exponential form. Let us then suppose light passing
through a dielectric or perfectly insulating medium and incident
on a metallic surface. Let the surface of separation be the plane
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The treatment of the problem in the form now presented
is not peculiar to the electromagnetic theory of the nature of
light. We therefore follow it no further.

519] Helmholtz supposes the dielectric to be capable of
molecular polarisation, and investigates the laws of propagation
of this polarisation, arriving at results analogous to those of
Maxwell. :

In his view each molecule of the dielectric in a ﬁeld of elec-
tromotive force becomes polarised, or charged with equal and
opposite amounts of electricity proportional to the electromotive
force, these polarisations being of the same nature as those
of small conductors, so that representing the amount per unit area
on a plane at any point normal to the resultant force by o,
this & is of opposite sign to Maxwell’s displacement.

If £, 9, 2 be the components of polarisation at any point,
the electrical density of polarisation is

af dg  dh
(d +dy +dz)

Helmholtz supposes the variations of these polarisations to
possess the electromagnetic properties of ordinary currents, as
we have supposed with regard to Maxwell’'s displacement
currents. In this theory therefore if the only electricity in
the dielectric be that arising from polarisation, and there be
no conduction, we have

F=A2/ff'idwdydz+1;k%:

ar d
f=e(~G =70

where € is the constant ratio of polarisation to electromotive
force, and where

df dg dh [/‘fl dy

2 —_

Vi = 4w (dw+dy dz) ol 7 dx dy dz,
as given in Chap. XXIV.

In this theory however J, or dF+ o + ﬁ, is not zero, but, as above
dx d dz
; d
shown, is equal to —k%
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corresponding to three mutually perpendicular directions in space,
fixed in the medium. We assume the medium to be homo-
geneous, and these directions, with the corresponding values of
K, the same at all points.

Taking these directions for axes of #, g, and 2, we will denote
by K,, K,, and K, the corresponding values of XK. We shall
assume, as before, that u = 1.

Our equations (C) then become

T L
X o gk o
4mg _  d@  dy | 7
X, & W S
anh _  dH _dy
BN dt, )

As in the case of an isotropic medium, the condition of con-
tinuity requires that

af  dg  dh
wraytE ="
and therefore (B)
i B el Mo
de " dy  dz
From the equations (C’) combined with
. B
41Tf— dy_:i;, etc’ (A)
and (EI o ete.
dy dz I t
we obtain the general equations
K( *F dd\]f)_de' gz_ﬁ'_iliti_d"‘]l’
deg? dt da dedy  dedz
dd d’G d’G &*H  d&°F 3
By (dt’ at d;ll)— gy - g T i i
R (CEy ddwy OH PT_ P0G
et dt dz dy* daxdz  dydz
We may assume as a solutlon ¥ =0,
f=ppcosk,
g =gpcos &, } (Ia)
h=rpcoskE;
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The ellipsoid is then determinate in the direction and magni-
tude of its axes, and the same at all points in the homogeneous
medium. We shall call this ellipsoid the dielectric ellipsoid.

522.] If we seek from equations (2) to determine the ratios
gm . ™

s o pl
piq:7, we have to eliminate v% and (5= + 2~ + — ).
(Kx AT
As the result we obtain the determinantal equation
L i T
B R
== 01
Y2 9 r
% m, n

from which, combined with
pltgm+trn =0,
the ratios Z; and % can be determined.

Again, the section made by the plane
le+my+nz =0,
with the dielectric ellipsoid is an ellipse, which we will call
the ellipse LZMN: and if we seek to determine the direction
of its axes, we make 22+ 92+ 2?2 maximum or minimum con-
sistently with

o2 g y? . 2
Y POl gV S
and le+my +nz = 0.

=,

This gives the same determinant as before. Hence we see
that for given direction /, 7,n of the wave motion, the direction
of dielectric displacement p, ¢, » must be one or other axis of the
ellipse LM N, and », the wave velocity, is inversely proportional
to that axis. A wave may move in the given direction /, m, n
with either of two velocities according as the direction of
displacement is that of one or the other axis of the ellipse ZM N.

If, however, all points in the plane perpendicular to Z, #, z be
given in the same phase of displacement at the same instant,
and that displacement in any other direction in the plane than
either of the two axes of the ellipse Z M N, the displacement
cannot be propagated as a.single wave. We must resolve it
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into two components parallel to the two axes of the ellipse
LMN. Each component of displacement is then propagated as
a separate wave with velocity inversely proportional to the axis
of the ellipse LM N to which it is parallel.

Of the Magnetic Force.

523.] The components of the magnetic force are

—————— RGN
=3 R e pcosE’(m )
=f1—’-'pcosE(n-_ L5 )s . (Iay
y—-—pcosE(lﬁ-—m]z()
And therefore lat+mB+ny =0,

or the magnetic force is perpendicular to the wave direction, and,
as will be seen in the next Article, it is also perpendicular to the
displacement and the electromotive force.

Of the Electromotive Force.
524.] The direction-cosines of the electromotive force are
proportional to K —Kr

So also are the dlrectmn cosines of the perpendicular from O
on the tangent plane to the dielectric ellipsoid through the
extremity of the radius vector p, ¢, . If therefore the dielectrie
displacement be in the radius vector OP of the dielectric ellipsoid,
the electromotive force is in the perpendicular from O on the
tangent plane at P.

The vanishing of the determinant Art. 522; shows that the
three vectors whose direction - cosines are proportional to
I%a’ Igy and Ki,, » pygand 7, /, m and n; that is, the electro-
motive force, the dielectric displacement, and the direction of
wave motion, are in one plane. The components of displacement

5 z
are pp, ¢p,7p. Those of electromotive force are p% P Kl’ PE
z v ]
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Hence the component of electromotive force in the direction
of the displacement is

2 2 7‘2
P (%x ) Tq{; + E):

that is p??%. And since OP, 0@, and the direction of wave
motion are coplanar, that is the resolved part of the electro-
motive force in the plane of the wave. But the electromotive
force has a component normal to the plane of the wave namely

p?? tan POQ, that is po® tan ¢, suppose.
525.] Now let the plane of the displacement, the electromotive
force and the wave motion be that of the figure. Let OP be the

dielectric displacement, and therefore an axis of the ellipse ZM N
which is perpendicular to the figure.

P 0 Let 0Q be the perpendicular on the

P e o 5 tangent plane through P to the dielectric

ellipsoid. Let O8 be the normal /, 7,

AN to the ellipse LMN. If we make O8=OP,
i we find from (E) that the locus of § is

K, Kyt K2

pz—Kz pz"'Ky 3 PZ“Kz i 0,
) 2 o 22

that is, = + o + F s ity
where PP = Pyt 42

526.] Let us now invert the system with unit radius of in-
version. Let P then become P’, and @, Q’. Then OP =u.
And let us take a point » in 08 such that Ov=0P'=v.

At the same time let

1 A 1 = 2 1 2 2
r =4 p=B g=0
Then (1), the equation to the locus of v, is
i x? y‘z 22
by ey e s i

We will call this the »-surface. It is such that the radius
vector to it at any point is the wave velocity in the direction
of that radius vector.
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(2) The equation to the locus of @ is the new ellipsoid
at oyl 22
ztpteE=1t

(3) The locus of P’ is the locus of the foot of the per-
pendicular from the centre on the tangent plane to this new
ellipsoid.

(4) If a plane perpendicular to that of the figure be drawn
through 0@, its intersection with the new ellipsoid is an
ellipse of which 0Q’ is an axis.

(5) Therefore if in the plane of the figure we draw O7 L 0 Q’,
and make OV=0@’, the equation to the locus of 7 is, as

above shown,
2

2
P VEB% + poo
We will call this the 7-surface.

(6) Since a plane through P’Q’ perpendicular to the figure
is a tangent plane to the new ellipsoid or locus of @’, a plane
through 7 » perpendicular to the figure is a tangent plane to
the /-surface or locus of 7. The v-surface is therefore the
locus of the foot of the perpendicular from the centre on the
tangent plane to the 7-surface. The reader may verify analyti-
cally that the surface whose equation is

=

i U . (- 6
T ampta—p="
with ¥ =2ty 2

is the locus of the foot of the perpendicular from the centre on
the tangent plane to the surface whose equation is
o« ? 23
vien T et e
with V2= 2?4 92425
527.] The F-surface above determined is knmown in physical
optics as the wave surface, and from the preceding reasoning it
follows that the well-known application of its properties and
those of the v-surface to the determination of wave and ray
velocity, and the magnitude and direction of ethereal vibration
holds, mutatis mutandis, in the case of the propagation of dis-
placements in the dielectric.

=
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It follows, for instance, that OV, the radius vector to the
V-surface, is the velocity with which a disturbance originating
at O is propagated in direction OF. Let all points in a plane
through O at right angles to Ov be in the same phase at
the same instant, that is, assume the wave front to be per-
pendicular to O». Then the plane 7 is also a wave front,
and the line OV is the line of quickest passage of the disturb-
ance from one wave front to another.

528.] Wecan find by a known construction the direction of the

refracted wave when light passes from
B an isotropic into an anisotropic me-
dium separated by a plane from the
former—or rather the path of each of
the two refracted waves—since the
two surfaces which we have called
the v-surface and the 7-surface re-
gpectively can be formed from either
axis of the ellipse ZM N, and each
has therefore two sheets.
A b Let 4B be the plane of separation,
P4 the direction of the incident light
in the isotropic medium.

Let the plane of incidence be that
of the figure.

Then the angle of incidence,

Fig. s50.
™ .
PAB — 3 being known, we know

the position of B in 4B such that B shall be the first point
in direction 4B which is in the same phase with 4.

About 4 as centre describe the V-surface. Through B suppose
a line drawn perpendicular to the plane of the figure, and through
this line a tangent plane to the V-surface touching it in 7. -

Let Ov be the perpendicular from O on this tangent plane.
Then Ov is the direction of wave motion of the refracted ray,
OV the direction in which the disturbance is propagated, that
is the direction of the ray., Ow is in the plane of the figure, OV
not generally so.
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As the P-surface has two sheets, there are generally two
directions of Ov and OV for given direction P 4 of the incident
light.

We see then that, given the angle of incidence 6, there are
two determinate directions of wave motion in the erystalline
medium, and therefore two determinate angles of refraction,
¢’y and ¢, one for each of the two refracted waves. And each
obeys the law of refraction ;ji' = - : ——,» thus preserving contin-
uity of phase.

529.] The direction of wave motion for either refracted ray being
now determined, the direction of its dielectric displacement is also
determined by Art. 522, and is independent of the polarisa-
tion of the incident light.

But although the direction of displacement in either refracted
ray is independent of the polarisation of the incident light, the
amplitude is not. And, as we shall see, it is possible by
suitably choosing the plane of polarisation of the incident light
to reduce to zero the amplitude for either refracted ray, so that
only one of the two refracted rays will exist. Suppose o to be the
angle made by the plane of polarisation of the incident light
with the normal to the plane of incidence. Then for a certain
value of w, suppose w,, one of the two refracted waves disappears,
and for w, the other disappears. Then any given displacement in
the incident light may be resolved in directions denoted by w,
and ,; and the component in w, gives rise exclusively to
one, that in w, exclusively to the other, refracted ray.

Let w, be the angle made by the dielectric displacement of the
reflected light with the normal to the plane of incidence, »” the
same for the single refracted wave, w being so chosen that there
shall be only one. Also let p,, p;, p’ denote the amplitudes
of displacement for the three waves respectively. Then p,, 6, 6,,
0’ and »” are given. And we have to find w, w;, p;, and p’”.
The value of » so found is the value w,, which causes the other
refracted ray to disappear.

530.] To determine these four quantities we require four equa-
tions. One is the equation of the flow of energy analogous to that
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of Art. 510. The flow of energy towards the plane of separation
on the incident side is, as in that article, (p,2—p,2) v* cos 6.

The energy per unit of volume in the anisotropic medium is
v'2p’%, by Art. 521, where p’is the amplitude of dielectric dis-
placement. The direction and velocity with which it flows
are represented by OV, and the prOJectlon of OV on the normal
to the plane of separation is

v/ cos®’ 4 v"sin@’sinw’tane,

since e = POV = ¥V Ov. Therefore the flow of energy on this
side normal to the plane of separation is

PH(v3cos? + o*sin @ sinw’tane) ;

and therefore for the case in which only one refracted ray exists
our equation becomes
(P2 —p,)sin®Ocosb = p2{sin’¢’ cost’ + sin*@'sinw’tane}.. . (1)
The electromagnetic theory provides us with three more
equations, namely :—
By the continuity of electromotive force perpendicular to the
plane of incidence
(pocOsw,+ pycosw,) sin?0 = plcosew’sin®®. . . . (2)
By the continuity of electromotive force in the common
section of the planes of incidence and separation,
(posinw,— p, sinw,) sin?@cos @ = p’sinw’sin?6 cos b’ 4 p’sin’ ¢ tan.e (3)
By the continuity of dielectric displacement perpendicular to
the plane of separation,
(posinw,+p,sinew,)sing = p’sinw’sind”. . . . (4)
From (3) and (4) we obtain
(ps?sin® wy— p,2sin’w, ) sin®f cos O
= p”sin®w’5in® 6’ cos’ + p/?sin*@’sinw’tane;
and subtracting this from (1),
(p,2cos? w,— p,cos?w,) sin* O cos§ = p%cos?w’sin® ¢ cos 6¢;
and dividing by (2),
(o COS w3, —p, cos w,)sindcosd = p’cosw’sin@ cos?. . . (5)
And we have now four linear equations (2), (3), (4), and (5) from
which to determine w, and w,, p, and p’.
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532.] It appears therefore that certain phenomena of light can
be explained on the electromagnetic hypothesis. The theory
however in the form hitherto given fails to explain certain other
phenomena, e. g. the rotation of the plane of polarisation, under
the influence of magnetic force.

This investigation shews that on the usual hypothesis con-
cerning the nature of dielectric displacement the magnetic
force normal to the plane of the wave due to any system of
periodic electromagnetic disturbances is zero.

As the system gives rise to no magnetic force in the normal
to the wave, we should expect that any magnetic force in that
direction due to external causes would have no influence on the
system.

It is found, on the contrary, that in certain media a magnetic
force in the direction of wave motion causes the plane of
polarisation to rotate from left to right, as seen by an observer
looking in the direction of wave motion. If we suppose the
plane of polarisation to vary continuously, we still get on our
hypothesis no magnetic force normal to the wave, and therefore
cannot conclude that the normal force would cause the plane to
rotate.

Maxwell gives an explanation of this phenomenon (Magnetic
Action on Light, Chap. XXI) by resorting to a more general
conception of dielectric displacement ; instead of linear displace-
ment he assumes two circular motions in opposite directions.

533.] Professor Rowland has alse given an explanation of the
phenomenon (Phil. Mag., April 1881) which is intimately con-
nected with the electromagnetic theory of light.

It was first observed by E. H. Hall of Baltimore * that an elec-
tric current in a plane conductor under a magnetic force normal to
the plane, if free to choose its course, is deflected across the lines
of magnetic force. Professor Rowland assumes that the displace-
ment currents in dielectric space have the same property. And
this he interprets as an electromotive force whose components are

X = A (Bh—yg) &,
where 4 is a constant expressing the intensity of the force.
* Phil. Mag. April 1880.
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direction with the same absolute velocity, the force on it will be
(—€) x (—v), that is ev.  The new force X will thus act in the
same way on positive and on negative electricity, and it there-
fore cannot be true that f = g-X, any more than —f = —f;” X.

According then to the usual conception of an electric current,
as consisting of equal quantities of positive and negative elec-
tricity moving with equal velocities in opposite directions, there
can be no true electromotive force of the kind assumed by
Rowland, though there may be deflexion of the current across
the lines of magmetic force. But if we suppose positive and
negative electricity to be involved in the current asymmetrically,
there may be a true electromotive force such as Rowland assumes,
and his explanation of the phenomena may be the true one.

534.] Until the recently published experimental researches of
H. Hertz mentioned in Arts. 482, 483 the physical basis of the
electromagnetic theory of light developed in this Chapter was
limited to the observed approximate agreement between the
determined values of the velocity of light and the magnitude

1
VK

These researches of H. Hertz, confirmed and developed by
Dr. Oliver Lodge, Professor Fitzgerald and other investigators,
must be regarded as supplying weighty and independent evi-
dence of the truth of the theory.

in electromagnetic measurement.
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THE END.
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