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PREFACE

In 1915, the author published in the series of Edinburgh
Mathematical Tracts a brief introduction to ‘‘Automorphic
Functions.” This booklet has been long out of print. Except
for this little volume, no book on the subject has ever appeared
in English. This is regrettable, in view of the importance of the
subject to those whose interests lie in the field of Functions of
a Complex Variable and of its numerous contacts with other
domains of mathematical thought.

It has been the author’s aim in the earlier chapters to lay the
foundations of the theory with all possible rigor and simplicity.
The introduction and use of the isometric circle (the name was
suggested by Professor Whittaker) have given the theory of
linear groups a simplicity it has not had hitférto.. The funda-
mental region which results was given by J. I. Hutchinson, in
1907, and independently by G. Humbert, in 1919. But the
interesting properties of the circle itself and its utility in the
derivation of the theory seem to have escaped the attention of
workers in the field. It may be stated here, that much of the
material involving the isometric circle embodies researches of
the author which have not appeared elsewhere in published
form.

In the later chapters, the author’s task has been largely a
matter of selection of material and method of treatment. Here,
also, the use of the isometric circle has often led to a simplifica-
tion of the proofs. The material included has been, perhaps,
a matter of the author’s personal taste. The classical elliptic
modular functions deserve a place as the best-known examples
of non-elementary automorphic functions. The theory of
conformal mapping has been presented at some length—from
the modern function-theory point of view—as a preparation
for the theories of uniformization which follow. The chapter
on Conformal Mapping can be read independently of the rest
of the book. In the final chapter, the connection between auto-
morphic functions and differential equations is brought out.

v



vi PREFACE

This treatment, which is necessarily brief, leads up to the
triangle functions. \

The connection between groups and non-Euclidean geometry
has not been treated, as it now seems of less importance, in
view of the way the foundations have been laid. A chapter
on Abelian Integrals, treated in the light of uniformization,
would have been of interest; however, the subject has not been
worked out to any extent. This chapter should probably not
be written until some geometer sets up a product for the prime
function for the Fuchsian group of the first kind. Finally,
the book might have been improved by a more extensive use
of the theory of normal families of functions.

It is now almost fifty years since Poincaré created the general
theory of automorphic functions, in a brilliant series of papers
in the early volumes of Acta Mathematica. Since that time,
the subject has had a steady growth. The material in the
present volume will be found to spring very largely from
researches of the past twenty years, either in content or in
method of treatment. The theory of uniformization rests on
the papers of Koebe and Poincaré, published in 1907. The
first rigorous propf of the possibility of mapping one plane
simply connected Tegion upon another was presented by Osgood,
in 1901, but the treatment of this and similar problems by
function-theory methods came a dozen years later. Area
theorems and other aspects of mapping are of still later date
and are active subjects of investigation today. The founda-
tions of the theory of groups, as previously stated, are based
on the author’s studies during the past few years.

The author wishes to thank Prof. E. T. Whittaker for various
kindnesses while at the Mathematical Laboratory of the Uni-
versity of Edinburgh. He is indebted similarly to Profs. Otto
Holder and Paul Koebe, of the University of Leipzig. He
received much profit from the lectures of Professor Holder on
“Elliptic Modular Functions” and from those of Professor
Koebe on “Uniformization.”” So much of the material in the
latter half of the book was gleaned from the published papers of
Professor Koebe that specific references have often not been given
and attention is called here to that fact. The author acknowl-
edges a debt of long standing to Prof. W. F. Osgood, whose
inspiring teaching first aroused an interest in the subject dealt
with in this volume and whose ‘Funktionentheorie’” has been
a mine of usefulness.
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The preceding gentlemen are in no wise responsible for such
defects-as the book possesses. Their encouragement and their
suggestions have been valuable; but they are busy men, and the
author has not presumed to ask them to read the manuscript.
The only assistance in the task of writing the book was from
Mr. Jack Kronsbein, a student of the University of Leipzig,
who, as a labor of friendship, typed most of the manuscript
and checked many of the formulz.

The author’s chief debts are to the National Research Council,
whose grant of a fellowship made the writing of the book possible,
and to the Rice Institute, which gave him leave of absence.

L. R. F.

HousTton, TEexas.
June, 1929.
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AUTOMORPHIC FUNCTIONS

CHAPTER I
LINEAR TRANSFORMATIONS

1, The Linear Transformation.—Let z and 2’ be two complex
numbers connected by some functional relation, 2/ = f(z). Let
the values of z be represented in the customary manner on an
Argand diagram, or z-plane, and the values of 2’ be represented on
‘a second Argand diagram, or z’-plane. To each point z of the
flrst plane for which the function is defined there correspond one
or more values of 2’ by virtue of the functional relation. To
points, curves, and areas of the z-plane there correspond, usually,
points, curves, and areas in the z’-plane. We shall speak of the
configurations in the z-plane as being {ransformed by the func-
tional relation into the corresponding configurations in the
Z/-plane. '

We shall find it convenient to represent 2’ and z on the same
Argand diagram, rather than on different ones. Then the
functional relation transforms configurations in the z-plane into
other configurations in the z-plane. In what follows but one
plane will be used unless the contrary is stated.

The whole theory of automorphic functions depends upon
a particular type of transformation, defined as follows:

DreriNiTION.—The transformation

, a+b - _ o)

T+ d
where a, b, ¢, d are constants and ad — bc # 0, is called a linear
transformation.!

The present chapter will be devoted to a study of this funda-
mental transformation.

! This is more properly called a ‘linear fractional transformation’’;
but we shall use the briefer designation. It is also called a ‘“homographic
transformation.”

If ad — be = 0, the equation reduces to 2/ = constant; but this case is
without interest.

1



2 LINEAR TRANSFORMATIONS [Smc. 1

The quantity ad —- bc is called the determinant of the trans-
formation. It will be convenient to have always

ad — bc = 1, (2)

the determinaht in the general case becoming 1 if the numerator
and denominator of the fraction in the second member be divided
by ++/(ad — be).

The second member of (1)5 is an analytic function of z. The
linear transformation has, therefore, the property of conformal-
ity; that is, when a figure is transformed, angles are preserved
both in magnitude and in sign.

We note that for each value of 2, equation (1) gives one and
only one value of 2’. | There is no exception to this statement if
we introduce the point at infinity. Thusif ¢ # 0, 2 = —d/c is
transformed into 2’ = «, and z = « into 2’ = a/c; if ¢ = 0,
2z = o is transformed into 2’ = .

Let equation (1) be solved for z:

—dz' + b

=~ @ —a ®)

This transformation which, applied after the transformation (1)

has been made, carries each configuration back into its original

position is called the inverse of the transformation (1). We note
that (3) is a linear transformation; hence,

THEOREM 1.—The tnverse of a lmear transformation is a Linear
transformation.

We note that (3) is formegrfrom (1) by interchanging a and d
with a change of sign. When formed in this way the determinant
is the same as in (1).

We see from (3) that to each value of 2’ there corresponds one
and only one value of 2. We have, then, the following result:

THEOREM 2.—The z-plane is transformed into itself in a one-to-
one manner by a linear transformation.

Moreover, the linear transformation is the most general
analytic transformation which has the property statedin Theorem
2.  We shall prove first the following theorem:

TueoreM 3.—If, except for a finite number of pomts the plane
18 mapped in a one-to-one and directly conformal manner upon a
plane region, the mapping function is linear.

Let 2/ = f(2) be such a mapping function; and let ¢, ¢z, . . .,
g.(=®) be the excepted -points. Owing to the conformality,
f(z) is analytic except at the isolated pointsqy, . . . ,¢.. Nowg;



Sec. 1] THE LINEAR TRANSFORMATION 3

*is not an essential singularity, else the function takes on certain
values an infinite number of times in the neighborhood of the
point, which is contrary to hypothesis. Hence, f(2) either
remains finite in the neighborhood of ¢;, and hence is analytic
there if properly defined, or has a pole. So f(z) is a rational
function of z.

A rational functlon which is not a constant takes on every
value m times, where m is the number of its poles. Since f(z)
takes on no value twice, it has a single pole of the first order.
If the pole is at a finite point g, we may write

T ST 1 S Sl SR S O
2= qx 2= Qx
If the pole is at infinity, we have
z/ = Alz + Ao, Al # 0. (4:’)

In either case the function is linear.

CoroLLARY 1.—The most general one-to-ohe and directly con-
formal (where conformality has a meaning) transformation of
the plane into itself is a linear transformation.

We have not defined conformality when one of the points
involved is the point at infinity. Excepting the point z = =«
and the point of the z-plane which is carried into 2’ = o, the
transformation is to be conformal. Theorem 3 then applies.

CoROLLARY 2.—The most general one-to-one and directly con-
formal transformation of the finite plane into ttself is the linear
transformation 2’ = Az + A,. ,

We shall now consider the successive performance "of linear
transformations. After subjecting the z-plane to the transforma-
tion (1) let a second linear transformation

S = az’ + B

=T ®)
be made. Expressing 2"’ as a function of 2, we have
az +b 48
S = “z+d _ (aa + Bc)z + ab + Bd 6)
az+b+5 (va + dc)z + vb + od
Yz + d

Making the transformation (1) and then making (5) is equivalent
to making the single transformation (6). Now, (6) is a linear
transformation; its determinant, in the form in which the fraction
is written, is (ad — bc)(ad — Bv). It is worth noting that if the
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determinants of (1) and (5) are cach unity, that of (6) is also
unity without further change.

If 2’ be subjected to a linear transformation, we conclude on
combining the new transformation with (6) that the succession
of three linear transformations is equivalent to a single linear
transformation, and so on. We have then the following result:

TurEOREM 4.—The successive performance of a finite number of
linear transformations is equivalent to a single linear transforma-
tion.

A further well-known property of the linear transformation is
expressed in the following theorem:

TaeoreM 5.—The lLingar transformation leaves tnvariant the
cross-ratio of four points.

Let 2y, 2, 23, 2, be four distinct points and let z,/, 2o/, 25’, 2, be
the points into which they are transformed by (1). We shall
suppose all the points are finite. We have

z,_z,_azl+b_azg+b=7(rad#_—bc)(zl——z>2_)
! P T i+ d czm+d (cz + d)cze + d)

2 — 2 <7)
_ 1 2 .
" (ca1 + d)(cze + d)’
whence °
(21" — 2)(2s" — 2) _ (21 — 20)(23 — 24) @8)

(& — Z3l)7(z2' —2z/) (21— 2)(22 — &)
If one of the points is at infinity, we make the necessary change
in (8) by a limiting process. Thus, if 2, = © and 2,/ = «, (8)

becomes
2 — 2/ 2 — 2
;22, —':2;‘/ - —21 — 23.
2. Symbolic Notation.—For brevity in writing and for con-
venience in combination, we shall represent the second member
of a transformation such as (1) by the functional notation, using

capital letters for the function; thus,

_az+b
‘ T(@) = 2+ d
so that (1) becomes
2 = T(z).

We shall speak of this as the transformation T, the argument 2
being omitted unless ambiguity miént arise without it. If two
transformations are the same, T;(z) = T(z), this is indicated by
the equation T, = T.
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- Let S be the transformation (5), so
2 = S().

2’ = 8[T(z)] = ST(z).
Thus, the succession of two transformations is written as a
product, the enclosing brackets of the functional notation being
omitted. It should be noted that ST is the single linear trans-
formation resulting from making first the transformation T and
then the transformation S, the order of performance being from
right to left. TS is, in general, different from S7.

It is easily seen from the meaning of the symbols that the
associative law of multiplication holds,

UST) = (US)T,
and there is no ambiguity in writing simply UST. In a product,
any sequence of factors may be combined into a single linear
transformation. )

The transformations equivalent to performing T twice, thrice,
ete., are represented by T2, T3, ete. Thus, T%(z) means T[T (2)].
The inverse of T is written T—'; hence, from (3)

T-\(z) = :fiz + b.
2 —a
The result of applying the inverse n times is represented by
T—. If we represent the identical transformation, 2’ = z, by
1 so that 1(z) means z, we observe that positive and negative
integral powers of T together with unity combine in accordance
with the law of the addition of exponents in multiplication.

The inverse of a sequence of transformations can now be
written down. To find the inverse of ST we make on the plane
transformed by ST the transformation S—! followed by T-1; we
have

Then, (6) is

(T8 1H)(ST) = T-Y(S™'S)T = T'T = 1.
Thus, T-'S-! is the transformation which, applied after ST,
carries each point back to its original position; so T-1S-! is the
inverse of ST. In a similar manner we have for any number of
transformations

ST - - - UV)L=V-y-t ... 1181

The rule for the transposition of factors by division is easily
found. Let UST = V; then,
(UST)T-* = VT, 0or US = VT,

U-Y(UST) = UV, or ST = U~'V.

and
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Then, in an equation connecting two products, the first (last)
factor of one member can be transferred to the beginning (end)
of the other member by changing the sign of its exponent. Thus, -
symbolic division is permissible, provided the proper order of
performing the operations is followed. For example, the inverse
W of ST . . . UV is a transformation such that

wSsT - .. UV = 1.

By repeated division on the right we get the result given above.

3. The Fixed Points of the Transformation.—The points
which are unchanged by the transformation (1) are found by
setting 2/ = 2z in (1) and solving the resulting equation.

_wthb 2 —az—b =
z—&q_d:orcz + (d—a)z—b=0. 9)
Suppose, first, that ¢ ¢ 0. Then, (9) has the two roots
—d+ VM
£, b2 = “———2—6—‘/— (10)
where
M = (d— a)?+ 4bc = (a + d)? — 4. (11)

The second expression for M is derived on the assumption that
ad — bc = 1. We see from (1) that « is not transformed into
itself, so there are at most two fixed points. If M = 0, that is
if @ + d = £2, there is but one fixed point,
a—d

. E=—5 (12)

If ¢ =0, we must have a 0, d % 0 since, otherwise, the
determinant would be zero. We see from (1) that « is then a
fixed point. Solving (9) we get a finite fixed point provided
a # d. The fixed points are

b

El=d_a’ f2 = o, (13)
If c = 0and a = d, (1) takes the form
Z=z+4+0,

a translation with the single fixed point, ¢ = ». In the case
¢ = 0, we see from (11) that we have, as before, two fixed points
if M # 0, and one fixed point if M = 0.

There cannot be more than two fixed points unless (9) is
identically zero; that is, ¢ = 0,d = a,and b = 0. Equation (1)
then takes the form 2’ = 2. Hence,
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TueoreEM 6.—The only linear transformation with more than
two fized points vs the tdentical transformation 2’ = z.

By means of this theorem we are able to prove the following
important proposition:

TurorEM 7.—There is one and only one linear transformation
which transforms three distinct points, 21, 22, 23, into three distinct
points, 21/, 22’, 23'.

We shall prove first that there is not more than one such
transformation. Let T be one transformation carrying z;, z.,
z3 into 2/, 2, 23/, and let S be any other such transformation.
Consider the transformation 7-1S. We have S(z;) = 2, and
T-(z,) = 21; so

T-8(z) = T-Y(z/) = 2.
Hence, 2;, and similarly 2, and 2;, are fixed points of the trans-
formation T-'8. It follows from Theorem 6 that

T-'S =1;
whence applying the transformation T' to both members,
S=T.

There is, thus, not more than one transformation of the kind
required.

We shall prove that there is always one such transformation
by actually setting it up. If none of the six values is infinite,
consider the transformation defined by

(2" — 2) (2 — 2) - (2 — 21)(22 — Za)’ (14)

(#" — 2 )& —2') (2 — 22)(21 — 23)
an equation which expresses the equality of the cross-ratios
(2’21, 2'25') and (221, 2025). This is of the form (1) when solved
for 2’ in terms of 2. It obviously transforms 2, 2s, 23 into 2/,
29/, z3'; for both members of (14) are equal to zero whenz = 2,
2/ = 2,’; they are both infinite when 2z = 2z,, 2’ = 2;’; and they
are both 1 when z = 23, 2/ = 25/, »

If one of the given points is at infinity, we have but to replace
the member of (14) in which that point occurs by its limiting
value when the required variable becomes infinite. If 2; = o,
29 = ©, or 23 = «, we replace the second member of (14) by

29 — 2 z2—2z z2—2z

-2 3: - L, or —————!:

z2— 29 21 — 23 2 — 2
respectively; and a similar change is necessary in the first member
for an infinite value of z,/, 2o/, or z;'. In any case, there is one
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transformation with the desired property, and the theorem is
established.

Equation (14) is a convenient form for use in actually setting
.up the transformation carrying three given points into three given
points. Theorem 7 will be of great utility in our subsequent work;
to prove that two transformations are identical, we shall have
merely to show that they transform three pointsin the same way.

4. The Linear Transformation and the Circle.—Since we are
operating on the complex number z it will be convenient to have
the equations of curves expressed directly in terms of z. If z is
the real part of z and 7y is its imaginary part, and if we represent
by z the conjugate imaginary of 2, we have

2=z -+, Z=zx—1y. (15)
From these we have )
=YE+2), y=,G—2, #=a+y. (16

From the first two equations of (16) we can readily express the
equation of any curve in terms of z and z.

We shall now get the general equation of the circle and of the
straight line. The equation

A+ 9?) +bix + by +C =0,
where the constants are real, is the general equation of the circle
(possibly of imaginary or zero radius) if A # 0, and is the general
equation of the straight line if A = 0 and b; and b; are not both
zero. Substituting from (16) we have
Azz + 15 (by — b2z + 14(by + ib2)2 + C = 0.
Putting B = 14(b, — 1b,), this takes the form
Azz + Bz + Bz +C =0 (17)

where A and C are real. Equation (17) is the general equation
of the circle if A 0 and of the straight line if A = 0, B = 0.

The center and radius of the circle are easily found. Writing
(17) in the form

B\(. , B\ _ BB — AC
(z +Z)<z +Z) A

we see that the first member is the square of the distance of z
from —B/A. Hence, (17) is a circle with center —B/A and

radius \H-B—%ig Since we shall be interested only in real

circles, we shall require that BB > AC.
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- Now let us see what the circle or straight line (17) becomes
when the linear transformation (1) is applied. Substituting
from (3)

s = —dz’ +_lz _ ;—dé, + 5
T —a T @—a’
we have
(—de’ + b)(—dz' + b) —dZ +b | 5—dZ’ +5 _
4 (c2 — a)(e2 — a) +B 2 —a +Bc’2’—d +0=
(18)

Clearing of fractions and collecting terms, we have

Add — Bed — Bed + Ceél'?
+ [—Abd + Bad + Bbe — Cacl?
+ [—Abd + Bbé + Bad — Cacl?
+ Abb — Bab — Bab + Caa = 0. (19)

In this equation the coefficient of 2'z’ is real, for dd and c¢ are
real, being each the product of a number by its conjugate;
‘and Béd + Bed is real, being the sum of a number and its con-
" jugate. Similarly the constant term is real. Also the coefficient
of z’ is the conjugate of the coefficient of 2’. Therefore (19)
is of the form (17). We have then the following result:

TuroREM 8.—The linear transformation carries a circle or
straight line into a circle or straight line.

It will often be convenient to consider the straight line as a
circle of infinite radius, in which case we say briefly that a circle
is carried into a circle.

It is easy to see when the transform will be a straight line.
The straight line is characterized by the fact that it passes
through the point «. Hence, if the point which is carried to «
lies on the original circle or straight line, the transform will
be a straight line; otherwise the transform will be a circle.

This is easily shown analytically. For the coefficient of 2'z’
will vanish if (dividing by ¢¢)

IS e

that is, if —d/c lies on the original circle or straight line.

Since three points determine a circle, we can set up a trans-
formation which carries three distinct points of the first circle
into three distinct points of the second circle. Having chosen
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the first three points, the transformed points can be selected in
an infinite variety of ways (32 ways, in fact); and each different
selection gives a different transformation. Hence,

TaEOREM 9.—There exist infinitely many linear transformations
which transform a given circle into a second given circle.

In particular, we may choose the second circle to be’the
same as the first. Hence, there are «3 linear transformations
which transform a given circle into itself.

b. Inversion in a Circle.—There is an intimate relation,
as we shall now show, between the linear transformation of the
complex variable and the geometrical transformation known as
“inversion in a circle.”

Consider a circle @ with center at K and radius r. Let P be
any point of the plane and construct the half line KP, beginning

at K and passing through P.
Let P, be a point on the half

\ line KP such that KP, - KP =

P/ r2; then P, is called the “in-
| /! verse of P with respect to the.
7 q circle Q.” The relation is a

reciprocal one; P is the inverse
of P,. We speak of P and P,

Fie. 1. as points inverse with respect
to Q.

Inverse points have the property that any circle passing
through P and P,, the inverse of P with respect to @, is orthogonal
to Q. For, let Q' be any circle through P and P, and draw KT
tangent to @', T being the point of tangency. We have

KT? = KP, - KP = 12,
whence, T lies on . The radii to T are perpendicular and the
circles are orthogonal.

We shall now get an analytic expression for the transformation.
Let P, P,, and K be the points 2, z;, and k in the Argand diagram.
The equations of the transformations are

(22 — k)(z — k)| = 1%, arg(z: — k) = arg(z — k).
The first equation expresses the condition KP, - KP = r%; the
second expresses :che collinearity of K, P, and P,. Since arg(z —
k) = —arg(z — k), the two equations are satisﬁed if, and only if,
(21 — k)& — k) = (20)

ThlS is the equation of inversion i terms of complex variables.
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If Q is the circle,
A+ B:+ Bz +C =0, an

equation (20) becomes, on substituting the center and radius
previously found,

BY/. B BB — AC
(zl * z)( * z) =T 4

which on simplification is
Az + Bz, + Bz 4+ C = 0, (21)
We thus get the relation between z and its inverse 2z, from the
equation of @ by substituting 2, for z and leaving z unchanged.
Solving (21) we have the explicit form of the transformation,
—-Bz - C
D=4+ B (22)
When A = 0 so that (17) is a straight line, we shall still
use formule (21) and (22) for the inversion. It is not difficult
to show geometrically that when A approaches zero, P and P,
attain positions such that @ is the perpendicular bisector of the
segment P P;. Inversion then becomes a reflection in the line
Q. To show this analytically, let z, be a point on . Then,
|22 — 2| is the distance from 2, to 2. The distance from 2 to 2;,
using the equation of the transformation and the equation of Q
(with A = 0) which z, satisfies, is
—Eéz - C Bz + C B
B T B B
Thus all points of the line @ are equidistant from P and P,.
We shall now prove the following proposition:

TaEOREM 10.—The linear transformation carries two points
which are inverse with respect to a circle into two points which

‘are inverse with respect to the transformed circle.

Let z and 2, be inverse with respect to the circle (17); then (21)
is satisfied. Make the transformation (1) and let 2/, z,/, be the
transformed points. We/have

= I22 - ZI.

|22 — le = zZ — 22>

_—dz' +b _  —di+b
21 = 7 L A 3
cz' — a iz —a
whence, substituting in (21),
_ ’ s’ 1 _ ’ s 7 T

(czi' — a)(Z — a) cz/' —a 3 —a
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This equation is the same as (18) except that 2’ is replaced by
z,"; hence, on simplifying we shall get (19) with 2’ unchanged
and 2’ replaced by z,". But this is the condition that 2’ and z,’
be inverse points with respect to the transformed circle (19).-

Let us return to our study of the inversion. We see from
(22) that to each z there corresponds one and only one z,. Like-
wise to each z; corresponds one and only one z; hence, the
transformation is one-to-one. The fixed points of the inversion
are seen, from the geometrical construction, to be the points of
Q itself. This appears analytically if we set 2, = z in (21).

The inversion (22) can be written as the succession of the two
transformations
=3 2 = Ba=C
’ AZg + B
The first of these is a reflection in the real axis; the second is a
linear transformation. The first preserves the magnitudes of
angles but reverses their signs; the second makes no alteration.
Hence, the inversion is inversely conformal. This follows also
from the fact that the second member of (22) is an analytic
function of z.

The reflection in the real axis obviously carries circles into
circles, and the succeeding linear transformation does likewise.
Again the reflection carries a circle and two points which are
inverse with respect to it into a circle and two inverse points;
and this relation, by Theorem 10, is preserved by the linear
transformation.

We summarize the results in the following theorem:

TaEOREM 11.—Inversion in a circle s a one-to-one tnversely
conformal transformation which carries circles into circles, and
carries two points inverse with respect to a circle into two points
tnverse with respect to the transformed circle.

Since the inversion 1s a one-to-one transformation of the plane
which preserves the magnitude of the angle but changes its
sign, the result of performing two inversions, or any even number
of inversions, is a one-to-one transformation which preserves
both the magnitude and the sign of the angle. According to
Theorem 3, Corollary 1, such a transformation is a linear trans-
formation. Hence, we have the theorem:

TueoreM 12.—The successive performance of an even number of
inversions 1s equivalent to a linear transformation.
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We shall prove that, conversely, any linear transformation
is so constituted. First, let us examine some of the simpler
linear transformations and find equivalent pairs of inversions.

(a) The translation, 2’ = z + b.

By this transformation each point of the plane is translated
parallel to the line Ob (Fig. 2) a distance equal to the length of
Ob. Let L, and L; be two lines perpendicular to the line Ob
and at a distance apart equal to half the length of Ob. A
reflection in L, followed by a reflection in L., the lines being
designated as in the figure, is equivalent to the given trans-
lation. It is sufficient to note that three points are transformed
in the proper manner (Theorem 7). We observe at once that

Fia. 2. Fic. 3.

the points of L;, which are unchanged by the first reflection, are
translated in the desired manner by the second reflection.

(b) The rotation, 2’ = e¥z.

Each point is rotated about the origin through an angle
6. A reflection in L,, followed by a reflection in L., arranged
as in Fig. 3, clearly rotates the points of L; as required; hence,
the two reflections are equivalent to the desired. rotation.

(¢) The stretching from the origin, 2’ = Az, A > 0.

Each point is transformed into a point with the same argument,
but with the modulus multiplied by A. There is a stretching
from the origin, or, if A < 1, a contraction toward the origin.
This is equivalent to an inversion in a circle @, with center at
the origin and radius r, (Fig. 4) followed by an inversion
in a circle Q, with center at the origin and radius r, = V4.
For, if 2, 2’ are the successive transforms of z, we have

22 =12 272, = r?A;
Z = rlfA = r24 - —3—2 = Az
21 1
(d) The transformation 2’ = —1/z.

whence,
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This can be written

It is, thus, a reflection in the imaginary axis, z + Z = 0, followed
by an inversion in the unit circle, 22 = 1 (Fig. 5).
Consider now the general transformation (1). If ¢ # 0, we

can write this
, a bc — ad _ 1

“ T T et d) T _cy(z+£z)’

Zl\""—l——-iZ

-

Fia. 4. Fic. 5

(22)

supposing ad — bc = 1. This can be written as the followmg
sequence of transformations:

] 1 a
21 = 2 + —) 23 = 6221, 2y = ——» z’ = 24 + —
c 23 (4

The first, third, and fourth of these transformations have each
been shown to be equivalent to a pair of inversions. The second
can Be broken into two, putting ¢> = Ae®, A > O,

22 = e""zl, 23 ='A22,

each of which is equivalent to a pair of inversions.
If ¢ = 0, the transformation has the form

? =z + B
Putting o = Ae®, this is equivalent to the following sequence:
21 = €%, 29=Az, 2 =2+ B.

We have proved the converse of Theorem 12.

THEOREM 13.—Any linear transformation is equivalent to the
successive performance of an even number of tnversions in circles.

A linear transformation can be expressed as the sequence of
inversions in an infinite number of ways. Later, we shall show
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that any linear transformation is equivalent to four suitably
chosen inversions, and that a transformation of the class subse-
quently called ““non-loxodromic’’ can be expressed as a succession
of two inversions.

Let us consider now the most general one-to-one inversely
conformal transformation of the plane,

Z = V),

where, of course, V is not an analytic function of z. If we first
make a reflection in the real axis, 2, = 2z, and then apply the
preceding, we have a one-to-one directly conformal transforma-
tion, and hence, by Theorem 3, Corollary 1, a linear transforma-
tion of z. That is,

— — z2+b
V) =V = g
and
P _aZ—l—b.
2=V = <z +d (23)

Inversion is seen to be a special case of this general transforma-
tion.

Equation (23) is a reflection followed by a linear transforma-
tion. So we can state the following general result:

TueoreM 14.—The most general one-to-one conformal trans-
formation of the plane into itself is equivalent to a succession of
tnversions in circles. The transformation is directly or inversely
conformal according as the number of inversions is éven or odd.

6. The Multiplier, K.—We have already noted a separation of
linear transformations into two classes. Putting aside the
identical transformation 2’ = 2, a transformation has either two
fixed points or one fixed point. The number of fixed points and
the behaviour of the transformation with reference to the fixed
points furnish a useful basis of classification of linear transforma-
tions. We treat, first, the larger class with two fixed points.

Suppose, first, that in the transformation (1) ¢ # 0. The
finite points £, £ [Equation (10)] and the point « are carried
into £, &, and a/c, respectively. Hence, from (14), the trans-
formation may be written

@ - &% - ) ol
e-wl-8) TF
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or )
2 =& z — &
LB kP8
2 — & z2 — & (24)
where
= a—ch
K== (25)

K is called the “multiplier” of the transformation; its value, as
we shall see, determines the character of the transformation.

To get an expression for K in terms of the coefficients of the
transformation, we form the following symmetric function of
& and &: . : .

a —ct | a— cky
K+K_d—c£§ a — ¢&
_2a° — 2ac($1 + &) + (6 + &7
T a® Y oac(E + &) + hik

Since £; and £; are the roots of
22+ (d —a)z — b =0, 9)

- — d)2
Bt =" ) fl, £18s = _lc’, £2 4 £ = (a J% + 2bc.

we have

Making these substitutions and simplifying, we have

1 _ (a+d)? — 2ad + 2bc
K+g= ad = be

or, if ad — bec = 1,

K+ g =(a+d}—2. (26)

We observe from (26) that the value of K depends solely upon
the value of @ + d. If we replace K by 1/K, equation (26) is
unaltered; hence, the two roots of (26) are reciprocals. The
particular root to be used in (24) depends upon which fixed
point is called &, and which &,.

Another simple equation satisfied by K is got from (26) by
transposing the 2 and extracting the square root:

VK+$%=a+¢ (27)

We now make the change of variables

Z=G@r="°"%, Z=Gw)=?:2, (28)

2 — & k4

transformations which carry £, and £ to 0 and «, respectively.
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Then, (24) takes the form
7' = KZ. (29)
Call this transformation K so that K (Z) = KZ, and we have for
the original transformation
Y = G-YZ') = G-K(Z) = G-KQ(2).
Writing for the original transformation 2’ = T'(2), we have
T = G—'KQ@, whence K = GTG*. (30)

Let F be any configuration (point, circle, region, or what not)
and let F be carried into #’ by K. Operating with 7 on G-1(F),
we have

TG-'(F) = G'KGG~\(F) = G-'K(F) = G- '(F");

that is, T carries G=1(F) into G—1(F’). We shall use this fact in
the following manner: We shall investigate the simple transfor-
mation (29) and, having found how configurations are trans-
formed, we shall carry the results back to the case of z and 2’ by
applying G~ :

The transformation with ¢ = 0,

z'=a2;_b, ad =1
can be put in the form (29) and treated similarly. One fixed
point is o, the other is &, = (-1—?_—(1. We find easily that

? =t =K(E— &) (31)
where

K=" (32)
= :

Putting

Z=GRr)=2—4, Z =GF)=2—-4§,

transformations which carry &, and « to 0 and <, respectively,
we have (29) as before. We have also

2 2 2
K+]”1§=%+'g=a (;{(;d =(a+d;d 2ad=(a+d)2—2;
hence, for this case also K satisfies equations (26) and (27).

An advantage in writing a transformation in terms of K lies
in the ease with which powers of the transformation can be
written down. If the transformation (1) be repeated n times,
the equivalent single transformation becomes rapidly complicated
if expressed in terms of a, b, ¢, d. But, if we use (24) or (31), we
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have, obviously, as the result of = applications of the
transformation

? =& _ b P e em(s
z,_g2—Kz_E2)OI‘Z 51—K(z 51) (33)

Thus, we merely replace the multiplier K by K». Similarly,
for the inverse we use the multiplier K—!; and for n applications
of the inverse we use K—. .

Writing K in terms of its modulus A (>0) and its amplitude
0, so

K = Ae®,

we distinguish the three classes of transformations treated in
the following sections. '

7. The Hyperbolic Transformation, K = A.—We assume
that A # 1, since, otherwise, we have the identical transforma-
tion. The transformation Z’ = AZ is the stretching from the
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origin studied in Sec. 5(c). We observe at once the following
facts concerning it: (1) a straight line through the origin (that is,
a circle through the fixed points 0 and «) is transformed into
itself, each half line issuing from the origin being transformed
into itself; (2) the half plane on one side of a line through 0 is
transformed into itself; (3) any circle with center at the origin
(and hence orthogonal to the family of fixed lines) is transformed
into some other circle with center at the origin; (4) the points
0 and « are inverse points with respect to any circle with center
at the origin. .

We now make the transformation G—! which carries 0 and «
to £ and £&. We have, then, the following facts concerning the
hyperbolic transformation: (1) any circle through the fixed
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points is transformed into itself, each of the two arcs into which
the circle is separated by the fixed points being transformed into
itself; (2) the interior of a circle through the fixed points is
transformed into itself; (3) any circle orthogonal to the circles
through the fixed points is carried into some other such circle;
(4) the fixed points are inverse with respect to each circle of (3).

Figure 6 shows the two families of circles just mentioned.
The way in which regions are transformed is indicated in ‘the
figure, each shaded region being transformed into the next in the
direction of the arrow.

From (26), we get the condition that the transformation be

hyperbolic in terms of a + d. The quantity K + % has for
real positive values of K the minimum value 2 when K =
1. Since K # 1, we have K + % > 2; whence, from (26),

(a + d)? > 4. Hence, in order that the transformation be hyper-
bolic it is necessary that a + d be real and |a + d| > 2. That
this condition is sufficient will appear presently.

8. The Elliptic Transformation, K = e'*>.—Here, 0 = 2nr.
The transformation Z’ = ¢#Z is the rotation about the origin

discussed in Sec. 5(b). The straight lines and circles of the
preceding section have their roles interchanged. The circle with
center at the origin is transformed into itself, the interior of the
circle being transformed into itself. The points 0 and « are
inverse with respect to each fixed circle. A line drawn through
the origin is transformed into a line through the origin which
makes an angle 6 with the first line.
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Applying the transformation G—1, which carries 0 and « to
£ and &, respectively, we have the following facts: (1) an arc
of a circle joining the fixed points is transformed into an arc of a
circle joining the fixed points and making an angle § with the
first arc; (2) each circle orthogonal to the circles through the
fixed points is transformed into itself; (3) the interior of each
circle of (2) is transformed into itself; (4) the fixed points are
inverse points with respect to each circle of (2).

The character of the transformation, with 6 = 147 is shown
in Fig. 7. The shaded regions are transformed into shaded
regions as indicated by the arrows.

For the elliptic transformation, (26) gives

(a+d)? =2+ e+ e =2+ 2cos 6. (34)
The second member is positive or zero and less than 4. Hence,
a + d is real and |a 4+ d| < 2. From (27) we have

N -0
atd= (et es) = +2005 39)

If 6 is commensurable with 7, there will exist an integer n
such that né = 2mr;and K» = e?» = 1. The result of applying
the transformation n times is that each point is returned to its
original position. The transformation is then said to be of
period n.  We shall find that the only transformations possessing
this periodic property are certain of the elliptic’ transformations.

We illustrate with two or three useful cases. If 6§ = = the
transformation is of period 2. Then K = e = —1, and
™

a+d?‘— i200s2=0.
If @ =2r/3, the period is 3. Then K = ¢2i/3 = 15(—1 +
iv/3),and a + d = £2 cos ; = *1.

If ¢ = =/2, the period is 4. Then K = evi/2 = i, and a +
d= +2 cos%- = +4/2.

9. The Loxodromic Transformation, K = Ae.—Here A is
positive and unequal to 1 and 6 # 2nwr. The transforma-
tion Z’ = Ae®Z can be written as the succession of the trans-
formations

7' =¢%7,, Z,=AZ,
of which one is hyperbolic, the other elliptic. There is a stretch-
ing from the origin followed by a rotation about the origin. Each
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circle with center at the origin is carried into another circle with
. center at the origin; and each half line through the origin is
carried into a half line making an angle # with the first.

For the original transformation, there is a combination of
the motions shown in Figs. 6 and 7. Each circular arc joining
the fixed points is carried into another such arc making an angle
6 with the first. Fach circle orthogonal to the circles through
the fixed points is carried into another such orthogonal circle.

The loxodromic transformation has, in general, no fixed
circles. There is an exception when # = x. Then, any circular
arc joining the fixed points is carried into another arc joining
the fixed points and making an angle = with the first, the two
arcs thus forming a circle. Any circle through the fixed points
is then carried into itself. There is, however, this difference
from the preceding cases: the interior of a fixzed circle is trans-
formed into its exterior.

For the loxodromic transformation, (26) gives

(a+d)?=2+ Ae® + [lle—“’
- 2—|—<A + j) cos 0+ i(A - jl)sin 6. (36)

In general, the second member is not real. If, however, § = »

the second member becomes 2 — (A + %1>, which is real. But

we found that A + % > 2; s0 in this case the second member is

negative. Without exception in the loxodromic transformation
a+d is a complex (non-real) number. In the loxodromic
transformation with fixed circles @ + d is a pure imaginary.

10. The Parabolic Transformation.—There remains the trans-
formation with one fixed' point, which is called a ‘“parabolic
transformation.”” The condition that there is a single fixed
point (Sec. 3) is that a + d = +2. Then the multiplier, if
defined by (26), has the value K = 1.

If ¢ # 0, the fixed point is § = (a — d)/2¢. The transforma-
tion carries «, & —d/c into a/c, & «, respectively; hence, by
the use of the formula (14), it can be written

= g+

?d—&  z—E
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Subtracting 1 from each member,

a d
E“E__S'FE
Y-t  z—¢
Now,
a_a—d a_ a+d_ _1
== T2 c” T2 T
d_a—d d_a+d_ |1
Et =72 T~ 2 ~ %
Hence, the transformation can be written in the form
1 1
z’—f—z—fic' (37)

In (37), we have +cifa +d = 2,and —cifa +d = —2
Making the change of variable,

1 , n_ 1
Z—G(z)—z_g, Z—G(z),_z-’-—g’ (38)
a transformation which carries £ to «, we have
Z'=7 + c. : (39)

If ¢ = 0, so that « is the single fixed point, we have already
found, in Sec. 3, that the transformation is of the form (39)
without further change. We have, in fact,a = d = +1, and

‘o2 =z4b. (39")

The transformation (39) is the translation discussed in Sec.
5(a). The plane is translated parallel to the line joining the
origin to the point +¢. Any line parallel to this line is trans-
formed into itself. The half plane on one side of a fixed line
is carried into itself. Any other straight line is carried into a
parallel line. ‘

On applying G—1, « is carried to £ Parallel straight lines,
intersecting at « only, are carried into circles intersecting only
at £ and, hence, tangent at £ Hence, in the parabolic trans-
formation: (1) any circle through the fixed point is transformed
into a tangent circle through the fixed point; (2) there is a one
parameter family of tangent circles each of which is transformed
into itself; (3) the interior of each fixed circle is transformed into
itself.

The manner in which the plane is transformed is shown in
Fig. 8. Each shaded region is carried in the direction of the
arrow.
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It is clear from the Figs. 6 to 8 and from the reasoning on
which they are based that if a linear transformation is hyper-
bolic, elliptic, or parabolic there passes through each point of
the plane, other than a fixed point, a unique fixed circle. In
particular, there is in each case a single fixed circle through o ;
that is, there is one fixed straight line. This line is easily
constructed; for it passes through the point —d/c which is
carried to « and the point a/c¢ into which « is carried.

At this point we shall combine certain of the results of the
latter sections into a theorem for reference. We exclude the
identical transformation 2’ = 2.
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THEOREM 15.—The transformation 2z' = (az + b)/(cz + d),
where ad — bc = 1, 1s of the type stated ¢f, and only if, the following
conditions on a + d hold:

Hyperbolic, if a + d is real and |a + d| > 2.
Elliptic, ifa + disreal and |a + d| < 2.
Parabolic, ifa+d= +2.

Lozodromic, if a + d is complezx.

We have proved that these conditions are necessary. That
they are sufficient follows, by elementary reasoning, from the
fact that they are mutually exclusive. Thus, if a + d is real
and |a + d| > 2, the transformation can be neither elliptic,
parabolic, nor loxodromic, so it must be hyperbolic; and so on.

11. The Isometric Circle.—In an analytic transformation
2’ = f(2), a lineal element dz = 2, — z; connecting two points
in the infinitesimal neighborhood of a point z is transformed
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into the lineal element dz’ in the neighborhood of 2. 'We have
dz’ = f'(2)dz; hence, the length of the element is multiplied by
If/(2)|, and the element is rotated through an angle arg f'(z).
For the linear transformation

az + b

=Tk = @+ d

ad — bc =1, (1)
we have the following theorem:

TuroreM 16.—When the*transformation (1) ts applied, infin-
itestmal lengths in the neighborhood of a point z are multiplied by
lez + d|=2; infinitestmal areas tn the neighborhood of z are multi-
plied by |cz + d|=*.

For we have

dz’

%) =

dz (40)

1
(cz + d)?¥
whence, lengths are multiplied by |T'(z)|, or |cz + d|~2. An
infinitesimal region is carried into a similar region with cor-
responding lengths multiplied by |7'(z)|; hence, the area is
multiplied by |T"(2)|2, or |cz + d|~*.

We get alternative forms for T"(z) from (24) and (37). Differ-
entiating (24) and simplifying, we obtain the first of the following
results: inverting and differentiating, we find the second. For
the transformation with two fixed points,

AN N 7 C i AR L A S
)= K<z = 252) - K(z - $1> (1)
For the parabolic transformation (37), we have
’ _ z,_f7£ 2
T(z)—<z_£>, 42)

the same as (41) with the value K = 1.

From (41), we have

T'(6) = K, T'(8) = - © (43)

At ¢, which is fixed, d2’ = Kdz. For the hyperbolic transfor-
mation, K = A, the infinitesimal neighborhood of ¢, undergoes a
stretching from £;; for the elliptic transformation, K = ¢, there
is a rotation about &, through the angle 6; for the loxodromic
transformation, K = Ae%, there is a combination of stretching
and rotation. Analogous remarks apply to the neighborhood of
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& Slnce L % “ the stretching and rotation are in the
opposite sense.

In the parabolic transformation, we find, on substituting

= (a — d)/2c into (40), that T'(¢) = 1. The infinitesimal
‘neighborhood of £ is unaltered.

Lengths and areas are unaltered in magnitude if, and only if,

lez + d| 1. If ¢ 0, the locus of z is a circle. Writing
z —I— l |’ we see that the center is _.(;d, the radius is \i‘
DEFINITION.—The circle I,

I: |ecz4+d =1, ¢=0, (44)

which is the complete locus of points in the neighborhood of which
lengths and areas are unaltered tn magnitude by the transformation
(1), is called the isometric circle of the transformation.

The isometric circle will play a fundamental part in many
of our later developments. In this section we shall investigate
some of its properties.

We note, first, that if ¢ = 0, so that « is a fixed point, there
is no unique circle with the property of the isometric circle.
The derivative T'(2) is constant and equal to K (Equations (31)
and (39)). Either |K| %1, and all lengths are altered in
magnitude; or |K| = 1, and all lengths are unaltered. The
latter case comprises the rigid motions—the rotations (31) and
translations (39').

TaEOREM 17.—Lengths and areas within the isometric circle are
increased in magnitude, and lengths and areas without the tsometric
circle are decreased in magnitude, by the transformation.

2+ - ’ B or |cz+d| <1, and

For, if z is within I,

[T'(z)] > 1. A length or area within I is thus magnified in all
its parts. Similarly, if z is without I, |7’(2)] < 1; and a length
or an area without I is diminished in all its parts.

TaEOREM 18.—A {ransformation carries its isometric circle tnto
the isometric circle of the inverse transformation.

The inverse transformation, 2/ = (—dz + b)/(cz — a), has the
isometric circle

I': |ez—a| = 1. (45)

Tts center is a/c, its radius 1/|c|. Now T carries I into a circle
I, without alteration of lengths in the neighborhood of any point,



26 LINEAR TRANSFORMATIONS [Sec. 11

hence T-! carries I, back to I without alteration. But I’
is the complete locus of points in the neighborhood of which 7'
effects no change of length; hence, I, coincides with I’.

(@) Geometric Interpretation of the Transformation.—The trans-~
formation T carries I into I’ (Fig. 9) without alteration of any
arc. Let a point P on I be carried into P’. Then, if I be set
down upon I’ so that P coincides with P/, with proper orientation,
corresponding points will coincide. Any sequence of an even
number of inversions which will effect the proper transformation
on I will be equivalent to T' (Theorem 7).

Fia. 9.

As a point moves from P counterclockwise around I, suppose
that the corresponding point moves from P’ counterclockwise
around I’. Then, I can be carried into I’ by a rigid motion so
that corresponding points coincide. But « is fixed for a rigid
motion, so ¢ = 0; hence, this case is impossible. Consequently,
as a point moves counterclockwise around I the corresponding
point moves clockwise around I’. The circle I must be turned
over before being applied to I’.

An inversion in I, leaving the points of I invariant, followed by
a reflection in L, the perpendicular bisector of the line segment
joining the centers, carries I into I’ with the desired change of
order. Piscarriedinto a point P;. A rotation with a/c fixed will
carry P, into P’. The two inversions together with the rotation
are equivalent to T'.

Since a rotation is equivalent to two reflections (Sec. 5(b)),
four inversions at most are adequate for the representation of the

.
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transformation. If P’ coincides with P, two inversions are
sufficient.

Several alternative geometric transformations are possible.
Thus, instead of inverting in I and then reflecting in L we may
reflect in L and then invert in I’. Or we may rotate about
—d/c at the start; and so on.

The preceding construction fails if I and I’ coincide, for then
L is not defined. In this case a = —d,ora + d = 0;and 7 is
an elliptic transformation of period two (Sec. 8). P’ lies on I.
An inversion in I followed by a reflection in L, the line joining
—d/c to the midpoint of the are PP’ is equivalent to 7'.

(b) The Types of Transformations.—The distance between the

(—Z + %l ; the sum of the radii is 2/|c[. The

circles will intersect, touch, or be totally exterior according as
|la + d| is less than, equal to, or greater than 2. Hence, applying
Theorem 15, if T is hyperbolic, the isometric circles of T and
T-1 are external; if T is elliptic, they intersect; if T is parabolic,
they are tangent. If T is loxodromic, |a + d| may have any
value other than zero, and the isometric circles may have any
relation to one another other than coincidence.

A distinction between the loxodromic and the three non-
loxodromic transformations appears when we study the geometri-
cal transformations which are equivalent to the transformation.
Let P, P, P’ (arranged as in Fig. 9) have the coordinates z, 24, 2’.

centers of I and I’ is

Since z, —d/c, and a/c lie on a line, z + % and —g + %l have the

same argument, the moduli being 1/|c| and |a + d|/]|c|, respec-
tively, hence,

d_a+d
z+5—|a+dlc
Similarly,
a __a+d
4T Tt de

Making the transformation T, using (22),
, a : 1 la + d| a+§

T e T T tdle) T (atde . Jat+de
From these equations we see that 2’ coincides with 2, if, and only

if, @ +d = a + d; that is, if a + d is real. The transformation
is then non-loxodromic.
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If the transformation is loxodromic, writing a 4 d = reie,
¢ # nw, we have

,_a_d+3 _a\ i _a>_
2 r;ﬂ'@z(“ 6>_6 <Z1 c

To carry 2, to 2/, there is a rotation about a/c through the angle
—2p. We have the result: '

THEOREM 19.—If the transformation is hyperbolic, elliptic, or
parabolic, it is equivalent to an inversion in I followed by a reflection
tn L; if it is lozodromic there is in addition a rotation about the
_center of I’ through the angle —2 arg (a + d).

Consider now the fixed points. Since T"(&) = K, T'(&) =
1/K (Equation (43)), we have, if |K| = 1, increase of lengths at
one fixed point and decrease at the other; if |K| = 1, there is no
alteration. Hence, for the hyperbolic and loxodromic trans-
formations one fixed point is within 7, the other without; for the
elliptic transformation both fixed points, and for the parabolic
transformation the single fixed point, are on I. Identical state-
ments are true of I’ for similar reasons.

In the elliptic transformation I and I’ intersect and L is the
common chord. The points of intersection are fixed for both
the inversion in I and the reflection in L; hence, they are the fixed
points. We found that the lineal elements issuing from the fixed
point are rotated through an angle 6, where K = ¢, Since an
arc of I issuing from the fixed point is transformed into an arc of
I’ issuing from the point, it follows that I and I’ intersect at the

“angle 6. - ‘

If a 4+ d = 0, so that I and I’ coincide, the line L is the line
joining the fixed points, which are then at the ends of a diameter.

In the parabolic transformation, L is the common tangent to
I and I’ at their point of tangency. The point of tangency is
then the fixed point.

(¢) The Fized Circles—We consider now the non-loxodromic
transformations. Each such transformation has a one-para-
meter family of fixed circles, including, as we found in Sec. 10,
the line joining the centers of 7 and I’. The family of fixed circles
is easily constructed. It consists of the circles with centers on L
orthogonal to I. For, being orthogonal to I, such a circle is
transformed into itself by an inversion in I; and a reflection in L,
a diameter, transforms it again into itself. Each fixed circle is
also orthogonal to I” from symmetry.



Sec. 11] THE ISOMETRIC CIRCLE 29

THEOREM 20.—In a non-loxodromic transformation the isometric
circle is orthogonal to the fixed circles.

For use later we shall prove the following theorem:

TuEOREM 21.—Let @ be a fixed circle of a non-loxodromic trans-
formation and I its isometric circle. Let h be the distance of a point
2 from q, the center of Q, and h' be the distance of the transformed
point 2’ from g; then

h = h,if zison I or Q;

h' < h, if z s within both I and Q, or without both;

h' > h, if z is within either I or Q, and without the other.

An inversion in I carries 2z to a point 2z; which is carried to 2’
by a reflection in L (Fig. 10). Obviously, the reflection does not
alter distances from q. The
proposition hinges, then, on
what happens when z is in-
verted in 1.

The distances of a point and
its inverse from the center of
a circle orthogonal to the circle
of inversion is clearly inde-
pendent of the orientation of
the circles, and their relative
magnitudes are independent
of the scale used; hence, it will
suffice to take for I the unit
circle 22 = 1 and to take ¢ on
the real axis. The equation of @ is (2 — ¢)(Z — ¢) = r?, where,
for orthogonality, r2 4+ 1 = ¢?; whence,

2Z—qz+2+1=0.
The expression in the first thember of this equation is positive
for points without @ and negative for points within. Now,

h?=(z—q)(Z—¢q) =22 —qlz+2) + 1+
and, since z; = 1/z, '
h,2 = 212 — q(zl + 21) + 1 + r? =

whence,

Fia. 10.

1 —q+2) +2

2z

+ %

_ [z —1][z2 — gz +2) + 1]

2z
The theorem follows immediately from this equation. If z is
within both circles or without both circles, the factors in the

h2 — h’z
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numerator of the second member are both negative or both
positive, and A’ < h; if z is within one circle and without the
other, the factors differ in sign, and 2" > &; if 2z is on one circle,
one factor is zero, and b’ = h.

The following theorem relative to the fixed straight line is
easily seen to hold:

TuEOREM 22.—In a non-loxodromic transformation let k and k'
be the distances of z and 2/, respectively, from the fixed straight line
M; thenk’ = kif zison I or on M; otherwise, k' > k if z is within
I and k' < kif 2 is without I.

12. The Unit Circle.—We shall, subsequently, have much
to do with sets of linear transformations which have one fixed
circle in common. It will usually be convenient to take as the
common fixed circle some simple circle such as the real axis or
the unit circle with center at the origin. It is this latter circle,
which we shall henceforth designate by (o, that we shall study
in this section.

We proceed to find the conditions on the constants in (1)
in order that @, be a fixed circle. The equation of @ is

zZ—1=0. (46)
The transform of @, by (1) is, from Equation (19),
(dd — c¢)2’s’ 4+ (—bd + ac)z’ + (—bd + ac)z’ + bb — aa = 0.
This circle is identical with Q, if, and only if{
—bd + ac’= 0, —bd + a¢ = 0. (a)
dd — ¢¢ = ad — bb # 0. © o (b)
Each equation in (a) is a consequence of the other; from the
second,

say; then
b=\, a=N\.
Substituting in (b)
dd — cé
whence, N\\ = 1.
From ad — bc = 1, we have

Ndd — ¢c¢) = 1;

hence, \ is real, so A = +1. The sign of A depends upon the

sign 'of dd = cz. If the interior of .Q, is transformed into its
interior, the point —d/c which is carried to « is outside the

M\(dd — cé) # 0,
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circle and |—d/¢| > 1; so dd — ¢ > 0 and A = 1. We have,
then,
b=g¢ a =d, d=a.

These values obviously satisfy the conditions (a) and (b). We
have the following result:

TurorREM 23.—The most general linear transformation carrying
Qo into itself and carrying the interior of Qo tnto <tself is the
transformation

, _az+¢ s
= T ad — c¢ = 1. 47)

The most general linear transformation carrying @, into itself
and carrying the interior of Qo into its exterior is found similarly.
Then, —d/c is within Q, and dd — ¢¢ < 0; so that A = —1.
The most general transformation is the resulting loxodromic
transformation

, az — C
2 = =
ce — a

¢ — ad = 1. (48)

The transformation (47) maps the interior of @, in a one-to-
one and directly conformal manner on itself. It is a remarkable
fact, which we shall now prove, that it is the most general such
transformation. We first prove the following proposition:

The most general transformation which maps the interior of
Qo in a one-to-one and directly conformal manner on itself and which
leaves the origin fixed is a rotation about the origin.

Let 2’ = f(2) be such a transformation. Owing to the con-
formality f(z) is analytic in @, Further, |f(z)] < 1 when
|| < 1, since an interior point is carried into an interior point.
Since 2/ = 0 when z = 0, f(z) has a zero at the origin; hence
f(2)/z is analytic in Q.

. Consider now |f(2)/z| in a circle Q' with center at the origin
and radius r < 1. Since the absolute value of a function which
is analytic in and on the boundary of a region takes on its
maximum value on the boundary, we have, since [z| = r on ',

1@ < %in Q.

P
Since r may be taken as near to 1 as we like, we have

f(@)
4

2’
B

Considering the 1nverse function, z = ¢(2’), we have by the
same reasoning [2/2'| 2 1 in Q,. Consequently, |2’/z| = 1in Q,,

£ 1lin Qo.
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whence 2’/z = e’>. But, if the absolute value of an analytic
function is constant, so also is its argument; hence & is constant.
We have, thus,

2 = eleg,

a rotation about the origin.

We shall now remove the restriction that the origin be fixed.
Let 2’ = f(2) map the interior of Q, on itself in a one-to-one
and directly conformal manner, and let f(0) = z,. Let 2’ = S(2)
be a linear transformation of the form (47) such that S(0) = z,.
(It is easy to determine the constants of (47) so that ¢/a =
20 < 1.) If we make the transformation f and then make
S—1, the interior of @ is carried into itself and the origin is fixed.
Hence, S—if = U, a rotation; and f = SU. We thus have a
linear transformation. Since it carries the interior of @, into
itself, it is of the form' (47). '

THEOREM 24.—The most general transformation which maps the
intertor of Qo in a one-to-one and directly conformal manner on
itself is the linear transformation (47).

The proof of the following more general theorem is now easily
made. :

TuroreM 25.—The most general transformation which maps the
interior or exterior of one circle in a one-to-one and directly con-
formal manner upon the interior or exterior of another circle is a
linear transformation.

.Let 2’ = f(z) carry the interior or exterior of @, into the
interior or exterior of Q. in the manner stated. Let S; and S,
be linear transformations carrying @; and Q., respectively, into
Q,, the interior or exterior of each which is involved in the map-
ping being carried into the interior of @,. Then, the sequence
of transformations, S;~1, followed by f, followed by S, carries
the interior of @, into itself, and is equivalent to a linear trans-
formation T of the form (47).

ngSf‘l = T, Ol'f = S2—1TS]_.

The transformation is thus a linear transformation.



CHAPTER II
GROUPS OF LINEAR TRANSFORMATIONS

13. Definition of a Group. Examples.—The automorphic func-
tion depends for its definition on a set of linear transformations
called a ‘“group.” In the present chapter we shall make a
study of groups of linear transformations, after which we shall
be in a position to pass to the definition of the automorphlc
function and to a study of its properties.

DEFINITION.—A set of transformations, finite or infinite in
number, 1s satd to form a group if,

() the inverse of each transformation of the set is a transformation
of the set;

(b) the succession of any two transformations of the set is a
transformation of the set.

The definition applies to all kinds of transformations, but
we shall be concerned only with sets of linear transformations.
The two group properties, expressed in’symbolic notation, are:
(a) if T is any transformation of the set so alsois T1; () if Sis
a transformation of the set, not necessarily different from T, so
also is ST. It follows by a repeated application of (b) that the
transformation equivalent to performing any sequence of
transformations of a group belongs to the group. In particular,
all positive and negative integral powers of a transformation T
of the group belong to the group. Also T-'T(=1) belongs to
the group; that is, every group contains the identical transforma-
tion, 2’ = =.

Given a set of linear transformations, we may test whether
or not it constitutes a group by applying (a) and (b) to the
transformations of which it is composed. There are, however,
certain cases in which the group properties obviously hold. For
example, if the set consists of all linear transformations which
leave some configuration F in the z-plane invariant, then the set
is a group; for, clearly, the inverse of any transformation or
the successive performance of any two transformations will leave
F invariant and, being themselves linear transformations, will

33
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then belong to the set. Thus, all linear transformations with
a common fixed point constitute a group. All linear transforma-
tions of the form (47), Sec. 12, leaving @, and its interior invari-
ant, form a group. ' The set of all linear transformations which
carry a given regular polygon into itself, consisting of certain
rotations about its center, form a group.

Similarly, the set of all linear transformations which leave
invariant some function of z constitute a group. For example,
all linear transformations 2z’ = T'(z) such that sin 2’ = sin 2
form a group. Such transformations as 2’ =z + 2r, 2/ =
2z 4 4r, 2 = — 2z, etc., belong to this group. It is by virtue
of this property, as we shall see later, that sin z is called an
“automorphic function.”

Given a set of linear transformations T:, Ts, . . ., T,, we
may form a group containing them in the following way: Let
the set contain the given transformations, their inverses, and
the transformations formed by combining the given transforma-
tions and their inverses into products in all possible ways. Then
it is easily seen that the inverse of any transformation or the
product of any two is itself some combination of the given
transformations and their inverses and, consequently, is included
in the set. Hence, the whole set forms a group. The group is
said to-be ‘“generated’” by the transformations T, T, . . .,
T., and the transformations are called ‘“generating transforma-
tions”’ of the group.

Ezxamples.—The following are a few examples of well-known groups, some
of which will be discussed later.

1. A Group of Rotations about the Origin.—The m transformations,
2 =z e2ri/my  pAmifmy | @2(m—DL7i/m, form g group. They are the
rotations about the origin through multiples of the angle 2r/m. The group
is generated by the transformation 2/ = e27/mz,

2. The Group of Anharmonic Ratios.—The six transformations
, 1 1 z—1 z
F T g A |
form a group. It can be verified by forming the inverses and by combining
the transformations that both group properties are satisfied. The group
is so named for the reason that if z is any one of the anharmonic ratios of
four points on a line, the six anharmonic ratios are given by the trans-
formations of the group.

3. The Group of the Simply Periodic Functions.—The set 2’ = z + muw,
where w is a constant different from zero, and m is any positive or negative
integer or zero, forms a group. The group is generated by the transforma-
tion 2’ =2z + w.
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4. The Group of the Doubly Periodic Functions.—The set 2/ = z + mw +
m'w’, where w and ' are constants different from zero and the ratio »’/w is
not real, and where m and m’ are any positive or negative integers or zero,
forms a group. Itis generated by the transformations 2’ =z + w, 2’ = z +
w'.

The restrictions on w and «’ are not necessary for establishing the group
properties.

5. The Modular Group.—The infinite set of transformations z’ = (az +
b)/(cz + d), where a, b, ¢, d are real integers such that ad — bc = 1, consti-
tutes a group. For, a reference to Equations (3) and (6) of Sec. 1 shows
that the inverse of such a transformation and, also, the product of two
such transformations are transformations with integral coefficients and of
unit determinants. Since the coefficients are real, each transformation
carries the real axis into itself.

6. The Group of Picard.—The set of transformations 2z’ = (az + b)/
(cz + d), where q, b, ¢, d are either real or complex integers (i.e. of the form
m + ni, where m and n are real integers) such that ad — bc = 1, constitutes
a group. The proof is as in the preceding case.

7. A Group Allied to Qo.—In a similar manner, the transformations 2z’ =
(az + ¢)/(cz + @), where a and ¢ are real or complex integers such that
ad — cc = 1, form a group. The transformations of this group (Theorem
23, Sec. 12) have Qo as a fixed circle and carry the interior of Q, into itself.

14. Properly Discontinuous Groups.—If we compare the
group of the simply periodic functions, 2/ = 2 + mw, with the
group of all translations, 2’ = z + b, where b is any constant, we
.observe the following difference: In the former case there is no
transform of a point z within the distance |w| of z; in the latter
group we get transforms of z as near to z as we like by taking b
small enough. These two groups bring out an essential
distinction.

DEFINITION.—A group ts called properly discontinuous in the
z-plane if there exists a point 2o and a region S enclosing 2y such that
all transformations of the group, other than the identical transforma—
tion, carry 2o outside S.

The automorphic functions are founded on the properly
discontinuous groups, and these only will appear in our subse-
quent study. The groups whose transformations contain con-
tinuously varying parameters, which have given rise to so many
and so profound researches, play no part in the theory to which
this book is devoted and will not be considered further.

A group is said to contain infinitesimal transformations if there is, for some
region A and any given ¢ > 0, a transformation 2’ = (az + b)/(cz + d),
ad — bc = 1, such that for all points z of A we have |2/ — 2| < e It is
found without difficulty that a necessary and sufficient condition for this
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is that there be transformations for which ¢, d — a, and b are all arbitrarily
small (but not all zero, for then we have the identical transformation).

Not all groups which are free of infinitesimal transformations are properly
discontinuous. The group of Picard, for example, does not contain infini-
tesimal transformations, since ¢, d — @, and b are complex integers and can-
" not be made arbitrarily small without being all zero. It can be shown,
however, that the points into which any point is carried are everywhere
dense in the whole z-plane. Such a group, that is, one which does not con-
tain infinitesimal transformations and yet which is not properly discontinu-
ous in the z-plane, is called “improperly discontinuous’’ in the z-plane.

16. Transforming a Group.—From a given group of linear
transformations infinitely many other groups can be derived by
applying linear transformations to the plane in which 2z and its
transforms are represented. Let 7 be any transformation of
the given group, and let T carry z into 2. Let a transformation
@ be applied, z and 2’ being transformed into z; and 2,’, respec-
tively. Then 2, is carried into z," by the tmnsforma.tion S where

S = GTG; (1)

QTG (z21) = GT(z) = GE') = 2.

Let all the transformations of the original group be altered in
this manner, so that to each 7' of the group there corresponds an
S given by (1). We shall show that the new set of transforma-
tions forms a group. We have S—!= (GTG!)"!=GT'G,
which belongs to the set since 7! belongs to the original group.
If S; = GT,G is a second transformation of the set, SS; =
GTG'GTG— = GTTG, and SS; belongs to the set since T'T,
belongs to the original group. Thus, both group properties are
satisfied. Two groups whose transformations can be made to
correspond in a one-to-one manner, as the S and 7T transforma-
tions are paired by virtue of (1), so that the product of any num-
ber of transformations of one group corresponds to the analogous
product of the corresponding transformations of the other, are
said to be ‘‘isomorphic.”

It will often facilitate the study of a group to transform it in
the manner indicated. For example, an important point can be
carried to «, or an important circle can be carried into the real
axis or the unit circle @o,. Having found how figures are trans-
formed by the new group, we can then carry the results back to
the old by applying G-'. For if S carries a figure F into F’, T
carries G-1(F) into G—1(F’), as we see at once from the equation
T = G'SG.

for
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It should be mentioned that the transformations S and 7T of
(1) are of the same type, whatever @ may be. Let

_az+b G_az-l-B ad — bc = 1,

Te+d vz + & ad — By =
and form the product in (1), usmg the equations (3) and (6) of
See. 1,

(—ada + ayd — Béc + Byd)z + afa — a?b + B2 — afd @)
(—vba + v — 8% + véd)z + Bya — ayb + Béc — add

the determinant of S being 1. Then,

(—ada + ayb — Béc + Bvd) + (Bva — ayb + Béc — add)

=—(a+d.
It follows that K has the same value for S as for T (Equation (26),
Sec. 6).

16. The Fundamental Region.——Before proceeding to the study
‘of the general properly discontinuous group it is desirable to
introduce the important concept of the fundamental region.

DeriNiTiON.—Two configurations (points, curves, regions, etc.)
are said to be congruent with respect to a group if there is a trans-
formation of the group other than the identical transformation, which
carries one configuration into the other.

DEFINITION.—A region, connected or not, no two of whose points
are congruent with respect to a given- group, and such that the
netghborhood of any point on the boundary contains points congruent
to points in the given region, s called a fundamental region for the
group.

The accompanying figures show fundamental regions for cer-
tain simple groups. The reader is probably already familiar
with some of them.

For the group of rotations about a point through multiples of
an angle 6, which is a submultiple of 2r, we draw two half lines
from the fixed point forming an angle 6. The region R,
within the angle is a fundamental region. In Fig. 11, R, is a
fundamental region for the group 2’ = er¢z, The neighbor-
hood of any point on the boundary of R, contains points which
can be carried into the interior of B, by a rotation through the
angle + 2r/6.

In Fig. 12, R,, whose construction is evident from the figure, is
a fundamental reglon or period strip, for the group of the simply
periodic functions, 2’ = 2z + mw.

S =
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~ In Fig. 13, R, is a fundamental region, or period parallelogram,
for the group of the doubly periodic functions 2’ = z + mw +
m'w'.

In Fig. 14, R,, which is bounded by circles with centers at the
origin and with radii 1 and A, is a fundamental region for the
group of stretchings from the origin, 2’ = A"z.

Ro

Fic. 11. Fig. 12.

Attention may be called to certain properties that are common
to the four fundamental regions constructed in the figures and
which we shall find to be more or less generally true—to what
extent will appear from later analysis—of the fundamental
regions we shall use for less simple groups. We note first that the

Ro

Fie. 13. Fia. 14.

boundaries of R, in each case consist of congruent curves. In
Figs. 11, 12, 14, each of the two boundaries can be carried into the
other by a transformation of the group. In Fig. 13, the lower
boundary can be carried into the upper by the translation 2z’ =
2z 4+ «’, and the left into the right by 2’ = 2z + w.
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Further, the transformations connecting congruent boundaries
are generating transformations of the group. The two transla-
tions just mentioned generate the group of doubly periodic
functions. In Fig. 11, all transformations are formed by succes-
sive applications of the rotation 2’ = ei/sz, which carries one
boundary into the other. The like fact is true of the other
examples.

We note that we can add to the open region R, one, but not
both, of two congruent boundaries without getting two congruent
points in the region. But R, must remain in part an open region.

The region R, and the regions congruent to it, some of which
are shown in the figures, form a set of adjacent, non-over-
lapping regions covering practically the whole plane. The
origin in Fig. 14, however, is not in any region congruent to R,.

The angle at the vertex of R, in Fig. 11 is a submultiple of
2r. The sum of the angles at the four congruent vertices of R,
in Fig. 13 is equal to 2r. These facts will reappear, suitably
generalized.

It is clear that the fundamental region is in no wise unique.
Any region congruent to K, will serve as a region. Furthermore,
we can replace any part of R, by a congruent part and still have a
fundamental region. Thus, we can subtract a part at one bound-
ary and add a congruent part at another. In this way the
character of the bounding curve can be altered freely.

THEOREM 1.—If no two points of a region are congruent, the
transforms of the region by two distinct transformations of the group
do not overlap.

Let A be a region containing no two congruent points. Sup-
pose that two transformations of the group, S and T, carry 4 into
two overlapping regions. Any point 2z, in the common part
is the transform by S of a point 2; of A and the transform
by T of a point 2, of A. If 2z; and 2z, are different for any 2z,
then 2z, and 2, are congruent points of A, which is impossible. If
z; and 2, coincide for every 2, in the common part, S and T are the
same transformation (Theorem 7, Sec. 3).

Since a fundamental region contains no two congruent points,
we can state the following useful corollary:

CoroLLARY.—The transforms of a fundamental region by two
distinct transformations of the group do not overlap.

17. The Isometric Circles of a Group.—We shall now investi-
gate the properties of the most general properly discontinuous
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group. For such a group there exists, by hypothesis, at least
one point 2, such that there are no transforms of 2z in a suitably
small region about z,. Let G be a transformation carrying z,
into «; and let the group be transformed by G as explained in
Sec. 15. It is this transformed group which we shall study.
There is no point congruent to « outside or on a circle @,
with a given center and with radius p suitably large. In particu-
lar, « is not a fixed point for any transformation of the group.
Hence, in any transformation 7' = (az 4+ b)/(cz + d) we have
c # 0, except in the case of the identical transformation. The
center of an isometric circle is congruent to « (—d/c is carried to
« by T); hence, the centers of all isometric circles lie within @Q,.
(a) The Isometric Circle of the Product of Two Transformations.
Certain relations between. the isometric circles of two transforma-
tions and the isometric circle of their product will be of use now
and subsequently. Consider any two transformations
T=92f,t§, S___gz_—_{—_@, ad — be = 1,¢ # 0,
cz + d vz + & ad — By =1,y #0.
Then, .

(aa + Bc)z + ab + Bd. 3)
(va + éc)z + vb + &d

In what follows we assume that S s T—! so that ST is not the
identical transformation; then, the isometric circle of ST is

|(ya + dc)z + vb + &d| = 1. )
Represent by I,, 1./, I,, I/, I, the isometric circles of S, S,
T, T-!, ST, respectively; by g¢s, gs’, g, g/, g their respective
centers; and by 7, 7, 75, their radii. We have

ST =

_ 8 e o _d e _ _(b+d)
gs = ——'Y_’ Js = 7’ g: = C) ge = C’ Jst = (’Ya ¥ 50)7
1 1 1
s = = st — T o <1 5
"Sht TR T hate @
From these values, we derive the following relations:
1 1 Tl
st = = = 7 6
T e 8 T =l ©
c v
and ) P
g = _ybtod d_ v
9t = 9: = T 0¥ s ¢ clva + oc) @
whence, \
g — gl = 0 = T (8)

re  lgd — gl
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(b) The Arrangement of the 1sometric Circles—By means of the
preceding equations we can derive certain simple facts concerning
the isometric circles of the transformations of the group.

The radii of the isometric circles are bounded.

Let T (#1) be any transformation of the group and S (1) a
transformation of the group different from T-!. Then, from
(8),

r = |ga — gil - 19 — gol.
But each factor in the second member, being the distance between
points of Q,, is less than 2p; hence,

7";2 < 4P2, r < 2P~ (9)

The number of isometric circles with radii exceeding a given
positive quantity is finite.

Let I, and I, be any two different isometric circles with radii
greater than k, a positive quantity. Then ST is not the identical
transformation, and, from (6),

P g =TS R
lg! — gl =7~ > o (10)

The distance between the centers of two isometric circles with
radii exceeding k has thus a positive lower bound. Since the
centers of all such circles lie in the circle @,, their number must
be finite. o

It follows from this fact that the transformations of the group
are denumerable.

Another consequence may be stated in the following manner:

Given any infinite sequence of distinct tsometric circles I, Io, I,

., of transformations of the group, the radii betng r1, ro, sy . . . ,

then lim r, = 0.

n=

18. The Limit Points of a Group.—In this section and the
remaining sections of the present chapter we suppose that no
transformation of the group has a fixed point at infinity, so that
the isometric circles exist for all transformations except the
identical transformation; and that there are no points congruent
to infinity in the neighborhood. of infinity. This assumption
involves no essential restriction 'since, as we have already noted,
any properly discontinuous group can be transformed into one
with the properties mentioned.

Consider the centers of the isometric circles. If the group
contains an infinite number of transformations, the centers are
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infinite in number and, hence, have one or more cluster points.
We lay down the following definitions:

DeriNITIONS.—A cluster point of the centers of the isometric
circles of the transformations of a group s called a limit point of
the group. ,

A point which is not a limat point is called an ordinary point.

It is clear that all limit points lie within or on the circle @, of
Sec. 17, since the centers of all isometric circles lie within that
circle. If the group contains only a finite number of trans-
formations, there are, of course, no limit points.

TuEOREM 2.—In the neighborhood of a limit point P there is an
infinite number of distinct points congruent to any point of the
plane, with, at most, the exception of P itself and of one other point.

Since only a finite number of isometric circles have radii
exceeding a given positive quantity, there are isometric circles
of arbitrarily small radius in the neighborhood of P. Let Q be
a small circle about P and let I/, I;/, . . . be an infinite sequence
of isometric circles contained in Q, where the center g,.’ approaches
P as n becomes infinite. Let these be the transforms of the
isometric circles I, Iz, . . . , and let S, be the transformation
carrying I, into I,’.

The centers g, of I, have at least one cluster point. Suppose
first that there is such a point P’ distinct from P. It will suffice
to show that for any point P; distinct from P and P’ there is a
congruent point in @ distinet from P; for, by decreasing the
region @, we then have an infinite number of congruent points.
Let I, be near P’ and of small enough radius that I, encloses
neither P, nor P. Then, since P, is outside I, S.(P:) is inside
I,/ and in Q. If S,.(P,) is different from P, the proposition is
established. If S.(P;) coincides with P, then P is not a fixed
point for S, and _S,%(P1), or S.(P), is in @ and different

_from P. ,

There remains the case that the only limit point of the centers
gn is P itself. Let A and A’ be any two points distinet from one
another and from P. .4 and A’ are outside an infinite number of

_circles I,. For these circles the congruent points, 4, = S.(4)
and 4, = S.(4’) arein I,/ and in Q. At least one of the points
A, and 4.’ is distinct from P. It follows that at least one of the
points A and A’ has an infinite number of congruent points in @
which are distinct from P. Hence, there is not more than one
point, distinct from P, which does not have an infinite number of
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congruent points distinct from P and in Q. This establishes
the theorem.

TrEOREM 3.—The set of limit points is transformed into itself by
any transformation of the group.

The centers of the isometric circles consist of all points con-
gruent tofinfinity. The transform of the center of an isometric
circle is the center of another isometric circle or is « itself.

Let P be a cluster point of the centers g;, gs, . . . Then a
transformation S which carries P into P’ carries gy, g2, . . . into
g, g2’, . . . with P’ as cluster point. The points of the latter
set, with the possible exception of one point at «, are centers of
isometric circles. Hence, P’ is a limit point.

Furthermore, no point which is not a limit point is carried
by S into a limit point, since otherwise S—! would carry a limit
point into a point not a limit point. .

THaEOREM 4.—If the set of limit points contains more than two
points, it is a perfect set.

A set is perfect, by definition, if it has the following two
properties: (1) each cluster point of the set belongs to the set;
that is, the set is closed; and (2) each point of the set is a cluster
point of points of the set; that is, the set is dense in itself.

That the set is closed follows at once. For, since each limit
point contains an infinite number of centers of isometric circles in
its neighborhood, a point at which limit points cluster has also
an infinite number of centers of isometric circles in its neighbor-
hood; hence, a cluster point of limit points is itself a limit point.

To establish the second property we must show that any limit
point P has an infinite number of limit points in its vicinity. If
P, and P, are two other limit points, at least one of them has an
infinite number of transforms in the neighborhood of P (Theorem
2). As these transforms are limit points, the second property
of the perfect set is established.

There are groups of transformations—the finite groups—
with no limit points. Groups with a single limit point and groups
with two limit points exist. A group other than these simple
kinds has an infinite number of limit points. Furthermore, by a
well-known property of perfect sets, the limit points are non-
denumerable.

TrEOREM 5.—If a closed set of points =, consisting of more than
one point, is transformed into itself by all transformations of the
group, then Z contains all the limit points of the group. -
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Suppose, on the contrary, that there is a limit point P not
belonging to =. Then, since Z is closed, there is no point of
2 within a suitable neighborhood of P. Let P;; P, be two
points of Z. At least one (Theorem 2) has transforms in the
neighborhood of P. This contradicts the hypothesis that =
is transformed into itself.

As an example of the use of the last theorem, suppose that all
the transformations of the group are real. Then the real
axis is always transformed into itself. It follows that the limit
points all lie on the real axis.

19. Definition of the Region R.—R will consist of all that
part of the plane which is exterior to the isometric circles of all
the transformations of the group. More accurately, a point
z will belong to R’if a circle can be drawn with z as center which
contains no point interior to an isometric circle. We thus rule-
out those limit points, if any, which are not themselves within or
on an isometric circle but which have arcs of isometric circles in
any neighborhood of them. Later, we shall adjoin to R a part of
its boundary, but for the present it shall consist only of interior
points. It may be a connected region, or it may comprise two or
more disconnected parts. We see from (9) that it contains all
of the plane lying outside a circle concentric with @, and of
radius 3p.

It is clear that no two points of R are congruent. A trans-
formation 7T carries all points exterior to I; into the interior of I,’.
Any transformation of the group, except the identical transfor-
mation, carries a point of R into an isometric circle and, hence,
outside R;so no point of R is congruent to another point of R.

20. The Regions Congruent to R.—If we apply to R the
various transformations of the group, there results a set of
congruent regions no two of which overlap (Theorem 1). Con-
cerning the distribution of these regions, we have the following
important theorem:

THEOREM 6.—R and the regions congruent to R form a set of
regions which extend into the neighborhood of every point of the
plane.

Suppose, on the contrary, that there is a point 2, enclosed by
a circle @ with 2o as center and of radius r sufficiently small that
Q contains neither points of B nor points congruent to points
of R. Then, all transforms of @ contain neither points of
R nor points congruent to points of R. In particular, @ and
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its transforms contain the centers of no isometric circles,
since these are congruent to <, which is a point of B. The
interior points of @ and of its transforms are ordinary points.

Since 2, is not a point of R, 2, is within or on the boundary of
some isometric tircle. Similarly, the center of each circle
congruent to @ lies within or on the boundary of some isometric
circle.

The proof consists in showing that there is a circle congruent
to Q of arbitrarily large radius, which constitutes a contradiction.
Let S be a transformation whose isometric circle I; has 2z, for
an interior or boundary point. The center of I, is exterior to
Q. Consider the circle @; into which S carries Q. S is equiva-
lent to an inversion in I, followed by a reflection in a line and
possibly a rotation. The magnitude of @, is determined by the
inversion.

It is a matter of simple algebra to show that if the center of
Q is on I, the radius of Q, is

ry =

where 7, is the radius of I,. If 2, lies within I,, r; exceeds this
'value. Since r; < 2p (Equation (9)), and r < r, < 2p, we have

rno>kr, k= 7—7172 > 1.

If we apply to @; a transformation whose isometric circle
has the center of Q: as an interior or boundary point, we get a
circle Q. of radius r, where, since r; > 7,

re > > ey > kP
1 — e

4p?
Continuing in this manner, we prove the existence of a circle
Q. congruent to @ and of radius exceeding k"r. By taking n
large enough, @, will contain points of R exterior to the finite
region in which the isometric circles lie. These points are
congruent to points of @, a contradiction which proves the
theorem.

We can now establish the following result:

TuEOREM 7.—R constitutes a fundamental region for the group.
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We have already shown that no two points of R are congruent.
We must show further that in any circle @ about a point P
on the boundary of R there are points congruent to points of R.
Let 2o be a point of @ which lies in an isometric circle I. Then
in the region common to @ and I, which contains no points of
R, there are, by Theorem 6, points congruent to points of R.
This establishes the theorem.

THEOREM -8.—Any closed region mot containing limit points of
the group s covered by a finite number of transforms of R
(¢ncluding possibly R itself). These regions fit together without
lacune.

Let A be a closed region; for example, a region bounded by
a simple closed curve, having no limit point i‘ﬁthe group in its
interior or on the boundary. Then there 1 nite number of
isometric circles containing points of A. For, if there is an
infinite number, there are circles of arbitrarily small radius.
Their centers then have a point of A as cluster point, contrary
to hypothesis.

A transformation S carries R into a region R, lying in I,’
the isometric circle of S—1. If I,’ contains points of 4, R, may
contain points of A; if 4 is exterior to I,/, then R contains no
points of A. Mence, the number of regions congruent to R
which lie wholly or in part in A is not greater than the number
of isometric circles which contain points of A.} This number is
finite. Also, since there are points of R, or points congruent to
points of R in the neighborhood of every point of A (Theorem 6),
it follows that the regions fit together without lacune. A is
completely covered, except, of course, for the boundaries sepa-
rating the various regions.

TaHEOREM 9.—Within any region enclosing a limit point of the
group, there lie an infinite number of transforms of the entire
region R.

This theorem follows at once from the fact that there is an
infinite number of isometric circles lying entirely within a given
region enclosing a limit point. Each of these circles contains a
region congruent to the entire region R, and the various trans-
forms are different regions.

The preceding theorems furnish a picture of the transforms
of R. R and the regions congruent to it fit together to fill up
all that part of the plane which is composed of ordinary points.
They cluster in infinite number about the limit points.
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21 The Boundary of R.—A point on the boundary of R is
a point P not belonging to R but such that in any circle with
P as center there are points of R. P may be an ordinary point
or a limit point. Obviously, P cannot lie within an isometric
circle. .

If P is an ordinary point, it lies on one or more isometric
circles. Since there is but a finite number of isometric circles
whose arcs lie in the neighborhood of an ordinary point, a circle
@ can be_drawn with P as center such that @ is exterior to all
isometric circles other than those which pass through P.

In the most general case, a boundary point P belongs to one
of the following three categories:

() P is a limit point of the group;

" (8) P is an ordinary point and lies on a single isometric circle;

(v) P is an ordinary point and lies on two or more isometric
circles. P is then called a ‘“ vertex.”

It is desirable to include under (v) the following special case:
If P is the fixed point of an elliptic transformation of period two,
so that, although P lies on a single isometric circle, it separates
two congruent arcs on the circle, we shall classify P under (vy)
rather than (B). The advantages of this classification will
appear subsequently.

Concerning the boundary points of category («), there is
nothing to be added to the theorems on limit points already
derived in Sec. 18. We shall show subsequently (Sec. 25) that
groups exist for which the boundary points of R are all limit
points. The groups of interest for our present theory, however,
possess ordinary boundary points also.

(a) The Sides.—Consider a boundary point of category (B).
Let P lie on I, and let P’ on I, be the point into which T carries
P. We shall show that P’ is also a boundary point of category
(B). - We put aside the case P’ = P, a situation which can arise
only if I, and I’ coincide and P is a fixed point of the resulting
elliptic transformation of period two; for this case has been
included in (v).

First, P’ is within no isometric circle. Suppose P’ to be within
I,; then S magnifies lengths in the neighborhood of P’. But,
since T carries P into P’ without alteration of lengths, ST
magnifies lengths in the neighborhood of P. Then P is within
I4, which is contrary to the hypothesis that P is a boundary
point.
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Second, P’ does not lie on an isometric circle other than I,.
For, if P’ lies on I,, the transformation ST effects no alteration
inlengthsat P. Then P is on I,;, which is contrary to the hypoth-
esis that P lies on a single isometric circle. It follows from
these facts that P’ is a boundary point of category (8).

There is no isometric circle in the neighborhood of P other
than 7,. It is clear, then, that the points on I, in the neighbor-
hood of P are likewise boundary points of category (8); so, conse-
quently, are the congruent points on I,/. We thus have as a
part of the boundary an arc of I; and the congruent arc on I,’.
These arcs may consist of the entire circles or they may terminate
in points of category () or (y). Since the arcs lie on isometric
circles, they are of equal length. We have, then, the following
theorem:

TurEorREM 10.—The boundary points of R of category (B) form a

. set of bounding circular arcs, or sides, which are congruent in paars.
Two such congruent sides are equal in length.

(b) The Vertices.—There remain for consideration the bound-
ary points of category (v). Through a point P of this category
there pass a finite number of isometric circles. Let @ be a circle
about P sufficiently small that all isometric circles other than
those through P are without ‘Q and such that any points of
intersection of the circles through P, other than P itself, lie
without @. The isometric circles through P divide @ into a
finite number of parts. One of these parts A, owing to the
assumption that P is a boundary point, belongs to B. The two
arcs which bound 4, on I, and I, say, are a part of the boundary
of R. The points of these arcs other than P belong to category
(B). That is, at a vertex two sides of R meet.

Now make the transformation T, P being carried into P’ on
I/. By reasoning almost identical with that employed in the
preceding case, we show that P’ is a vertex. We can show, 1n
fact, that P and P’ lie on the same number of isometric circles.
Let P lie on the isometric circles of 7, S, U, . . . ; then P’
lies on the isometric circle of 7-, and also on those of ST-!,
UT-Y, . .., as we see on considering the way in which lengths
in the neighborhood of P’ are affected by the transformations.
These transformations are different—thus, ST-! = UT-! implies
S = U—hence, their isometric circles are different. Hence, as
many isometric circles pass through P’ asthrough P. Interchang-
ing the roles of P and P’, as many pass through P as through P’.



Sec. 22] EXAMPLE—A FINITE GROUP 49

(¢) Extension of R.—We shall find it convenient to-add to the
region R certain points of its boundary. Of two congruent
sides, one, exclusive of the end points, may be added without
including points congruent to points previously in B. A vertex
where bounding arcs meet may be congruent to several other
vertices, one of which may be adjoined. The resulting region is
still a fundamental region.

22. Example.—A Finite Group.—The following example of a finite group
illustrates parts of the preceding discussion. The transformations

2z — 1
Tomz  Ti=g—py Ti=gy
3z — 1 22 — 1 32 — 1
Ts_f;fz’ T4——-72’_*37 T5—87_3,

constitute a group. This is, in fact, the group got by transforming the group
of anharmonic ratios (Sec. 138 (2)) by G = 1/(z + 2) so that o shall not be
a fixed point of any transformation. The isometric circles are

Iz — 25| = 15, In:lz — 5] = 15,
Istle — 29] = M,  Iatle — 34| =14, Iilz — 3] = 14.

These are shown in Fig. 15.

Fia. 15.

The fundamental region R is bounded by arcs of I, and I,. T, is an ellip-
tic transformation of period two [@ 4+ d = 0], one of the fixed points being 1.
T carries the upper half /; of the bounding arc on I, into the lower half I_;.
Similarly, T is of period two, the upper and lower sides, I, and I_, being con-
gruent. There are thus two pairs of equal congruent sides.

Two congruent vertices are 314 + i\/ 3{4, through each of which pass all
five isometric circles. The points 0 and 1 are also vertices.

R and the five regions congruent to R fill up the whole plane without
overlapping. The congruent regions are not drawn, but it is not difficult



50 GROUPS OF LINEAR TRANSFORMATIONS [Sec. 23

to verify that the six regions consist of the six parts into which the plane is
divided by the complete isometric circles Ky, I,, and Is.

23. Generating Transformations.—In Sec. 13, mention was
made of the group resulting from combining a finite or infinite
number of linear transformations in all -possible ways. We shall
now raise the question whether a knowledge of the fundamental
region R furnishes any ihformation as to a set of generating
transformations of the group.

Let 1y, 11,1512, . . . bethe congruent pairs of sides of R. Let
T, carry lyinto l_; T carry [z into I_,; and so on. We shall show
that under certain circumstances T;, T2, . .. form a set of

generating transformations for the group.
It is clear that the group formed by all possible combinations of

Ty, Ty, . .., and their inverses contains only transformations
of the original group. That is, the group generated by T,
T, ..., which we shall designate by T, is a subgroup of the

original group. The question at issue is whether I'; contains all
the transformations of the group or only a part of them.

Let us consider the way in which R is transformed by the
transformations of the group I':. For convenience in notation, let
usrepresent T,~' by T_,. T, carries R into a region R; adjoining
Ralong the sidel_;; T_,(= T:7!) carries Rinto a region R_, adjoin-
ing R along the side [,. In general, T, carries R into a region R,
adjoining R along the side I_,. Hence, T, T3, . . . and their
inverses carry R into regions adjacent to R along all its sides.

Let S be any transformation of the b6riginal group, and let S
carry R into R,. R, is bounded by circular arcs congruent to the
sides I, of R. The regions R, adjoining R along its sides are
carried by S into regions adjoining R, along all its sides. That is,
R,(= S(R)) is surrounded alongall its sides by the regions ST, (R),
n==+1 +2, ... :

In particular, let S belong to the group I'.. Then, ST, belongs
to T, and the regions surrounding R, are transforms of R
by transformations of the group TI;. The transforms of R
by the group TI'; are entirely surrounded by other such transforms,
the regions fitting together, without lacunz and with no free sides,
to form one or more networks of regions. - If these networks
fill up the whole plane, I'; coincides with the original group;
otherwise it does not.

Let A be a closed region containing né limit points of the group
and having points in common with the region B. Then R and a
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finite number of its transforms by the group TI; cover A
completely. For, along the sides of R which lie in A, we can
adjoin regions of the network; along the sides of the new regions
which lie in A, we can adjoin other regions of the network; and
- soon. We can continue this process as long as there are any free
sides lyingin A. But A is covered completely by a finite number
of regions congruent to R (Theorem 8)¢ hence, this process must
end in a finite number of steps.

By similar reasoning, if the region A contains points of any
region R; congruent to R by a transformation of I';, A can be
covered by a finite number of regions congruent to ‘R by the
transformations of T%.

We can now prove the following theorem:

THEOREM 11.—If some point of R can be joined to all its con-
gruent points by curves not passing through limit points, then the
transformations T1, Ta, . . . by which the sides of R are congruent
constitute a set of generating transformations for the group.

Let S be any transformation of the group. Let 2, be a point of
R which can be joined to any congruent point by a curve not
passing through a limit point. Let C be such a curve joining
2o to 2y’ = S(29). C can be embedded in a closed region A
consisting entirely of ordinary points.

A is covered by R and a finite number of regions congruent to
R by transformations of the group I'.. In particular, there is a
transformation 7' of I'; which carries R into a region covering the
neighborhood of 2,. The transforms of R by S and T overlap,
whence S = T. Any transformation of the original group belongs
to I, which was to be provea. l

There are certain cases in which we can state at once that
Ty, Ti, .. . are generating transformations. The first is the
finite group. Since there are no limit points, the conditions
of the theorem hold. For example, in the group given in Sec.
22, T, and T are generating transformations. The reader can
verify that their combinations give the remaining transformations.

Again, the distribution of the limit points may be such that
any two points which are not limit points may be joined by
a curve not passing through the limit points. Then, obviously,
the conditions of the theorem hold. The simplest-examples are
the groups with a finite number (one or two) of limit points.

24. Cyclic Groups. DeriniTION.—A cyclic group is a group
generated by a single transformation.
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If T is the transformation which generates the group, then
the group consists of the transformations ... 7-% T-1, 1,
T, T?, . .. The groups whose fundamental regions are shown
in Figs. 11, 12, 14 are cyclic groups. In the examples, all
the transformations have a fixed point at infinity. In the
present section, we shall examine the cyclic groups arising when
T is one or another of the various types of transformations and
where the fixed points are finite. A knowledge of cyclic groups is
important because of the fact that every group contains cyclic
subgroups. For, the group generated by any transformation of
the original group belongs to that group.

If there are two fixed points, £, and £, T can be written in the
form (Sec. 6, Equation 24).

Z—& z — &
——=K—> K # 1,
Z’_£2 z__EZ ¢) (11)

and the general transformation 7™ is

Z =& _ 2 — b
e A (12)

On solving for 2/, we have
(K"t — £1)2 4+ (1 — K”)El&_
(K" — 1)z + & — Krgy

We find the determinant to be K*(&, — £;)2, so we must divide
numerator and denominator by Kn/2(¢; — &,) to render the
determinant 1. The isometric circle I, of 7™ is

£ — Krg — |K"/2(€1 - 52)| —
K» —1 | Kr—1 |

2 =Tr(2) =

£L— &
Kn/2 — K—n/2

z+ - (13)

(a) Hyperbolic and Loxodromic Cyclic Groups.—If T is hyper-
bolic, K is real and |K| > 1; then the multiplier K* of T™",
n # 0, is likewise real and in absolute value unequal to 1; whence
all transformations of the group are hyperbolic. If K is not real
and |K| # 1, then |K"| # 1, n £ 0, although in certain cases K*
may be real; hence, if T is loxodromic all the transformations of
the group are loxodromic or hyperbolic.

We found in Sec. 11 (b) that a fixed point cannot lie on either
of the isometric circles I,, I,” of a hyperbolic or loxodromic
transformation 7" and its inverse. Clearly, there can be no
fixed points outside both I, and I,’, for T shifts the position of
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such a point. Each I, contains a fixed point. As n increases,
the radius of I, approaches zero; so each fixed point is a limit
point of the group. An application of Theorem 5, where we
let the set Z consist of the two fixed points, shows that there are
no further limit points. '

In studying the arrangement of the isometric circles we shall
make use of the following proposition:

TurorEM 12.—Let I, I,, I/, I, be the isometric circles of T, S,
871, U = 8T, respectively. If I, and I, are exterior to one another,
then I, is contained in I,.

If I, and 1, are tangent externally, then I, lies in I, and is tangent
internally.

The proof is simple. Suppose the circles not tangent; and
let z be a point outside (or on) I,. Then S carries z into a
point 2’ within (or on) I, with decrease of lengths (or without
alteration of lengths). Now 2’ is outside I;; so T transforms
2’ with decrease of lengths. Hence, U transforms z with decrease
of lengths, whence 2z is outside [,. Since every point on or
outside I, is also outside I,, the latter circle is contained in the
former.

If I, and 1.’ are tangent externally at a, the preceding reasoning
holds except at the point ayp on I, which S carries into a. T8
makes no alteration of lengths at ao, whence a, lies on I,,.

If, in the cyeclic group, T is hyperbolic or if T is loxodromic
and |a +d| > 2, I and I, the isometric circles of 7 and T,

‘are exterior to one another (possibly tangent). We now show
that I encloses I, I, encloses I3, etc., and, likewise, I’ encloses
I/, I, encloses I/, and so on. We see at once from Theorem 12,
taking S = T, that I, is contained in I. Similarly, from the
product 7171, I, lies in I'.

We establish the general relation by induction. Suppose that
the circles are arranged as stated up to I, and I,’, and consider
I..1.. We write Tt = TT". By hypothesis I,’, the isometric
circle of 7", lies in I’, and hence is exterior to I. It follows
from Theorem 12 that I, lies within I,,. By identical reasoning
I, is contained in I/,

It follows from the preceding that I and I’ contain all other
isometric circles, whence the fundamental region R is the region
lying outside these two circles. In Fig. 16, the isometric circles
are drawn for a group generated by a hyperbolic transformation
with K = 4.
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The situation is somewhat different for a loxodromic trans-
formation for which |a 4+ d| < 2. In Fig. 17 the isometric
circles are shown for the group generated by T = 1/(z + 1).
Here a + d = ¢, whence 7 is loxodromic. The congruent
boundaries of R are connected by the transformations T and 7.

Fia. 16.

According to Theorem 11, these are generating transformations
for the group. This example illustrates the fact that the gener-
ating transformations found by an application of Theorem 11 are
not necessarily the best obtainable, that some of the trans-
formations found in this way may be consequences of others.

A simpler fundamental region for this case, although not bounded by
isometric circles, is got as follows. The loxodromic transformation may be
written T' = UV, where V and U are hyperbolic and elliptic transformations,
respectively, with the same fixed points as 7. Let I and I’ be the isometric
circles of V and V~L Then, it is readily shown that the part of the plane
exterior to I and /' is a fundamental region for the group generated by T'.
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(b) Elliptic Cyclic Groups—If T is elliptic, all isometric
circles pass through the fixed points. Here K = ¢, and unless ¢
is commensurable with =, the group is continuous. In Fig. 18,
the isometric circles are drawn for K = €%%/5, The group may

be generated. as the figure shows, by T'? which has the multiplier
e2ri/5.

(¢) Parabolic Cyclic Groups.—If T is parabolic, the transforma-
tion may be written (Sec. 10, Equation 37)-
1 1

7:—£=z__£+c, c # 0. (14)
Then T is the transformation
1 1
z/_g”“z_g'l“nc, (15)
I R I
R
Fic. 19.
or ( s ,
, _ (ncE + 1)z — neg?
2T Thez + 1 — nek (16)
The determinant in (16) is 1 and the isometric circle I, is
1 1
- — =) = —. 17
# <£ nc) |nc| a7
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We see from (17) that £ lies on I,, and that the center of I,,
namely § — ?;lé’ lies on the line joining £ to 1/c. Hence, all

isometric circles have a common tangent at £ If n is positive,
the center of I, lies on one side of {; if negative, on the other.
As n increases in absolute value, the radius steadily diminishes.
From these facts it follows that the arrangement of the isometric
circles is as shown in Fig. 19. This can also be shown from
Theorem 12. The fixed point is the only limit point of the group.

25. The Formation of Groups by the Method of Combination.
We here explain a method of forming properly discontinuous
groups, by the use of which a great variety of groups with very
diverse properties can be constructed. The reader will gain some
idea of the intricate possibilities in the broad class of properly
discontinuous groups.

Given a finite or infinite number of properly discontinuous
groups I';, T2 . . . Let the transformations of these groups be
combined in all possible ways to form a group I We get two
kinds of transformations: (a) those bélonging to the original
groups; and (b) cross-products resulting from the combination of
transformations not all belonging to the same original group.
The resulting group may be continuous or discontinuous. In
certain cases, however, we are able to state that the group is
properly discontinuous and to specify its fundamental region R.

TueoreM 13.—Let the R-regions Ri, Rs, . . . of the groups
Iy, Ty, . . . all contain some neighborhood of infinity; and let the
isometric circles of all transformations of each group be exterior
(possibly tangent externally) to all isometric circles of all the trans-
formations of the remaining groups. Then the group T formed by
combining the given groups ts properly discontinuous.

The region containing all points common to Ry, Rs, . . . is the
region R for T. Here a point is not counted as belonging to R unless
a region about the point lies in Ry, R, . .

R is the region lying outside the isometric circles of the trans-
formations of T' of the category (a). The cross-products have
not been taken into account. We now show that the isometric
circles of the transformations (b) contain no points of R.

Consider the general cross-product

U = SnSn—l e SZSI-
Here we suppose that the two successive transformations S,
Si+1 do not belong to the same one of the groups I'y, T'y, . . . ;
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otherwise, we combine them into one transformation. We apply
the transformation U to a point 2o of . Let I;, I;’ represent the
isometric circles of S;, S;~'. Since 2z, is exterior to I, S; carries
2o into 2, within 7,’. Since I’ is exterior to I, z; is exterior to I,
and S, carries z; into 2z, within I,’; and so on. At each step,
lenzths in the neighborhood of the point are decreased. So U
decreases lengths in the neighborhood of zy; hence 2, is exterior
to the isometric circle of U. Thus the region R of the theorem
is the region lying outside all the isometric circles belonging to
the group I'. The existence of R shows that I' is properly dis-
continuous.

By the use of Theorem 12, employing reasoning similar to that of the
preceding section, we can show that the isometric circles of

S1, 8281, 8828y, - - -, U

form a sequence such that each circle encloses the circle which follows it.
It follows that the isometric circle of a cross-product lies within one of the
isometric circles of the original groups, and hence has no bearing on the
construction of R.

A few examples wherein we actually construct combination
groups will throw some light on the various forms which the
region R can take.

Given two equal circles, we can set up infinitely many trans-
formations T such that the given circles are the isometric circles
of T and T-1. It is easily shown that the most general linear
transformation such that I, and I, are, respectively,

X IZ-q|=r, IZ—q’|=r,
is

7= 2= @d + ), (18)

=9

where 6 is any real quantity. If I, and I,/ are exterior to one
another, the region exterior to I, and I,” is the region R for the
cyclic group generated by 7. We shall use groups of this sort in
applying Theorem 13.

(a) Given 2n circles Iy, I'; . . . ; I, I,’, which are equal in
pairs, and which are exterior to one another or are externally
tangent. We set up the transformation 7'; so that T; and T,;™!
have the isometric circles I; and I;/. Then the group generated
by Ti, T, ... T, has for a fundamental region the region
outside the 2n circles.
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If no circles are tangent, R is a connected region, although not
simply connected. Its boundary consists entirely of sides,
there being no boundary points of categories (a) or (v) (Sec. 21).

By making the circles tangent in various ways, the region
exterior to the circles can be separated into several regions.
Then R will consist of several parts.

(b) In the same way, we can select an infinite number of
circles equal in pairs and construct a group. Since we are assum-
ing that the isometric circles lie in some finite domain, we shall
have circles of arbitrarily small radius.

These circles can be put together in such a way that R is
composed of an infinite number of separate parts.

(¢) That R can be a region whose boundary points are all
limit points is shown by the following example:

2@°
(-
¢ CA_O

Fi1a. 20.

Let C be a closed curve (Fig. 20). Without going into detail,
it is seen that pairs of isometric circles with which to form
a combination group can be put into the interior of C in such a
manner that every point within or on C which is not within a
circle has an infinite number of circles in its neighborhood.
Then R comprises the exterior of C. The boundary of R, namely
C itself, is composed entirely of limit points.

Constructions of this sort for other and more complicated
forms of the region R will occur to the reader.

An  Extension. Schottky Groups.—Results analogous to
Theorem 13 can be derived for other kinds of fundamental
regions. Let I';, . . ., I'u be groups with fundamental regions
Fiy, ..., Fna Let F; contain in its interior all points of the
plane not interior to F;(¢z > j). If the combination group I'
be formed we can show that the region F consisting of all points
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common to Fy, . .., F, is a fundamental region for I'. The
boundary of F consists of the boundaries of Fy, . . . , Fp.

In the neighborhood of a point P on the boundary of F; there
exist points not belonging to F; which are congruent to points
of F;. Further, these points can be so chosen that the congruent
points in F; lie as near the boundary of F; as we wish and so
belong to F. The second requirement of the fundamental
region is satisfied. ¢

Obviously, no two points of F are congruent by transforma-
tions of the original group. We now consider the effect of a
cross-product on a point zo of F. Let U =S, - - - S, where
Si(1) belongs to the group I',, and T, and T,,,, are different
groups. 8, carries z, into a point 2, outside F, and hence in
F.; S2 carries 2; into a point 2z, outside F, and hence in F, ; etc.
Finally, 8, carries 2, into a point z, outside F, ; that is, U
carries 2, into a point outside F, and the first property of the
fundamental region is established.

The Schottky group' is constructed as follows: Let @i, Q1';

. ; Qu, @» be m pairs of circles external to one another.
Let T; be a linear transformation (loxodromic or hyperbolic)
carrying @Q; into Q;’ in such a way that the exterior of Q; is
carried into the interior of @,’. T generates a cyclic group T';
for which all that part F; of the plane exterior to Q; and @, is
a fundamental region. Here F; contains all that part of the
plane not contained in F;(j ¢ ¢). The Schottky group T is

got by combining I'y, . . . , I'mn. It has as fundamental region
all that part of the plane exterior to the 2m circles. T is gener-
ated by the transformations 7, . . . , Th.

In a subsequent chapter (Chap. X) there will arise groups
generated as is the Schottky group except that Qi, . . ., Qu.’
are closed curves which are not necessarily circles. Such a
combination group is called a “group of Schottky Type.”

26. Ordinary Cycles.—Returning now to the fundamental
region R for the general properly discontinuous group, we shall
make a study of the vertices. Let A; be a vertex. If either
of the sides which meet in 4, is carried into its congruent side,
A, is carried into a vertex at the extremity of this latter arc.
These congruent vertices may be carried into others, with the
result that 4, may be congruent to several of the vertices of RE.

1 Crelle’s Jour., Vol. 101, pp. 227-272, 1887.
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We may find the vertices congruent to A; by the following
method: Let us think of the boundary of R as being traced in a
positive sense; that is, with the region on the left. In passing
through a vertex, we proceed along one side to the vertex and
then proceed along a second side from the vertex. We consider
the vertex as the end of the former side and the beginning of
the latter. When a side is carried into its congruent side, the
beginning and end of the former are carried into the end and
beginning, respectively, of the latter; this results from the fact
that the direction around the isometric circle is reversed (Sec.
11 (a)).

Let [, be the side beginning at A, (Fig. 21). This side is
carried by a transformation 7'; into the congruent side I_,, A,
being carried into A, at theend of I_;. There is a side I, beginning
at A,. The arc [, is carried by some transformation 7, into
the congruent side L, A, being carried into A; at the end of [_,.
We can continue in this manner, getting other congruent vertices
until we return to A; and the side ;.

We will return to A; in a finite number of steps. Suppose,
on the contrary, that an infinite number of vertices A,, 4;, . . .
arc congruent to A;. The transformation S, which carries A4,
to 4, has an isometric circle passing through A,; for if A4, is
outside the isometric circle of S,, A, is within the isometric
circle of S,~%, which is impossible. Then the isometric circles
of Sg, S3, . . ., an infinite number, pass through A,, which is
contrary to the hypothesis that A, is an ordinary point. Hence,
in applying the process just explained, we encounter a finite
number of vertices Az, A3, . . . Am, congruent to A; and then
return to A;.1

DerINITION.—A complete set of congruent vertices of a funda-
mental region is called an ordinary cycle.

We shall show presently that there are no vertices of R con-
gruent to A; other than those just found; whence 4,, 4, .

A .. constitute a cycle.

Let Ty, Ty, . . . , T'm be the transformations in the preceding
treatment by which we carry A, to A;, A2to A; . . . Anto 4y,
respectively. Some of these transformations, it will be noted,
may be inverses of the others, but each connects a pair of bound-

1 We continue until we encounter the vertex A4 followed by the side ;.
We may encounter A, once before this happens, in the special case that the
sides at 4, are tangent. See Fig. 24 p. 73.
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ing arcs. The transformation S = T, - - - T.T; carries 4, into
itself. It may happen that S is the identical transformation. If
not, S is an elliptic transformation. For, 4, is a fixed point of
S; and the fixed points of hyperbolic or loxodromic transforma-
tions lie within isometric circles and the fixed point of a parabolic
transformation (Fig. 19) is a limit point of the group.

Consider now the way in which the transforms of R fit

together at 4;. The transformations T, TwTlm-1, . . . , Tm
c o Ty Ty« - - Ti(= 8) carry Ay A1, . . . As, Ay, respec-
tively, into 4,. Further, the regions R,,, Ru-1, . . . , Bs, Ry,

respectively, into which these transformations carry R fit together

Fia. 21. Fra. 22.

at A, (Fig. 22). Thus, T carries 4,, into 4, R, being adjacent
to R along the arc [_,, ending at A;. In general, T; carries 4; into
A;y; and carries R into a region abutting on R along a side
ending in A;,;, whence the transforms of these two regions by
Tw + - - Tiy1, namely R; and R,y,, are adjacent along an arc
issuing from A;. In proceeding counterclockwise around A,
starting from R, we encounter in order the adjacent regions R,
Rm-1, . . ., Ry, Ri. The curvilinear angle of R at A, is carried
into an equal angle of R, at 4.

Since there can be no overlapping of congruent regions, there
are ‘two possibilities. First, B, may coincide with B and the
regions B, R, . . . , B2 completely fill up the angle about 4.
Then, S is the identical transformation. The sum of the angles
at the vertices 41, As, . . . , A is equal to 2.

If R, does not coincide with R, S is an elliptic transformation.
Now, an elliptic transformation with multiplier K = ¢ amounts
to a rotation in the neighborhood of the fixed point through the
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angle § # 0. Carrying R into R; requires (Fig. 22) that 6 be equal
to the sum of the angles at the vertices. On applying S, R,
R., . . ., R, are carried into adjacent regions filling out more of
the region about A; counterclockwise from R;. After a finite
number, k, of applications of S, the region about 4, is completely
filled up and S*(R) coincides with E.

It is now clear that there are no vertices of R congruent to A4,
other than 4,, . . ., A,.. For, a transformation carrying any
other vertex A4 to A, carries R into a region overlapping the
regions which fill out the angle about A,, which is impossible.

We state the preceding results in the following form:

TuaEOREM 14.—The sum of the angles at the vertices of an ordinary
cycle is 2m/k, where k is an integer. If k > 1, each vertex of the
cycle is a fixed point of an elliptic transformation of period k.

TaEOREM 15.—Each ordinary cycle determines a relation of the
form (TwTm-r - + - Ty Th)* = 1 satisfied by the transformations
connecting congruent sides of R.

As an illustration of the preceding results, we take the gfdup of Sec. 22,
the fundamental region of which is shown in Fig. 15. Consider the upper
vertex in that figure. The side /, beginning at that vertex is carried by 7'
into I_; ending at the lower vertex. The side l_» beginning at the lower
vertex is carried by 7's7!into I ending at the upper vertex. The upper and
lower vertices thus constitute a cycle.

The transformation S = 75717 is clearly not the identical transformation,
since the sum of the angles at the two vertices is less than 2x; hence, S is an
elliptic transformation with the upper vertex as fixed point. We find
readily that S = 74, and that 83 = 1. The sum of the angles at the two
vertices is 2x/3.

Again the origin is a vertex. The arc l; beginning at the origin is carried
by T:into the arc l_, ending at the origin. Hence, the origin alone consti-
tutes a cycle. The angle there is =; whence 72 = 1,

Similarly, the vertex at the point 1 constitutes a cycle. There are thus
three cycles.

27. Parabolic Cycles.—If a side of R terminates in a limit
point P, various situations may arise. It may happen that there
is no other side terminating in P,. Let us suppose that two sides
meet in P;; and let us apply the method given in the preceding
section for getting points congruent to P;.

Let I, be the side beginning at P,. Then I, is carried by a
transformation T, into a side I—; ending at a limit point P,. Let
ls be the side, if any, beginning at P, and let T, carry I, into the
side [_, ending at P3; and so on.
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In the application of this process there are three situations that
may arise: (1) the process may be terminated at some stage by
arriving at a point at which no side begins; (2) the process may
continue ad infinitum without a return to Py; (3) after arriving at
a finite number of congruent points Py, P3, . . . , P,, we may
return to P; and the side [;. It is not difficult to set up com-
bination groups exemplifying each possibility.

If (3) holds, we say'that P;, Py, . . . , P, constitute a parabolic
cycle, and each point of the cycle is called a ‘“parabolic point.”

In many of the groups to be studied subsequently R has a
finite number of sides and the only limit points on the boundary

are points where two sides meet. These conditions rule out cases
(1) and (2); whence the limit points on the boundary are parabolic
points fgrranged in cycles. :

The transformation S = T,,Twm—1 - - - TyT, carries P, into
itself; whence S is either elliptic or parabolic. The reasoning
of the preceding section can be repeated word for word to show
that Twy, TwTlm1, . ..y, T+« Ty Tw - - - Ty carry P,,
Poy, . . ., Py, Py, respectively, into P, and carry R into regions
Ry, Ru—1, . . . , Ry, R, fitting together along ares issuing from
P, in the order shown in Fig. 23. The angle between the sides
of R; which meet at P, is equal to the angle between the sides of
R which meet at P;.

S carries R into R,, the side [, being carried into the side I’
whigh separates R, and R,. If S is elliptic I; and I, meet at an
angle different from zero. By repeating S a finite number of
times, the neighborhood of P, is covered by a finite number of
regions, which is contrary to Theorem 9. Hence S is parabolic.
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Since S is parabolic, I; and I’ are tangent at the fixed point P,.
Then, the arcs bounding the intervening regions are also tangent
to ;. The angle between the sides which meet at each point of
the cycle is zero.

By repeated application of S to the regions in Fig. 23, we get
infinitely many other regions with two sides meeting at P,, the
sides being tangent to ;.

TurOREM 16.—The sides of R which meet at a parabolic point are
tangent. There is an infinite number of regions congruent to R each
having two sides which meet at the parabolic point and are tangent
to the sides of R.

If the sides of R meet always at vertices or at parabolic points,
the region is-of a particularly simple kind.

TurorEM 17.—If the boundary of R consists entirely of ordinary
points, or if the only limit points on the boundary are parabolic
points, then R has a finite number of sides.

Suppose that ‘R has an infinite number of sides. Let z;, 2.,

. be an infinite suite of points each lying on a side of R and no
two lying on the same side. These points have at least one
cluster point P, which is also a boundary point. In the neighbor-
hood of P lie infinitely many sides of B. This is impossible either
at an ordinary point or at a parabolic peint; and the theorem is
established.

28. Function Groups.—The ordinary points of a properly
discontinuous group either form a single connected region, or
two-dimensional continuum, =, or else are separated by the limit
points into two or more two-dimensional continua 2, Z;, Z,, . . .

DEFINITION.—A properly discontinuous group will be called a
function group if one of the connected regions = into which the limat
points separate the plane is carried into itself by all the transforma-
tions of the group.

In a finite group or a group with one or two limit points the
ordinary points constitute a single connected region which is
carried into itself by all transformations, whence the group is a
function group. A group of the sort shown in Fig. 20 is not a
function group. It is the function groups only that will play
a part in our subsequent theory.

TuroreM 18.—In the region £ of a function group lies a part
Ry of the region R, and R, is a fundamental region.

Not all of B can be exterior to =, for then the transforms of
R would all be exterior to Z, contrary to Theorem 6. Let P be
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a boundary point of R,. If P is a limit point, there are points
congruent to points of R, in the neighborhood of P by Theorem 2.
If P is an ordinary point on the boundary of R,, it liesin X and
there are points congruent to points of R in its neighborhood.
But these points are congruent to points of R, since the trans-
forms of all other points of R are exterior to =. Since obviously
no points of R, are congruent, R, is a fundamental region for the
group.

THEOREM 19.—The sides of Ro are congruent in pairs; and the
transformations connecting congruent sides of Ro form a set of
generating transformations for the function group.

It is clear that R, is bounded in part by sides. For, otherwise,
R, is bounded entirely by limit points (or consists of the whole
plane if there are no limit points) and coincides with Z. Then,
no two points of = are congruent, which is impossible. (We
assume here that the function group does not consist solely of the
identical transformation.) Each side of R, is congruent to some
side of B. But the congruent side must lie in = and so is a side
Of Ro.

Since Z is, by hypothesis, a connected region, any interior
point of Ry can be joined to any of its congruent points by a
curve not passing through a limit point of the group. The
latter part of the theorem then follows from Theorem 11.

TrHEOREM 20.—If a function group possesses a fundamental
region F which, together with its boundary, consists of tnterior
points of Z, and whose transforms cover the neighborhood of each of
its boundary points, then the boundary of R, consists of interior
points of =, and Ry has a finite number of sides.

A finite number of transforms of R, cover F' and its bound-
ary completely. Let us carry the portion of F in each region R;
into Ry by means of the transformation which carries R; into R,.
These transforms of parts of ' do not overlap, since no two points
of F are congruent.

Furthermore, they fill By completely without lacunz. Sup-
pose, on the contrary, that an interior point 2z, of R, is exterior
to all the transforms of parts of F. Let z; be the nearest
point of one of the parts in Bo. Then in any neighborhood of 2,
are points which are not covered and which are, therefore, not
congruent to points of F. On carrying the particular part back
to F, 2, goes into a boundary point of F which has in its neighbor-
hood points not congruent to points of F. This is impossible.
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If R, has a limit point on its boundary, so has one of the
parts covering R, and there is a congruent limit point on the
boundary of F, contrary to hypothesis.

We may now imbed the region R, in a closed region A con-
sisting entirely of ordinary points. Only a finite number of
isometric circles enclose points of A. As isometric circles which
are exterior to A cannot form part of the boundary of R,, it
follows that R, is bounded by a finite number of sides.

The group is then generated by a finite number of trans-
formations.

Classification of Function Groups.—We shall separate the func-
tion groups into three major classes. ‘

1. Elementary Groups.—These consist of the finite groups and
the groups with one or two limit points.

2. Fuchsian Groups.—A group is called “Fuchsian’ if its
transformations have a common fixed circle and if each trans-
formation carries the interior of the fixed circle into itself.

3. Kleinian Groups.—A function group is called ‘Kleinian” if
it does not belong to one of the preceding classes.

Examples of elementary groups are the group discussed in
Sec. 22 and the cyclic groups of Sec. 24.

There is a certain amount of overlapping between (1) and (2).
Certain of the elementary groups possess fixed circles; for exam-
ple, the non-loxodromic cyclic groups.

Most of the combination function groups are Kleinian groups.



CHAPTER III
FUCHSIAN GROUPS

29. The Transformations.—As defined in the preceding
section, a Fuchsian group is a properly discontinuous group each
of whose transformations carries a certain circle into itself and
carries each of the parts into which the circle divides the plane
into itself. The common fixed circle will be called the ‘‘ principal
circle.” A point within the principal circle is carried into an
interior point; an exterior point is carried into an exterior point.
If the principal circle is a straight line, a point on one side of the
line is carried into'a point on the same side of the line.

Consider now the kinds of transformations that can belong
to a Fuchsian group. We found in Sec. 9 that the only loxo-
dromic transformations which have fixed circles carry the
interior of each fixed circle into its exterior. Hence, there can
be no loxodromic transformation. Referring to Secs. 7, 8, 10,
where we studied the fixed circles of the non-loxodromic trans-
formations, and to the accompanying figures, we see that a
transformation of the group, other than the identical transforma-
tion, must be one of the following kinds:

(a) A hyperbolic transformation with its fixed points on the
principal circle.

(b) An elliptic transformation with its fixed points inverse to
one another with respect to the principal circle.

(¢) A parabolic transformation with its fixed point on the
principal circle and with its fixed straight line tangent to the
principal circle.

Conversely, a transformation of any one of these three kinds
carries the circle into itself.

An application of Theorem 20, Sec. 11(c), gives the following
result:

TrEOREM 1.—The tsometric circles of the transformations of a
Fuchsian group are orthogonal to the principal circle.

30. The Limit Points.—Since the principal circle is trans-
formed into itself, it constitutes a set to which Theorem 5 of

Sec. 18 applies. Hence, we have the following theorem:
67
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TaEOREM 2.—The limit points of a Fuchsian group lie on the
principal circle.

This theorem can also be proved directly from Theorem 1.
For, the requirements that a limit point shall have isometric
circles of arbitrarily small radius in its neighborhood and that
these circles shall be orthogonal to the principal circle can be
met only if the limit point is on the principal circle.

TurorReM 3.—If there are more than two limit points, either (1)
the set of lymit points consists of all points of the principal circle;
or (2) the set of limit points is a perfect set which 1s nowhere dense
on the principal circle.

We have already found (Sec. 18, Theorem 4) that if there are
more than two limit points the limit points form a perfect set of
points. We must show further that unless every point of the
principal circle is a limit point, then the limit points form a set which
does not contain all the points of any arc of the principal circle.

Let 2o be a point lying on the principal circle and which is not a
limit point. Then the points in the neighborhood of 2z, are also
ordinary points. In particular, the points on a suitably small
arc h of the principal circle passing through z, are ordinary points.

Let P be a limit point. Then, applying Theorem 2, Sec. 18,
there are points congruent to points of 4 in the neighborhood of
P. These points are ordinary points and lie on the principal
circle. Since there are ordinary points on the principal circle
in the neighborhood of a limit point, it follows that the set of
limit points is, nowhere dense on the principal circle.

It is known from the theory of perfect sets that the set of
limit points in (2) can be formed by the removal from the princi-
pal circle of an infinite number of open ares, ki, hs, . . . These
arcs do not overlap and have no common end points. Further
between any two arcs lie infinitely many others. The perfect set
consists of the points that remain after the arcs have been removed.

On the basis of the preceding theorem we shall classify Fuchsian
groups as follows:

(a) Fuchsian groups of the first kind, or groups for which every
point of the principal circle is a limit point.

(b) Fuchsian, groups of the second kind, or groups whose limit
points are nowhere dense on the principal circle.

To (b) belong the groups whose limit points form a non-dense
perfect set and also the elementary Fuchsian groups, where the
number of limit points is finite.
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In (a) the limit points separate the plane into two régions each
of which is carried into itself. In (b) the ordinary points form a
single connected region.

We shall find that groups of both kinds exist, and that the
two kinds of groups have strikingly different properties.

31. The Region R and the Region R,.—When we make an
inversion in a circle, any orthogonal circle is carried into itself
and the interior of the orthogonal circle is carried into itself.
Hence, from Theorem 1, if we make an inversion in the principal
circle, each isometric circle is carried into itself and its interior
and exterior go, respectively, into its interior and exterior. A
point of R, being exterior to all the isometric circle, is carried
into another point of B. Hence, we have the following result:

THEOREM 4.—An tnversion tn the principal circle carries the
region R into tself. .

In this inversion, infinity is carried into the center of the

- principal circle, providing, as we shall assume, that the principal
circle is not a straight line. Since the points in the neighborhood
of infinity lie in R, it follows that points in the neighborhood of
the center of the principal circle lie in R.

The principal circle divides R into two parts which may or
may not be connected with one another along the principal
circle.

We shall designate by R, the part of R lying within the principal
circle, by Ro' the part of R lying without the principal circle.

Ry is the inverse of R, in the principal circle; its sides and
vertices are the inverses of the sides and vertices of R,. The
sides which bound R, lie on the same isometric circles as the
sides which bound R,. Corresponding sides are connected by
the same transformations.

Let a transformation of the group be made. R, is carried
into a region in the interior of the principal circle and R, into
a region on the exterior. As a consequence of Theorem 10,
Sec. 5, we can state that the two transformed regions are inverse
with respect to the principal circle.

It follows from the preceding remarks that, in a study of the
fundamental region, of its sides and vertices, of its congruent
regions, and the like, it will suffice to study the region R, within
the principal circle. An inversion in the principal circle will
then furnish the corresponding results for R,. We shall,
therefore, limit our study to R..
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THEOREM 5.—The region R, is simply connected.

It is clear that the region R, is connected. A straight line
segment from the center of the principal circle to any point
of R, lies entirely within R,. Thus any two points of R, can be
joined by a curve lying in R,; for example, by combining the line
segments joining each to the center.

R, is simply connected if any closed curve in R, can be shrunk
continuously to an interior point without crossing the boundary.
This can be done by the simple process of moving the points of
the curve continuously along radii to the center. )

The main facts concerning the sides of R, are summarized
in the following theorem:

THEOREM 6.—The sides of Ry are circular arcs orthogonal to the
principal circle. These arcs are congruent in pairs. Two con-
gruent sides are equal tn length and congruent points thereon are
equidistant from the center of the principal circle.

That the sides are orthogonal to the principal circle follows
from Theorem 1. That the sides are arranged in congruent
pairs which are equal in length follows from the fact (Sec. 21,
Theorem 10) that the sides of R are so arranged. A side of R,
is a side, or a portion of a side, of R, and is equal in length to its
congruent side. This congruent arc lies also within the principal
circle and is a side of R,.

That congruent points on two congruent sides of R, are
equidistant from the center of the principal circle is a conse-
quence of Theorem 21, Sec. 11.

Attention should be called to the fact that an arc of the
principal circle along which R, and R, are adjacent is not
considered as a side of Bo. The term “side” is here limited to
arcs of isometric circles.

THEOREM 7.—Any closed region lying entirely within the principal
circle is covered by a finite number of transforms of Ro. These
regions fit together without lacunce.

- This theorem follows from the fact that a region of the kind
specified is covered without lacuns by a finite number of trans-
forms of R (Sec. 20, Theorem 8) and from the further fact that
R, contains all the points of R whose transforms lie within the
principal circle. '

Tueorem 8.—The transforms of R, fill up, without lacunc,
the whale interior of the principal circle. They cluster in infinite
number about each limit point of the group.
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The first part of this theorem is a consequence of Theorem 7.
. A circle Q concentric with the principal circle and of smaller
radius is covered by R, and a finite number of regions congruent to
Ro. By taking the radius of  near enough to that of the princi-
pal circle we can enclose in @ any given point interior to the
principal circle. It follows that the interior of the principal circle
is completely covered. The second part of the theorem follows
from Theorem 9, Sec. 20.

TueorEM 9.—An intertor point of Ry is nearer the center of the
principal circle than any point congruent to it.

An interior point of R, is outside the isometric circle of any
transformation by which it is carried into a congruent point.
The theorem then follows from Theorem 21, Sec. 11.

32. Generating Transformations.

TuEOREM 10.—The transformations by which the sides of R, are
congruent form a set of generating transformations for the group.

If the Fuchsian group is of the first kind, the theorem follows
directly from Theorem 19, Sec. 28; for R, is that part of R lying
in the interior of the principal circle, which may be taken as the
region X of Sec. 28. If the group is of the second kind, Z con-
sists of all ordinary points in the plane, and the fundamental
‘region of that theorem is R itself. But the sides of R which
lie outside the principal circle are congruent by the same trans-
formations that connect the sides of Ry and so supply no new
generating transformations.

Let Q be a circle lying within and concentric with the principal circle, and
let us consider the network of regions by which @ is covered. We shall
prove the following theorem:

THEOREM 11.—A circle Q concentric with the principal circle and of smaller
radius is completely covered by R, and by regions which are congruent to R, by
transformations formed by combining those generating transformations which
connect sides of Ro lying wholly or in part in Q.

The network of regions covering  is found by adjoining regions congruent
to R, along the sides of R, lying in @, adjoining regions along such sides of
these transformed regions as lie in @, and so on (Sec. 23). In this process,
we employ only those generating transformations connecting sides of Ro
which lie in @ or are congruent to sides lying in Q. For example, if one of
these regions, T'(Ro), has a side ! in Q@ which is congruent to I; of R, then
TTr(R,) is the region adjacent to T (R,) along I. Hence, at each step we
introduce only the generating transformations stated.

Now, when Ris carried into a congruent region, the distance of an interior
point from the center of the principal circle is increased (Theorem 9); hence,
the distance of a boundary point is not decreased. Then all transforms
of all sides of Ry which lie outside @ are themselves outside @; and the
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transformations connecting these sides play no part in the formation of the
network. This establishes the theorem.

THEOREM 12.—Let S be a transformation of the group; let P be the pownt on
the isometric circle of S which ts nearest the center of the principal circle; and let
Q be the circle through P concentric with the principal circle. Then S can be
expressed as a combination of those generating transformations which connect
sides of Ro which have at least one interior or end point within or on Q.

The theorem is so worded as to include not only sides lying wholly or in
part in @ but also sides which touch @ or have an end point lying on Q.
Since there is but a finite number of sides in the neighborhood of @ we can
draw a slightly larger circle Q’, concentric with @, which contains no new
sides of Ro. @’ contains P on [ and the congruent point P’ on I,’, since P’
and P are equidistant from the center of the principal circle.

It follows from the preceding theorem that @’ is completely covered by R,
and the regions congruent to B, by transformations of the kind mentioned in
the present theorem. These regions cover the neighborhoods of P and P’.
S carries interior points of a region T(R,) in the neighborhood of P into

interior points of some region T'(R,) in the neighborhood of P’, where both
T and T are combinations of generating transformations of the kind specified
in the theorem.»_ Then ST(R@ and T(R,) overlap, whence (Theorem 1,

Sec. 16) ST = T; and S8 = TT-1. This is a combination of the kind
required; and the theorem is established.

33. The Cycles.—Let 4,, A;, . . . 4, be the vertices of an
ordinary cycle of R, arranged in order as in Sec. 26. Then A4
and Ay, are congruent points at the ends of congruent sides
Iy, I of B. We need consider only vertices of R, those of R,
being got by an inversion. It follows from Theorem 6 that A;
and A, are equidistant from the center of the principal circle.

The congruent points of a parabolic cycle are limit points and
lie on the principal circle. We have, then, the following theorem:

TuaEOREM 13.—The congruent vertices of an ordinary cycle lie on
a circle concentric with the principal circle. The points of a
parabolic cycle lie on the principal circle.

There arises the question whether there can be an ordinary
cycle with vertices lying on the principal circle. Such cycles do
exist for certain groups. Two isometric circles which meet on
the principal circle, being both orthogonal to the principal circle,
are tangent. Hence, the angle at each vertex is either 0 or .

In Fig. 24 is shown the region R for a combination group
arising from two hyperbolic cyclic groups. Two of the circles
are made tangent. The order of the sides and vertices, accord-
ing to the scheme of Sec. 26 is indicated. The congruent
vertices are in order 4, A, A3(=4,), A,.
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This situation can arise only if the sum of the angles of the
cycle is 2r. Otherwise, the transformation S = T, - - - T,
which carries A, into itself, is an elliptic transformation and
(Sec. 29 (b)) the fixed point A, does not lie on the principal circle.
In the figure, the angles at A, and 44 are each = and those at
A, and A; are zero.

The cycle in this problem is not an essential one and we can remove it
entirely if we wish. We can replace any part of R by a congruent part and
still have a fundamental region. Let the sides [_; and I; be slightly deformed
in the neighborhood of 4, so that 4, becomes an interior point. The part of
R which is removed in the neighborhood of A. can be replaced by the con-
gruent part lying within I,’ in the neighborhood of 4,. Then, I, and I_, are
displaced slightly to the right and the sides no longer touch. !

l-3 Iz
Fia. 24.

It is not difficult to see that this can be done in the most gencral case.
In such a cycle, two of the vertices, as 4, and 44 have the angle =, and a
finite number have the angle zero. By deforming the sides at one of the
former vertices we can remove dne of the points of tangency. By deforming
the sides which now meet at the latter point we remove another point of
tangency. By successive steps we can remove the remainder.

34. Fuchsian Groups of the First and Second Kinds.—Whether
a Fuchsian group is of the first or the second kind (Sec. 30)
depends upon the region R, as stated in the following theorem:

TrEOREM 14.—If R contains on its interior a point of the princi-
pal circle, the group s of the second kind; if not, it is of the first
kind. '

The first part of the theorem is evident. If a point of the
principal circle is on the interior of R, it is an ordinary point.
Not all points of the principal circle are limit points; and the
group is of the second kind.

To complete the proof we show that if the group is of ,the
second kind, R contains a point of the principal circle on its
interior. Let z; be an ordinary point on the principal circle.
Then a circle @ can be drawn about 2, such that all points within
and on Q can be covered by a finite number of transforms
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of R (Theorem 8, Sec. 20), Ry, . . . , R., say. Each of these
regions has a finite number of sides lying in Q. For, an infinite
number of sides would have a cluster point in or on ; and this
cluster point, being the transform of a point of R at which infinitely
many isometric circles cluster, would itself be a limit point, which
is impossible. Further, the sides of these regions, being congru-
ent to the sides of R, are orthogonal to the principal circle. Let
h be the arc of the principal circle lying in Q. Then, with the
exception of the finite number of points where the sides of R;,
R, . . . R, meet the principal circle, each point of & is interior

Fia. 25. Fia. 26.

to one of the regions. Let z; be a point of h interior to Ry.
Making the transformation which carries R, into R, z; is carried
into a point which is interior to R and which lies on the principal
circle. The existence of this point establishes the theorem.

If R contains a point of the principal circle on its interior, it
contains all points of an arc of the principal circle passing through
the point. In the group of the second kind, then, R contains
one or more arcs of the principal circle on its interior. The two
regions R, and R, abut along these arcs.

The region R, for the two types of groups has the character
illustrated in the accompanying figures. In the group of the
first kind (Fig. 25) R, either lies, together with its boundary,
within the principal circle; or, if there are points of the boundary
of R, on the principal circle they are limit points of the group with’
sides of R, in the neighborhood. In the group of the second kind
(Fig. 26) R, abuts on the p}incipal circle along one or more arcs,
and R contains these arcs’on its interior.

THEOREM 15.—R, constitutes a fundamental region for the
Fuchsian group of the first kind.
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This theorem is a consequence of Theorem 18, Sec. 28.

TraEOREM 16.—If the boundary of R lies within the principal
circle, or if the only boundary points on the principal circle are
parabolic points, then Ry has a finite number of sides. The group
s then generated by a finite number of transformations.

If the only boundary points of R, which lie on the principal
circle are parabolic points, the same is true of the boundary
points of Ry’. The first part of the theorem then follows from
Theorem 17, Sec. 27. The latter is then a consequence o
Theorem 10. » :

In our later work, particularly in the study of uniformization,
we shall come upon Fuchsian groups of the first kind where the
fundamental region is found in quite other ways than that
employed here. We shall give now some theorems concerning
other fundamental regions.

THEOREM 17.—If a Fuchsian group possesses a fundamental
region F whose transforms cover the meighborhood of each of its
boundary points and which lies within a circle Q concentric with the
principal circle and of smaller radius, then R, lies within Q.

A finite number of transforms of R, cover F completely.
When we carry the portion of F in each region R; into R, by
means of the transformation which carries R; into R, these
transformed parts of F fill Ry, completely without lacunz, as
shown in the proof of Theorem 20, Sec. 28. Then, R, is in Q;
for on transforming the parts of F into congruent parts in R, the
distance of no point from the center of the principal circle is
increased (Theorem 9).

TuEOREM 18.—The transforms of F fill up, without overlapping
and without lacunce, the whole interior of the principal circle.

The transforms of F cover R, completely. The transforms of
F, then, cover all transforms of R,. These fill up the interior of
the principal circle. There can be no overlapping of the trans-
forms of F since no two points of F' are congruent.

TaeorEM 19.—Of the fundamental regions lying within the
principal circle, Ry has the maximum area.

A fundamental region different from R, is formed by replacing
parts of R, by congruent parts. Since R, is exterior to ‘all iso-
metric circles, a shift of any part of K, to a congruent position
effects a diminution of area. fy,

3b. Fixed Points at Infinity. Extension of the Method.—If a
transformation has a fixed point at infinity, either there is no
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isometric circle or all circles are isometric. In the study of a
group, we have supposed hitherto that it has been so transformed
that there are no transformations with « as a fixed point. This
involves, of course, no loss of generality. There is, however,
sometimes a distinet loss of simplicity in the definition of the
group. In the present section, we shall discuss briefly the forma-
tion of the fundamental region for a properly discontinuous group
certain of whose transformations have fixed points at infinity.

TaEOREM 20.—All thetransformations of a given group which leave
come configuration unaltered constitute a subgroup of the given group.

For, the succession of two transformations which leave the
configuration unaltered and also the inverse of any, leave the
configuration unaltered, and they belong to the given group.

Taking the point at infinity as the configuration of the theorem,
we have the following corollary:

CoroLLARY.—AIl those transformations of a given group which
leave the point at infinity fixed constitute a subgroup of the given
group.

We shall represent by Uo(=1), Uy, Us, .. . the transforma-
tions with « as fixed point and shall call the subgroup which
they form T..

All transformations other than those of T, possess isometric
circles. It is no longer necessarily true that the radii of these
circles are bounded, that their centers lie in a finite region, or that
the centers are distinct. Concerning these isometric circles we
shall prove the following theorem:

THEOREM 21.—A transformation of the group T. carries an
isometric circle into an isometric circle.

Let I, be the isometric circle of T', and let a transformation U
be applied. We shall show that U(I,) is the isometric circle of
the transformation S = UTU-' U has the form

2 =U@R) = Kz—+0b,

where K is the multiplier, as we found in Secs. 6 and 10, Equa-
tions (31) and (39’). Since U’(z) = K, the transformation
multiplies all lengths by |K|; the transformation U—! multiplies
all lengths by 1/|K].

Let P be a point on the circle U(I;) and let P be transformed by
S. U-1carries P to P’, a point on I, lengths in the neighborhood
being multiplied by 1/|K|. T carries P’ into P"’ without altera-
tion of lengths. U multiplies lengths in the neighborhood of P’



Sec. 35] FIXED POINTS AT INFINITY 77

by [K|. The result is that UTU-! has not altered lengths in the
neighborhood of P; hence P is on the isometric circle of 7.

Let us now construct a fundamental region F for the subgroup
I',.  The existence of F follows (after a preliminary transforma-
tion of the group I',) from the general theory of the preceding
chapter—sides congruent in pairs, ordinary vertices arranged
in cycles, ete. In many cases, however, as in Figs. 11 to 14,
we know a fundamental region already, and we do not need
to employ the general theory.

The principal theorem of the present section will now be proved.

TureOREM 22.—Let F be a fundamental region for the subgroup
I, where the sides of F are congruent in pairs and the transforms
of F cover the finite plane,! and let R consist of all that part of F
which is exterior to all isometric circles of the group. Then R 7s a
fundamental region for the group.

A transformation of I', carries a point of R into a point of a
region congruent to F and hence outside R. Any other trans-
formation of the group carries a point of R into the interior of
an isometric circle and hence outside B. So no two points of B
are congruent.

On the assumption that the sides of F are congruent in pairs, the
sides of R are congruent in pairs. That part of a side of F' which
is exterior to all isometric circles, and so is also a side of R, is,
from Theorem 21, congruent to a side which is also exterior to all
isometric circles. An ordinary boundary point P of R lying on
an isometric circle I; is carried by 7 into a point P’ on I/. We
can show in the usual way that P’ is interior to no isometric
circle. If P’ lies in F, it is a boundary point of R; if not, it lies
in a congruent region U (F), and the congruent point P"* = U~1(P’)
lies in F and is a boundary point of B. It follows that the sides
of R which lie on isometric circles are congruent in pairs.

A region about a boundary point of R on a side /; contains points
congruent to points of R in the neighborhood of the congruent
side I_;; the neighborhood of a limit point contains points con-
gruent to points of B by Theorem 2, Sec. 18. Hence, R is a
fundamental region.

The further properties of R, such as the arrangement of the
vertices in cycles, the theorems on the generating transformations,

1The fundamental regions of Figs. 11 to 14 have these properties. That

the most general subgroup I', has a fundamental region whose transforms
cover the whole finite plane will appear in Chap. VI.
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and the like, are established as in our previous treatment, and
will not be repeated here.

36. Examples. The Group of the Anharmonic Ratios.—This
group (Sec. 13 (2)) contains, in addition to the identical trans-
formation, the following transformations:

1 1
U—].—Z, T;—-z: T2—1—Z,
z—1 2
Ts==—> Ti=_—7

Here U is a rotation through the angle = about the point 14
A fundamental region for the subgroup T, is the half plane
bounded by any straight line through 14 for instance, the upper
half plane. :

The isometric circles of the remaining transformations are

II,I;;: l2l=1; 12, I4 z—ll

N ﬁ

Fi1a. 27. FIG. 28.

We have, then, as a fundamental region R for the group that
part of the upper half plane lying outside these circles (Fig. 27).

The rectilinear sides of R are congruent by U, the circular
sides by Ts;. U and T3 are then generating transformations.
From the two cycles of angles 2r/3 and , we have the relations
T33 = 1 and (UT3)2 =1

A Group with Qo as Principal Circle—As a further example,
we shall consider the group mentioned in Sec. 13 (7):

z’—Z:_t; ad — ¢ = 1,

where a and ¢ are complex integers. This is a Fuchsian group
with @, as principal circle.

When ¢ = 0, we have, a@ = 1; whence, a = +1or +¢. This
gives for T, the two transtormations,

/

LR
Z =2z 2Z=U@k=—= -z

—1



Sec. 37] THE MODULAR GROUP 79

U is a rotation about the origin through the angle . A funda-
mental region for I', is the half plane above the real axis.

Among the remaining transformations, consider, first, those
with’ the largest isometric circles. The smallest absolute value
of ¢ occurs when ¢ = +1 or +4. Then a@d = 1 + ¢¢ = 2; and
a = +1 + 4. This gives for the center —d/c; the possible
positions 1 +4+4¢, 1 —4¢, ~—1 44, —1 — 4. Only two circles
with these centers and of unit radius lie in the upper half plane.
They are the isometric circles of

I+ +1
T o2z 41-—-13
and its inverse. They are shown in Fig. 28.

We shall now show that each other isometric circle in the
upper half plane is contained in one of these. Each such circle
is orthogonal to @y and of radius less than 1. Unless it lies
within or is tangent internally to one of the two circles already
drawn, it must contain one of the points +1 or 7 on its interior.
Its isometric circle is

ez +a| =1, le| > 1.
If one of the three points lies within this circle, we have
|[£c+al < 1, or |ic +a| < 1.
Since the term whose absolute value appears in the first member
is an integer, its absolute value can be less than 1 only if it is
zero. Then |c| = |a|, and a@ — ¢ = 0, which is impossible.

R, then, is that part of the upper half plane which is exterior
to the two circles of Fig. 28. R contains no points of Q,; so
the group is of the first kind. All points of @, are limit points.
R consists of two parts: R, within @, and Ry, the inverse of
R, in Q,. The transforms of R, fill up the whole interior of @Q,.
U and T are generating transformations.

There are three cycles. The origin constitutes an ordinary
cycle of angle m, whence U2 = 1. The point ¢ constitutes a
parabolic cycle. The points 1 and —1 form a second parabolic
cycle.

37. The Modular Group.—This group (Sec. 13 (5)) consists
of the transformations

)

cz+d

where a, b, c, d, are real integers. The real axis is a fixed circle.
Whether the upper half plane is carried into itself or into the

ad — bc = 1,
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lower half plane can be determined from a consideration of one
point. When z = 7, we find 2’ = [ac + bd + (ad — bc)z]/(c? +
d?). - The imaginary part of this quantity is positive; so 2’ is
also in the upper half plane. The group is thus a Fuchsian
group.

When ¢ =0, we have ad = 1. Then a =d = +1, and b
can have any integral value. This gives for the subgroup T,
(Sec. 35) the set of transformations

2 =2z-+n,
U
——
11 RO 1-1

s

o 1

-2 -1 0 1 2
Fia. 29.

where 7 is any integer. This is the group of translations whose
fundamental region—setting w = 1—is shown in Fig. 12. We
shall take as fundamental region the strip enclosed by lines
perpendicular to the real axis through the points +14. The
subgroup is generated by the transformation

Z=U@k) =2+ 1.

Consider the largest isometric circles. If ¢ = +1, we have
ad F b = 1. For any integral value of a and d, we can deter-
mine from this equation an integral value of b. It follows that
the center, Fd, of the isometric circle |+2z + d| = 1 can be any
integer. These circles, then, are the unit circles with centers
at the real integers. They are the large circles in Fig. 29.

These isometric circles enclose all points within a distance of
154/3 of the real axis. For any other transformation |c| > 2;
and the isometric circle is of radius not exceeding 14. As the
center is on the real axis, such a circle lies in the space enclosed
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by the unit isometric circles. These smaller circles, then, can
form no part of the boundary of R.

The region R, lying in the period strip previously selected
and exterior to the isometric circles, is bounded by the unit
circle with center at the origin. It consists of the region R,
shown in the figure together with the reflection of R, in the real
axis. The circular boundary of R, consists of two sides /; and
l_, which are congruent by

2 = T@) = —i,

an elliptic transformation with fixed points +7. U and T are
generating transformations for the group.

There are three cycles. The point at infinity, to which
R, extends, is a parabolic point and constitutes a cycle. The
point 7 constitutes a cycle of angle =; whence 7% = 1. The

remaining two vertices, namely, +214 + 144/3i, constitute a
cycle of angle 2x/3.

To get the relation connecting U and T which arises from
the last cycle, we proceed as in Sec. 26. Starting from the
right-hand vertex and the side I_; beginning there, we get the
transformation U~! then T before returning. Then,

1

= -1 = — -

TU 1

is a transforms of period three which carries the right-hand

vertex into itself. The desired relation is S* = 1 or TU'TU!

TU-! = 1. This can also be written, if we take the inverse
and use the fact that 7-' = T, in the form

UruTrur = 1.

The transforms of R, cover the whole upper half plane. A
number of the regions congruent to R, are shown drawn to scale
in the figure. The regions cluster in infinite number about each
point of the real axis.

38. Some Subgroups of the Modular Group.—As a further
exemplification of the method of forming the fundamental region,
we shall now consider a particular set of the great variety of
subgroups contained within he modular group. Let n be an
integer greater than 1, and consider all those transformations of
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the modular group for which b and ¢ are divisible by n. We then
have all transformations of the form

_az +nb’
Tz ¥+ d
where a, b/, ¢/, d are real integers.
We prove first that these transformations form a group.
The inverse, T-! = (—dz + nb’)/(nc’z — a) is of the same form.
Let S = (az + ng")/(ny’z + ) be a second transformation of the
set, then

ad — n?'c’ =1,

(aa + n2B’c")z + n(ad” + 6’d).

n(y’a + 8¢’ )z + n2y'b’ + &d

Since n(ab’ + B’d) and n(y’a + 8c’) are divisible by n, this
belongs to the set. Thus both group properties are satisfied.

ST =

U U
R0 Ro
T
W P
-1 0 1 -1 0 1 2
Fic. 30. Fia. 31.

Setting ¢’ = 0, we get for the group T, the set of transformations
U, =2+ mn,
where m is any integer. T, is generated by U = 2z + n.

In the accompanying figures, fundamental regions for two
cases are shown. The reasoning follows the lines of the preceding
sections and is left to the reader.

Figure 30 shows R, for the case n = 2. The group is generated
by the two transformations
2z
U=z+2, T—————2z+1-

There are three parabolic cycles.
Figure 31 is for the case n = 3. The generating transforma-
tions are

U=2+3, T, _4=3

__z 4z — 3 _5z+3_
T3 +1 T2_3z—2’ T""3z+2

There are four parabolic cycles and one ordinary cycle of angle 2x.




CHAPTER 1V
AUTOMORPHIC FUNCTIONS

39. The Concept of the Automorphic Function.—Automorphic
functions are the generalization of the circular, hyperbolic,
elliptic, and certain other functions of elementary analysis. A
circular function, as sin 2, has the property that it is unchanged
in value if 2 is replaced by z 4+ 2mr, where m is any integer;
that is, the function is unaltered in value if # be subjected to
a transformation of the group 2’ = z + 2mr. A hyperbolic
function, such as sinh 2, is unchanged in value if 2 be subjected to

" a transformation of the group 2’ = z 4 2mwi. An elliptic func-
tion, as the Weierstrassian function P(z), retains its value
under transformations of a group of the form 2’ = z + mw + m'w’.

The automorphic function is an extension of this concept
to the more general properly discontinuous group. Roughly
speaking, a function is automorphic with respect to such a group
if it has the same value at congruent points. We shall lay down a
more precise definition.

By the domain of existence of a single-valued analytic function
f(2) we shall mean the set of points at which f(2) is analytic or
has poles. The domain of existence is a connected region con-
sisting entirely of interior points,—a two dimensional continuum.

DEerFiNiTION.—A function f(2) will be said to be automorphic with
respect to a group of linear transformations Ty, T2 . . . provided

1. f(2) s a single-valued analytic function.

2. If z lies in the domain of existence of f(2) so also shall T, (z).

3. fTa(2)] = f(2).

Because of the first condition, the functions here defined
might more properly be called ‘“single-valued” automorphic
functions. There exist many-valued analytic functions satisfy-
ing conditions (2) and (3). But we shall be concerned altogether
with single-valued functions; and to avoid repeatedly calling
attention to this fact we shall make single-valuedness a part of
the definition.

83
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We note that there are no functions, other’than constants,
which are automorphie, according to this definition, with respect
to a continuous or an improperly discontinuous group. For, let
F(2) be such a function and let z, be a point at which the function
is analytic. There are infinitely many points in the neighbor-
hood of 2z, which are congruent to z,. At each of these points
F(2) = F(zo). It is a well-known fact that a function can take
on the same value at an infinite number of points in the neighbor-
hood of a point at which it is analytic only if it is constant.

It is observed from the definition, that if f(2) is automorphic
with respect to a group it is automorphic with respect to any
subgroup.

In showing that a function is automorphic with respect to a
group, it is not necessary to investigate conditions (2) and (3)
for all points of the domain of existence of the function nor for
all transformations of the group. As the following theorems
show, it suffices to establish the conditions for some small region
and for the generating transformations of the group.

TaEOREM 1.—Let f(2) be a single-valued function analytic at z,.
Let T'(z,), where T s a linear transformation, lie in the domain of
extstence of the function; and let

Ff[T@)] = f2) (1)
be valid in the neighborhood of zo. Then, if z is any point in the
domain of existence of the function, so also is T(2), and (1) holds
throughout the whole domain of existence.

The transformation T carries the domain of existence of f(2) into
wtself.

This theorem is an immediate consequence of the principle
of analytic continuation. The two functions of 2z that appear in
(1) are identical in a region surrounding 2,; they are, therefore,
identical in any region to which either can be continued analyti-
cally. Let 2, be a point at which f(z) is analytic. Then f(z)
can be continued analytically from 2z, throughout a suitable
region S surrounding z;. Then in S f(T(2)) is analytic and (1)
holds. That is, f(2) is analytic in the neighborhood of 2,/ =
T(z1) and f(z1') = f(21).

In the neighborhood of a pole z;, f(2) is analytic and f(z)
becomes infinite as z approaches z,. Then f(z) is analytic in the
neighborhood of 2’ = T(2;) and becomes infinite as 2z’ is
approached.
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T carries any point of the domain of existence of f(z) into
another such point. The same is true of 7!; since f[T-1(2)] =
f(z) holds in the neighborhood of z)’ = T'(2¢). Then T carries
no point without the domain of existence into the domain.
Hence, T carries the domain of existence into itself.

TuEOREM 2.—If f(2) is a single-valued analytic function and if

fIT@) =f@),  fIT.)]=f@), - - -,

then f(2) is automorphic with respect to the group generated by
Tl, Tg, c e

Each transformation of the group carries the domain of existence
of f(2) into itself.

The group is formed by constructing all possible products by
means of Ty, T, . . . and their inverses. It is clear that f(2)
is unaltered when z is replaced by T,7!(z), T>~(2), . . . Since
any product can be formed by repeatedly combining transforma-
tions two at a time it suffices, to prove the first part of the
theorem, to point out that if f[S(2)] = f(2), f[T(2)] = f(2), then
fIST(2)] = f(2). But if z is in the domain of existence of the
function so is T'(2), and hence ST(z), and we have f[ST(z)] =
ST = 1.

The latter part of the theorem is an application of the latter
part of Theorem 1.

Consider, as an example, the function cos z. We have cos
(2 + 27) = cos z and cos (—2z) = cos z. Then cos z is auto-
morphic with respect to the group generated by 2’ = 2z 4 2r
and 2’ = —z.

The existence of a non-constant single-valued analytic function
which is unaltered when a set of linear transformations is applied
to the independent variable is sufficient to show that the group
generated by the transformations is properly discontinuous.
Thus, the group mentioned in the preceding paragraph is
necessarily properly discontinuous.

TaeorEM 3.—The domain of existence of an automorphic
Sfunction extends into the neighborhood of every limit point of
the -group. .

For, in the neighborhood of a limit point lie points congruent
to points in the domain of existence of the function. These
points belong to the domain of existence of the function.

TuEOREM 4.—If the automorphic function is not a constant, each
limat point of the group is an essential singularity of the function.
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In the neighborhood of a point at which a function is analytic
or has a pole, the function can take on any value only a finite
number of times. In the neighborhood of'a limit point there is
an infinite number of congruent points at which the function
takes on the same value. Hence, the limit point is an essential
singularity. .

CoroLLARY.—AIll points of the domain of existence of a non-
constant automorphic function are ordinary points.

It is not true, of course, that all points on the boundary of the
domain of existence of the function are necessarily limit points.
The limit points lie on the boundary of the domain, but there
may be further boundary points. For example, the function
¢®@ is automorphic with respect to the group 2’ = z + mw +
m'ew’. Its domain of existence consists of all points except the
point <« (the only limit point) and the points mw + m'w’. At
these latter points P(z) has poles and the function has essential
singularities.

It results from the preceding discussion that not all properly
discontinuous groups have non-constant automorphic functions.

THEOREM 5.—If a group possesses a non-constant automorphic
function, it is a function group.

Let a group have a non-constant automorphic function existing
in a domain S. Let Z be the part of the plane, bounded by
limit points, in which S lies. = consists of all ordinary points
which can be joined to a point of S by curves not passing through
limit points. Any point z of 2 and a curve C joining it to a
point of S are carried by any transformation T of the group into
a point 2’ and a curve C’ joining 2’ to a point of S, where C’
consists of ordinary points. Then 2’ belongs to Z; whence X
is carried into itself. The group is, therefore, a function group.

We shall find in the following chapter that every function
group possesses non-constant automorphic functions.

40. Simple Automorphic Functions.—In the present chapter,
and in our later work, we shall have much to do with automorphic
functions of a somewhat restricted kind. We shall impose
restrictions both on the character of the function and on the group
with respect to which it is automorphic.

Let f(2) have no essential singularity at an ordinary point of
the group. Then the domain of existence of the function, pro-
vided it is not a constant, is one of the regions Z into which the
limit points of the group separate the plane.



Sec. 40] SIMPLE AUTOMORPHIC FUNCTIONS 87

That part Ro of R which lies in 2 is a fundamental region for
the group. We shall require that R, have a finite number of
sides. .

If R, possesses one or more parabolic points we shall impose a
further condition on the function. As z approaches a parabolic
point P from the region R, let the function approach a definite
value, finite or infinite; that is,

lin})f(z) = C, or o,
2=

where z is restricted, in its approach, to lie within or on the

boundary of R,.! .
To avoid long circumlocutions in the statement of theorems

we shall call such a function a ‘“simple automorphic function.”
A simple automorphic function then (1) belongs to a function
group such that R, has a finite number of sides; (2) has the
domain of existence =, provided it is non-constant; and (3)
behaves in the manner specified at the parabolic points, if any.

If the group is finite, = consists of the whole plane. The
simple automorphic function, then, has no other singularities
than poles and is,. therefore, a rational function. .

If the group is Fuchsian, the simple automorphic function is
called a ‘““Fuchsian function.” If the group is of the first kind,
the domain of existence of the function, if not constant, is the
interior or the exterior of the principal circle. If the group is of
the second kind, the domain of existence consists of the whole
plane exclusion of the limit points lying on the principal circle.

If the group is Kleinian, the simple automorphic function is
called a ‘“Kleinian function.”

Extension of the Definition.—If f(z) is a simple automorphic
function belonging to a group 7,, we shall define

¥(2) = fIS(2)],

where S is a linear transformation to be a simple automorphic
function™ belonging to the transformed group S—'7,S. It is
clearly automorphic; for

USTIT,.S(2)] = fISS'T.S(2)] = fITXS(2)] = flS(2)] = ¥(2).
Here y(z) has the domain of existence S—'(Z), where Z is the
domain of existence of f(z); and S—!(R,) is a fundamental region
with a finite number of sides for the transformed group.

1If P counts as two parabolic points of the region, as in Fig. 19, the

approach shall be from one side only. There shall be a limit when the
approach is from either side, but the two limits may be different.
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By this means we extend the definition to groups with fixed
points or limit points at infinity. Such a group can be repre-
sented in infinitely many ways as the transform of a group with
infinity as a non-fixed ordinary point. The propositions derivedin
this chapter—on zeros, poles, algebraic relations, etc.—hold for
the fundamental region S—1(R,) when the group is transformed.

Also, for many of the commoner groups we know already
fundamental regions, not based on isometric circles, to which
the proofs of the following theorems apply (Figs. 11 to 14, for
example). Inthe general case, however, we fall back on the region
R, for the reason that the properties of R have been established
with complete generality.

A familiar example of a simple automorphic function is the
Weierstrassian P-function. Here the domain of existence is
the finite plane, the period parallelogram is a fundamental
region, and there are no parabolic points.

Likewise sin z is a simple automorphic function. The period
strip is a fundamental region with parabolic points at the ends.
We find readily that sin 2z approaches « as z approaches either
end of the strip.

41. Behavior at Vertices and Parabolic Points.—Of the fixed
points of the transformations of a group, only those belonging
to elliptic transformations can lie within the domain in which
the automorphic function is analytic or has poles; all other fixed
points are limit points. At a fixed point of an elliptic transfor-
mation, the function must behave in a particular way.

THEOREM 6.—A non-constant automorphic function takes on its
value k times, or some multiple thereof, at a fixed point of an elliptic
transformation of period k within the domain of existence of the
Sfunction.

A function f(z) is said to take on its value s times at a point
2o at which it is analytic if it can be written, in the neighborhood
of the point, in the form f(z) = f(z0) + (2 — 20)°¢(2) where ©(z)
is analytic at 2o and ¢(2,) # 0. It takes on the value infinity
s times if 1/f(z) takes on the value zero s times. If zp = «,
2 — 29 is replaced by 1/z.

Let zo be the fixed point of an elliptic transformation of
period k. We shall suppose that 2, is finite. Then there is a
transformation S of the form

’
BT R0 pamie BT R0

o
2 —z z2— 2z
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where 2o/, the second fixed point, is distinct from z,. Let f(2)
be analytic at 2,; then we can write, for 2z in the neighborhood
of 29,

1) = f@) + (2 = 20'0(2) = f(z0) + <j—:§§,-)"¢(z>,

where ¥(2) = (z — 20')°¢(2); so Y(2) is analytic at z, and ¥(2o) =
0. If 2z is in the neighborhood of 2, so also is 2 = S(2); so

— %0

> e21ms/k¢ (z/)
2y

J@) = f(z) + < >¢(2') = f(z0) + (
Since the funetion is automorphic, f(z') = f(z), whence

e21ris/k —_ }[/(ZA);.
v(2)
The first member of this equation is constant; so, also, is the
second. Letting z approach z,, 2’ also approaches z,, and we
have

eZ-;rie/k = 1.

It follows that s, which is a positive integer, is a multiple of %,
which was to be proved.

If f(2) has a pole at 2, 1/f(2) is an automorphic function with
a zero at zo. The order of the zero is a multiple of k; hence,
f(2) has a pole whose order is a multiple of k.

The proof for the case that zo = « is not essentially different.

THEOREM 7.—A mnon-constant automorphic function takes on its
value k times, or some muliiple thereof, at a vertex belonging to a
cycle the sum of whose angles is 2r /k.

This is a corollary of the preceding theorem. If k > 1, the
vertex is a fixed point of an elliptic transformation of period k&
(Sec. 26, Theorem 14); if k = 1, the proposition is trivial.

Consider now the behaviour of a simple automorphic function
at a parabolic point P. We can carry the congruent points of
the cycle to P, the transforms of the fundamental region
fitting together at P as in Fig. 23. Then f(z) approaches a
definite finite or infinite value as z approaches P from within
the regions of that figure. For, f(z) approaches a limit as z
approaches P within or on the boundary of each region; and,
owing to the common boundaries, the limits are equal. In other
words, f(z) approaches the same value at all the points of the
parabolic cycle.
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As pointed out in Sec. 27, the transformation S which carries
R of Fig. 23 into R;, and the side [, into I’, is parabolic. 8 has
the form (Sec. 10, Equation 37)

1 1
P~ Z-pPTC

We shall investigate the function in the triangular region
212:P formed by [,, I’, and a small circle C through P orthogonal
to the sides which meet at P (Fig. 32(a)). C isa fixed circle for
S. By repeated applications of S, the transforms of the
region mentioned fill up the circle C; and the values of f(z) repeat
themselves in the transformed regions.

(b) (c)
Fia. 32. -

We make the change of variable
{ = e2xi/c(z—P)
thus mapping the region under consideration on the i-plane.
We write this in the form
_ 21 -
Tz —P)
The first transformation is linear. It carries P into « and the

circles into straight lines. Let Z, and Z. be the transforms
.of 2z, and z,. We have

t = €2.

2mi
Z1 = (?(;17 _‘P),'

2w 2w 1 ,
N R EE AT

The arc 2,2, of C is transformed into a straight line parallel to
the imaginary axis (Fig. 32(b)). The sides Pz, and z,P are
carried into straight lines perpendicular to Z,Z,, and, hence,
parallel to the real axis. The triangle of (a) is mapped on the
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region bounded by the three lines of (b). Congruent points of I,
and !’ are carried into points in (b) which differ by 2.

These latter points are carried into coincident points by the
transformation ¢ = e, The side Z,Z, is carried into a circle
with center at the origin. The original circular arc triangle is
thus mapped on a circle slit along a radius, as in (¢).

The function f(z) becomes a function of ¢, ¢(t), analytic except
for poles within and on the boundary of the region in (¢) except
possibly at 0. ¢(t) takes on the same value at a point on the
radius along which the region is slit when approached from either
side. This slit can be removed, the function being single-valued.
Since ¢(t) approaches a finite value at 0 or becomes infinite, either
it is analytic at 0, if properly defined there, or it has a pole at 0.

We have established the following result:

TrEOREM 8.—At a parabolic point a simple automorphic function
©8 a function of t analytic or having a pole at t = 0, where

{ = e2ri/cz—P),

If P = «, S has the form 2’ = z 4+ ¢ and we put ¢ = e2riz/c
in Theorem 8.
In the neighborhood of 0, Fig. 29 (¢), we can write

f) = o) = an+ ait + ast2 + - - -,
or

f@) =t +at+ ---),

according as f(z) approaches a finite value or becomes infinite as
z approaches P. This expansion is valid in a circle with 0 as
center and passing through the nearest singularity of the func-
tion in the ¢-plane. Carrying this back to the z-plane, the
expansion is valid within the circle C through the nearest pole or
limit point of f(2). *

42. The Poles and Zeros.—In counting the poles and zeros of a
simple automorphic function which lie in the fundamental
region, certain conventions are necessary in the cases of poles or
zeros lying on the boundary. (1) If there is a pole or zero on the
side I, there is a pole or zero at the congruent point on the side
l_n.. Only one of these shall be counted as belonging to the
region.- (2) The order s of a pole or zero at a vertex shall be
partitioned equally among the regions which meet there. If
there are m vertices in the cycle and the sum of the angles at the
vertices is 2w /k, then km regions meet at each vertex. Counting
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s/km poles or zeros at each vertex, we have s/k poles or zeros at
all the m vertices of the cycle. This number (Theorem 7) is an
integer. (3) If f(z) becomes infinite or approaches zero at a
parabolic point P we shall determine the number of poles or
zeros from the behavior of ¢(f) at the origin. The number of
poles or zeros of ¢(t) at ¢ = 0 shall be the number of poles or zeros
of f(2) in the parabolic points, taken all together, of the cycle
to which P belongs.

The number of times f(z) takes on any other value C shall be
the number of times f(2) — C takes on the value zero.

TuEoREM 9.—A simple automorphic function which is not
identically zero has an equal number of zeros and poles in the funda-
mental region.

Suppose, first, that the function has neither poles nor zeros on
the boundary. Then,

1
N-—M-= %fd log f(2),

B
R / N
C A
(a)

(b)
Fic. 33.

where N is the number of zeros in the fundamental region, and M
the number of poles, the integral being taken in a positive sense
around the boundary. (If the region is multiply connected or
disconnected, we integrate, of course, around the complete
boundary.)

Consider the parts of the integral arising from two congruent

sides 4B and CD (Fig. 33(a)): [, "1 log f(2) + A 4 log f(2).

At the congruent points z and 2/, we have f(2’) = f(z); then, log
f(#') and log f(2) differ at most by a multiple of 2%, and d log
f(2) = d log f(2’). The second integral can then be written

J; 44 log f(2); and the two integrals cancel. The integrals along

each pair of congruent sides cancel, and we have N — M = 0,
or N = M; which was to be proved.

If there is a zero or pole on the side AB, we deform the side
slightly, as in Fig. 33(b), so as to include the zero or pole, and
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we make the corresponding alteration in the side CD. The
integrals along the new congruent sides cancel as before. Only
one of the two zeros or poles now lies within the contour. The
theorem holds as before, since but one of the pair should be
counted as belonging to the region.

Let f(2) have a zero of order s at a vertex. We alter the path
of integration to exclude each vertex of the cycle as in Fig. 33(c),
the points B,, C, being at a distance d from A,. The parts of
the sides that remain are congruent in pairs; and the integrals
over these sides cancel as before. At A, we have f(2) = (2 —
A,)*e(2), where ¢(2) is analytic at A, and does not vanish there;
and
POL

o(z)

Letting d approach zero, the last integral approaches zero, since
the integrand remains finite and the length of the path of integra-
tion approaches zero. The first integral of the second member
approaches s(—¢ZA). Summing for all the vertices of the
cycle, we have

i drog ) = s [ dlog e — Aw) + [

N—M=—;2mm

If the sum of the angles of the cycle is 2r/k, we have

S

N-M=-;

yor N + S =M.
k

Here, N is the number of zeros within the contour. As s/k is
precisely the number of zeros which we are to count at the ver-
tices of the cycle, the number of zeros is equal to the number of
poles.

A pole at a vertex is treated similarly, s being replaced by —s.

Finally, let f(2) have a pole or zero at a parabolic point P.
Draw a circle C through P, as in Fig. 32, sufficiently small
that there are no poles or zeros other than at P within the region
212oP of that figure. The arc 2,2, cuts off from the regions that lie
in 212,P certain parts A;, As, As, . . . ,An. The congruent parts
A, AY, ..., A, lying in the fundamental region make up the
neighborhoods of the parabolic points of the cycle. We shall
remove these parts from the fundamental region and integrate
around the contour of the remainder. The integrals over pairs of
congruent sides cancel. The integrals over the circular arcs
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cutting off the parabolic points may be replaced by the integrals
over the congruent arcs on C':

_ 1
N—M—zm.j;z d log f(2).

This last integral may be replaced by 1/2xi[d log «(t) taken
clockwise around the circle in Fig. 32(c). This has the value
—s if ¢(¢) has a zero of order s at ¢ = 0, and the value p if o(¢)
has a pole of order p there. Hence we have N + s = M or
N = M + p; and the theorem holds.

By combinations of the preceding methods of contour integra-
tion we dispose of all cases in which there is a finite number of
poles and zeros on the boundary of the fundamental region.
Now, f(2) cannot have an infinite number of poles for the poles
would then have a cluster point 2. If 2’ is an ordinary point,
f(2) has an essential singularity there; if 2’ is a parabolic point,
¢(t) has an essential singularity at the origin, both of which
are contrary to hypothesis. Similarly f(z) cannot have an
infinite number of zeros unless it is identically zero, for a cluster
point of zeros would be, likewise, an essential singularity. Hence,
the theorem is established.

TaEOREM 10.—A simple automorphic function which has no
poles in the fundamental region is a constant.

Let f(z) be a simple automorphic function having no poles
in the fundamental region; and let its value at z,, a point of
the region, be C. Then f(z) —C is a simple automorphic function
with a zero at 2z, and having no poles. This is possible, accord-
ing to Theorem 9, only if f(2) — C = 0, or f(z) = C.

TrEOREM 11.—A simple automorphic function which is not a
constant takes on every value the same number of times in the funda-
mental region. :

If a simple automorphic function f(z) is not constant, it
has a certain finite number of poles in the fundamental region.
The function f(z) — C, where C is any constant, is a simple
automorphic function with the same poles as f(z). The number
of zeros is equal to the number of poles. That is, the number of
times f(2) takes on the value C is equal to the number of poles
of f(z), which establishes the theorem.

43. Algebraic Relations.—As a consequence of the preceding
results, the following important theorem can now be established.
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THEOREM 12.—Between two simple automorphic functions
belonging to the same group and having the same domain of existence,
there exists an algebraic relation.

Let fi(z) and f2(2) be two such simple automorphic functions,
with k; and k. poles, respectively, in the fundamental region.
We are to show that there exists a relation of the form

®(f1, f2) = Aifimfor + Aofimfor '+ - - -+ Amineary =0, (2)

where A,, A,, . . . are constants, the relation holding for all
values of z in the domain of definition of the functions. What-
ever values be given to the constants, the function & is a simple
automorphic function. The degrees of ® in f; and f;, namely,
m and n, respectively, will be determined later. The number of
poles of ® is not greater than mk; + nk,.

The most general polynomial of degree m in f; and n in f,
contains (m + 1)(n + 1) constants. We can so choose these
constants that & shall have zeros at (m 4+ 1)(n + 1) — 1
assigned points in the fundamental region. For, let ¢, ¢z,

., Cmynmtn—1 be distinet points of the region different

frorn the poles of f1(2) and f2(2); and let A,, A2, . . . be deter-
mined to satisfy the equations
Afre)fr @) + - - -+ Ammineey =0, 3)
1 =12+, (m+ Dn +1) — 1.

Constants not all zero can always be found to satisfy these
equations, since there is one more constant than equations to be
satisfied. With these values of A,, A ..., ® has zeros
at the points ¢y, ¢z, . . .

"The function then has at least (m + 1)(n + 1) — 1 zeros
and not more than mk, + nk, poles. Now, if m and » be large
enough

(m+ D(n+1) — 1> mki + nks, 4)
and ® has more known zeros than possible poles. According to
Theorem 9, ® is identically zero. This establishes the theorem.

It will generally happen, if the algebraic relation be found
in this manner, that & is reducible:

®(fy, f2) = &:1(f1, f)Po(f1, f2) + - - (1, f2),

where ®; is an irreducible polynomial in f; and f,. Some one of
the irreducible factors must vanish identically. This irreducible
relation will contain both factors unless one of them is a constant;
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for from a relation of the form &®;(f;) = 0, we deduce f; = const.
If neither function is a constant, there is essentially but one
algebraic relation connecting them; for, from two independent
relations ®;(f, f2) = 0 and ®;(fy, f») = 0, we have, on solving,
Jf1 = const. and f, = const.

It is easy to see, in the general case, what the degrees of the
irreducible equation in f, and f, will be. The degree in f, is
the number of values of f; which satisfy the equation when f,
is given a fixed value. There are k. points in the fundamental
region at which f, = C, where, as before, k. is the number of
poles of fa. At each of these points f; has a value satisfying the
irreducible equation. Hence, in general, this equation is of
degree k. in f;. Similarly, it is of degree k, in f, in general. It
may happen, for particular functions, that some of the values
of f; at the k, points are always coincident, in which case the
degree in f; is less than ks. The functions f; and fi = f,? furnish
a simple example.

There arises the question whether, conversely, each pair of
values c;, c; satisfying the irreducible equation ®;(ci, ¢3) = 0 is
taken on by the functions at some point of the fundamental
region. This is, in fact, the case. The algebraic equation
®;(f1, fo) = 0 determines fi, say, as a function of fs, fi = ¢¥(f2),
and the Riemann surface of this function is connected. All
pairs of values satisfying the equation are represented by points
of the Riemann surface.

In the neighborhood of a point 2z, of the fundamental region
let fi = ¢/, fo = ¢y, the points being so chosen that c¢i'cy’ is
not at a branch point of the Riemann surface. In the neighbor-
hood of 2o, f1(2) coincides with that branch of y[f»(2)] which takes
on the value ¢,/ at 2. These two functions are then equal
wherever they can be extended analytically. Now, in the
fe-plane we can trace such a path that as f, moves from ¢,’ to
¢, ¥(f2) moves from ¢,’ to ¢;. Along this path z(f,) is analytic
provided we avoid certain singular positions, since the derivative
dz/df, = 1/f,(2) exists. Hence, z traces a path in the domain
of existence of the functions. At the terminus 2’ of this path
f1(Z") = ¢i. In the point 2o’ of the fundamental region congruent
to 2 we h&VG fl(Zo,) = ¢y, fz(Zo,) = Co.

TueorREM 13.—Any simple automorphic function can be
expressed as a rattonal function of two simple automorphic functions
which have the property that an arbitrary pair of values of the
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functions s taken on al but one point of the fundamental region,
the domain of existence of the three functions being the same.

Let f1 and f; be two functions with the desired property, and
let f3 be a third function. To each pair of values of f, and fs,
there corresponds, in general, one value, and only one, of z in
the region and, hence, one value of f;. That is, f; is single
valued on the Riemann surface of f, = ¢(f;). Also, f; is an
analytic function of f,, except for certain exceptional points
where f; becomes infinite or f.'(z) is zero. At all exceptional
points of the sarface, f; approaches a finite value or becomes
infinite. Hence, f; has no other singularities than poles on the
Riemann surface. By a well-known theorem, f; is a rational
function of f; and f,:

AFirfer 4 . ..
fo= G R 1. (5)

THEOREM 14.—If there exusts a' simple automorphic function
J1(2) having a single pole in the fundamental region, then any
stmple automorphic function connected with the group, and having
the same domain of definttion, is a rational function of fi(z).

Let f2(2) be a simple automorphic function with k, poles. If
in equation (2) we take m = kg, n = 1, the inequality (4) is
satisfied: 2k, + 1 > 2k,. The identically vanishing polynomial
(2) is then of the form

Qr,(f1) - f2 + Pry(f1) = 0,

where Py, and Q, are polynomials of degree k» at most. Not
all the coefficients in @y, are zero; for, otherwise, Py, (f;) =0
and f; = const., contrary to hypothesis. We have, then,
P,(f1)
f 2 = — T (6)
@i, (f1)
which was to be proved.
CoroLLARY.—The most general simple automorphic function
having a single pole in the fundamental region ts the function
f= ﬂl_‘i;lz,
Cfi + D
It is clear that this function has a single pole in the fundamental
region whatever the constants A, B, C, D may be, provided that

AD — BC # 0. For, the values of f correspond in a one-to-one
manner to those of fi; hence, f takes on each value once in the

AD — BC = 0.
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fundamental region. That this is the most general such funection
follows from the proof of the preceding theorem. Any function
fe having a single pole satisfies an equation of the form (6) where,
since ks = 1, the numerator and denominator are linear, and
where, since f; £ const., the determinant is different from zero.

44. Differential Equations.—The derivative of an auto-
morphic function is, in general, not automorphic. Differen-
tiating the equation

f(&") = f(=),
where
,_az+b d_z' _ 1
T a+d @& T (et a)?
we have

P& =@ % = (e + ayre). @)

The derivative is automorphic with respect to the group, provided
it is not identically zero, only if ¢ = 0, d = +1 for all transfor-
mations of the group. The transformations are then all of the
form 2’ = z + b; and the group, as we shall find later (Sec. 59),
is simply or doubly periodic.

We observe from (7) that the quotient of the first derivatives
of two automorphic functions belonging to a group is unaltered
by the transformations of the group. This is apparent for
simple automorphic functions when we differentiate the relation
connecting them. We have &', fi'(z) + ¥/,f2'(2) = 0; whence
the quotient fi/(z)/f2’(2) is rational in fi(z) and fy(z), and so is
a simple automorphic function.

We can set up other combinations which are unaltered by the
transformations of the group. Differentiating (7), we find

f'@) = (cz + d)f"(2) + 2c(cz + d)*f'(2),
(@) = (cz + )% (2) + 6c(cz + d)°f"(2) + 6¢*(cz + d)'f'(2),
and
2f' @) (2') = 3f""(2") = (cz + d)3[2f'(2)f"" (2) — 3f""(2)*]. (8)
The quantity

oy Py _ 3(4211)2
dzx dr? dz? e, dy 1/d dy\?
DW- = =@y = '8 dz 5(% log az) ®
is known as the ‘“Schwarzian derivative’’! of y with respect to

1 ScuwaRrz, H. A,, “Gesammelte Mathematische Abhandlungen,” Bd. 2,
p. 78. Various notations have been used for this expression: ¢(y, z) by
Schwarz; {y, x} by Cayley; [y]. by Klein; D(y). by Koebe.
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z. We have from (8) and (7) that the function

2f'(2)f""(2) — 3f"™(2)* _ D(f)s’ (10)
2f' (2)* f(2)*
is unaltered by the transformations of the group.

We now show that if f(2) is a simple automorphic function so
also is (10). If f(2) is analytic or has a pole at a point, the same
is true of its derivatives and the rational combination of derives
tives in (10) is analytic or has a pole at the point. The function
is then analytic except for poles throughout the domain of exist-
ence of f(z). There remains the question of its behavior at the
parabolic points, if any occut. At such a point f(2) is analytic
or has a pole at the origin when expressed as a function of ¢,
where

_ 2m 2zriz
e —P)°
according as the parabolic point is finite or infinite (Sec. 41).
In changing the variable, we make use of the following proper-
ties of the Schwarzian derivative, which are easily established:

ay +b\ _ ar + b\ _ B .
D(cy T d>, = D(y)., whence D(m T d> = D(z), = 0. (11)

=% 7 =

D(y). = D(y»(ji)z + D(¥).. (12

Equation (11) expresses the fundamental properfy of the
Schwarzian derivative; in fact, the derivative was originally so set
up as to be invariant when y is subjected to a linear transforma-
tion. Equation (12) is the formula for the change of variable.
Making the change of variable given above and noting that

D(Z), =0, D)z = —15,
we have

o0 =205 ) = (%) [P0 (z) ~ 3

whence,

D). _ DY) 1 _DWe_ 1
(df/de)* — (df/dt)*  2(df/dZ)*  f*(t)  28%'(1)*
This function of ¢ is analytic or has at most a pole at ¢ = 0.
Hence, the function (10) is a simple automorphic function.
We shall now prove the following remarkable theorem:
TrEOREM 15.—If w(2) s a non-constant simple automorphic

function of z, then 2z can be expressed as a function of w by the
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quotient of two solutions of a linear differential equation of tF
second order of the form
d?n
E’L—U—Z = un, (13)
where u is an algebraic function of w, ®(u, w) = 0.
If whas a single pole of the first order in the fundamental region,
u 18 a rational function of w.
Consider the functions

_ dw _Jdw _m
n ==z = ™M™ T NG 2—£' (14)

We shall show that

1dm _1d%m:_  Dw) (15)
mdw? ~ nedw?  2(dw/dz)?

2
dw _m° A (16)

2~ 22 T "
we proceed to find D(w)., using the last formula of (9). Taking
logarithms and differentiating, we have
2‘%@ dns
dw _ “dwdw 2 dw dw

1 08" dZ N1 d7 ZV - N2 dz

Replacing dw/ dz in the second and third members by its values in
(16),

27]1d771
d dw _ dw 2 dne
dz log dz 22 2z 2mdw a7

Differentiating again and substituting as before for dw/dz,

2md i 2<dm> 47)1@—1
d? d dw? dw 12 dw 2
L log T = | =5 + -+ 5 (8)

de? %8 dz T
[2772d 12 + 2<dn2> :|7122‘

On subtracting half the square of (17) from (18), most of the
terms cancel, and we have

d’n
2m13——,
dw? ;02
D). = —— = 2m¥ 05

On dividing by 2(dw/dz)? from (16) we have (15).
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\ It follows from (15) that 5, and 7., whose ratio is z, are solu-
ions of the differential equation

d?n )
dw? = um,
where we write u for the last member of (15). But we found in
(10) that u is a simple automorphic function of z. Hence,
(Theorem 12) u and w are connected by an algebraic relation,
®(u, w) = 0. In particular, if w has a single pole.in the funda-

mental region (Theorem 14), u is a rational function of w. The
theorem is thus established.



CHAPTER V
THE POINCARE THETA SERIES

45. The Theta Series.—In the preceding chapter, we assumed
the existence of automorphic functions and studied their prop-
erties. In the present chapter, we shall demonstrate their
existence by the process of actually setting them up by means
of series. ’

Let the transformations of the group be

a2 + b,;

oz + d-, a.-di d b;c; = 1, (1)

1=012 ...,

zi = Ti(z) =

the identical transformation being zo = To(2) = 2. As an aid
to simplicity in the formula®, we shall use the notation 2;; = T;(2;)
= TiT,'(Z), Rijk = T,;Tka(Z), etc.

We consider, first, a case whose treatment involves little
difficulty, namely, the finite group. Let the group contain m
transformations (¢ =0, 1, - - - , m — 1). Let H(z) be any
rational function of z and form the function

e(z) = H(z) + H(z) + H@) + - - - + H@m-1).  (2)

This function has no other singularities than poles. If we apply
a transformation of the group to z, we have

o(z) = H(z) + H(zw) + -+ + + H@Zm—1%)-

Now, 2k, 2, - . . , 2m-1x are the set of transforms of z and,
since 2z, is congruent to 2, this set coincides with 2, 21, . . . ,
Zm—1. The terms in the sum are the same as before, their order
being merely interchanged; hence, ¢(2:) = ¢(z). The function is
thus automorphic. In fact, having no other singularities than
poles, it is a simple automorphic function. In like manner, any
rational symmetric function of H(2), H(z1), - . . , H(Zm—1) is
simple automorphic function.

If the group contains an infinite number of transformations
and we extend (2) to an infinite number of terms, the series will

102
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ordinarily fail to converge. For, the general term H(z,) will
not even approach zero unless H(z) is zero in the limit points
about which the points 2z, cluster. Poincaré got around the diffi-
culty by the introduction of convergence factors. By the use of
these factors we are led to a sum which is no longer automorphic
but which behaves in a simple manner when a transformation of
the group is applied.

Let H(z) be a rational function none of whose poles is at a
limit point of the group.! We consider the following series:

0) = (e + A H (2, ®)

=0

This is the theta series of Poincaré.2 We shall presently estab-
lish its convergence, under suitable circumstances, when m
is an integer greater than 1. We shall assume its convergence
and derive the basic property of the function which it defines.

If z be sub]ected to a transformation 7'; of the group, the series
becomes

y b —2m
0(z;) = 2( ‘CI: i Tat d) H(z)
_ 2[@, + dic;))z + cib; + d d; ]‘“H(zﬁ)'

c;iz + d;

The factor (c;z + d;)?™ comes out of all the terms and we have,
on replacing the numerator by an equivalent expression,

0(2;) = (ciz + d;)*Z(cijz + diy)~*"H (2:5).

The series on the right is the series (3) with the terms rearranged.
Our subsequent convergence proof will justify rearranging the
terms, so that we have

0(z;) = (c;z + d;)*™6(2). 4)
This equation expresses the fundamental property of the theta
series. '

By means of these series we can set up functions which are
unaltered when a transformation of the group is applied. Let

1In the case of a function group which carries a region Z into itself, it
ufficies that H(z) have no other singularities than poles in 2 and be bounded
on the boundary of Z.

2 PoincaRE, H., ‘“Mémoire sur les fonctions fuchsiennes,” Acta Math., vol.
1, pp. 193-294; Oeuvres, vol. 2, pp. 169-257.
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6:1(z) and 6:(z) be two theta series formed with the same integer m
and consider their quotient, F(2) = 6,(2)/0:(2). We have

0:(2;) _ (ciz + d;)*™6,(2)
02(2;)  (ciz + d;)2m0:(2)

It will appear subsequently that, for a function group, 2; lies in
the domain of existence of the theta functions. Then F(z) is an
automorphic function.

Poincaré called the series (3) a “theta-fuchsian series’ or a
‘““theta-kleinian series” according as the group to which it
belongs is Fuchsian or Kleinian. He calls a function with the
property (4) and which has no other singularities than poles at
ordinary points of the group, whatever the manner of its forma-
tion may be, a ‘““theta-fuchsian function’” or a ‘‘theta-kleinian
function.” For example, the derivative of an automorphic
function (Sec. 44, Equation 7) is a theta function with m = 1.

46. The Convergence of the Series.—The following proposition
is fundamental for establishing the convergence of various series
and products connected with the group:

TuaEOREM 1.—If the point at infinity ts an ordinary point of the
group, the series Z|c.|™?", where in the summation the finite
number of terms for which ¢, = 0 are omaitted, converges for
m > 2. :

The series in the theorem can be written Zr,?", where r, is
the radius of the isometric circle I, of T.. Suppose, first, that
infinity is not a fixed point for an elliptic transformation. Then,
there are no points congruent to infinity in the neighborhood of
infinity, and we have the groups for which we developed the prop-
erties of the isometric circles in Chap. II.

It will suffice to prove the theorem for m = 2. Except,
possibly, for a finite number of terms r, < 1, so that if m > 2,
ro2m < r,% and the convergence follows from that of Zr,4.

The centers of the isometric circles lie in a finite region and
their radii are bounded (Sec. 17). Hence there exists a positive
constant h such that a circle @, of radius h concentric with any
isometric circle I, contains all the isometric circles on its interior.
Let Q' be the transform of @, by T.. .’ is got by invert-
ing Q, in I, and making certain other transformations which
do not alter magnitudes (Theorem 19, Sec. 11). By inversion,
we find the radius of Q,’ to be r,2/h; its area is 7r,*/h%. Now, the
exterior of @,, which lies entirely within R, goes into the interior

F(zj) = = F(2). (5)
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of @., which, therefore, lies within R,, the transform of R
by T.. As the regions R, fit together without overlapping, it
follows that there is no overlapping of the circles Q.. Their
areas then are less than the area of any one of the circles @, which
encloses them. We have then

4

T < h?, Ern“ < B4,

and the series converges.

If infinity is a fixed point for an elliptic transformation, the
reasoning is not essentially different. The isometric circles are
confined to a finite region as before, and the constant A exists.
There is the difference that a point outside @, may have p — 1
points- exterior to @, congruent to it, where the elliptic cyclic
subgroup with fixed point at « contains p transformations.
The circles @,’ can overlap, but no point can be interior to more
than p such circles. Hence,

77;’;4 < prh?, Ern" < pht,
and the series is convergent. ‘

By the use of the preceding theorem, we are able to establish
the convergence of the theta series.

THEOREM 2.—If m 2 2 and if the point at infinity is an ordinary
point of the group, then the theta series (3) defines a function which
18 analytic except possibly for poles in any connected region not
containing limat points of the group in its interior.

It will suffice to prove the theorem for a region S’ such that
there are no limit points of the group within or on the boundary
of §’, since such a region can be made large enough to include any
given interior point of a region with limit points on its boundary.

We observe, first, that certain terms of (3) may have poles
in 8’. At 2z = —d;/c;, the center of the isometric circle I,
the factor (ciz + d;)~?" becomes infinite. Again, if z is such
that 2; = a, where a is the pole of H(z),—that is, if z = T;"'(a)—
then H(z;) has a pole. It is clear, however, that only a finite
number of terms of the series have poles in S’; for S’ contains in
its interior and on its boundary only a finite number of centers
of isometric circles and only a finite number of points congruent
to each of the poles of H(z).

We now put aside the finite number of terms having poles in
and on the boundary of 8’, and we prove that the remainder of
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the series converges absolutely and uniformly in 8. Letd > 0
be the minimum distance from the boundary of S’ to the centers
of those isometric circles whose centers are exterior to S’. We
have, then, for all the terms we are considering and for all zin S’

z+£i—i‘>d.
Ci

Further, we can draw curves about the poles of H(z) such that
when z is in S’ all points z;, in the terms considered, lie outside
the several curves. But in the regions outside these curves,
H(z) is bounded, so that we have

[H ()| < M.
We have, then, excluding further the finite number of terms for
which ¢; = 0,

ez + do=mH ()| = |— G o™ g

cﬁ"‘(z + %)

This inequality holds for all points of S’. Since the series of

positive constant terms 2 aﬂT{n |e:]=2™ converges (Theorem 1), the

absolute and uniform convergence of the series in S’ is established.
The sum of the series is an analytic function in S’. It follows
that (3) is analytic in S’ except for the finite number of poles
which arise from the terms which we put aside.

47. The Convergence for the Fuchsian Group of the Second
Kind.—It can be shown that in general the theta series does
not converge if m = 1. There are certain groups, however, for
which the series does converge. An important case is the
following:!

TuEOREM 3.—For a Fuchsian group of the second kind for which
the point at infinity is an ordinary point, the series =|c.|~2 converges.

Then, the theta series (3) converges for m = 1.

We shall suppose, first, that the principal circle is a straight
line—the real axis, for example. The region R contains a portion
of the real axis in the neighborhood of infinity in its interior.
The isometric circles lie in a finite region, and their centers are
on the real axis.

We shall employ the constructions used in the proof of Theorem
1. The circle @, concentric with I, and of suitable radius h

1 BurNsIDE, W.. “On a Class of Automorphic Functions,” Proc. London
Math. Soc., vol. 23, pp. 49-88, 1892,
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lies in R. Its exterior is transformed into the interior of the
circle Q,’, with center on the real axis. The portion of the real
axis exterior to @, is transformed into the portion of the real axis
within Q,’. The length of this latter segment is 2r,2/h, the
diameter of @,’. Since the circles Q,’ are exterior to one another
and all lie in any one of the circles Q., the segments of the real
axis which they contain are non-overlapping, and the sum of their
lengths is finite:

23%-2 <2, Shhe<n

Hence, the series =r,2, or Z|c,|72, converges.

The proof for the general Fuchsian group of the second kind
rests on the following lemma:

LEmMA.—If the point at infinity <s an ordinary point for a group
T, and its transform T.' = GT.G™1, then the series =|c.|"?™ and
Z|ea’|~2™ both converge or both diverge.

Let the transformation which is applied to the group be G =
(az + B8)/(vz + 8), @6 — By = 1. Then (Equation (2), Sec. 15)

¢’ = —7yba, + v, — 8%, + ydd,. @)

Suppose, first, that v £ 0. Substituting for b, the value
b, = (a.d» — 1)/c, and combining terms, we can write (7) in

the form
d, o\ a 0 1
! — A2 el | ) ==
R (R CTD )

Now, the centers, —d./c, and a./c., of the isometric circles
lie in a finite region; and their distances from the point —&/v
are bounded

d

J_§)<K, a_n+§|'<K_
Cn Y Cn Y

Also, 1/|c,?| is bounded: 1/|c.?| < K’. Hence, we have
lea’l < |7v¥ - leal (K2 + K') = Kilel,

‘cn'—2m < K12m|cﬂ'|——2m‘
It follows from this inequality that if Z|c.’|~2™ converges, so
also does Z|c.|~2™. : ~
If v = 0, we have at once [c.'| = [8]%- |¢a|, & being different
from zero, and the conclusion follows as before.

Now the group T, is also a transform of T,’; thus T, =
G-'T,'G. Hence, if Z|c,|~>™ converges, so, also, does Z|c.'|~2™.
This establishes the lemma.

and
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We return now to the general Fuchsian group of the second
kind. Let the group be transformed so that the principal circle
is carried into the real axis and an ordinary point on the principal
circle is carried to infinity. We found above that Z|c,’|~2? con-
verges for the transformed group. Hence, applying the lemma,
Z|ca|~? converges for the original group.

The convergence of the theta series follows from Equation

(6) with m =1 since the series of positive terms Eg—,{—lal‘z

converges.

48. Some Properties of the Theta Functions.—Let Z be a
connected region of the z-plane bounded by limit points. Then,
6(2) in (3) is analytic except for poles in =. If the limit points
separate the plane into two or more regions, the series (3) defines
a function in each region, but, in general, the functions so defined
are distinct.

Consider, for example, the Fuchsian group of the first kind.
Here the limit points consist of all points of the principal circle.
Then (3) defines a function analytic except for poles within the
principal circle. The poles of 6(z) arise from the poles of the
individual terms of the series. If H(z) has a pole at ¢ within
the principal circle, then H(z;) becomes infinite when z; = a.
That is, 6(z) has poles at the poles of H(z) within the principal
circle and at points congruent to these poles—except that, in
special cases, H(z) may have poles at congruent points of such
a character that the singularities arising from two or more terms
of the series cancel. Putting this special case aside, the number
of poles in the fundamental region R, is exactly equal to the
number of poles of H(z) within the principal circle. If 6(z)
has poles within the principal circle, these poles cluster in infinite
numbers about each point on the principal circle. The principal
circle is thus a natural boundary of the function.

In a similar manner, (3) defines a function analytic except
for poles on the exterior of the principal circle. These poles are
the poles of H(z) lying without the principal circle, the points
congruent thereto, and the points —d;/c;, where a convergence
factor becomes infinite; although here, also, there is a possibility
of the singularities from different terms cancelling. If the
function has poles, these poles cluster about the points of the
principal circle, and the function cannot be extended analytically
across the circle. The one formula (3) then defines two distinet
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functions, one existing within the principal circle, the other
without.

In the Fuchsian group of the second kind the function defined
by (3) is a single function, existing both within and without the
principal circle.

The proof of the convergence of the theta series does not
require that the group be a function group. The property (4)
is a relation connecting two distinct functions, however, unless
6(z) can be continued analytically from z to z;. In order that
(4) express a property of a single one of the functions defined
by the series, it is necessary that the domain of existence of the
function be carried into itself by the transformations of the
group. The group is then a function group.

In setting up functions by means of the series (3), the poles
of H(z) are at our disposal. By placing a pole at a desired point,
we can be sure that 6(z) in a region 2 under consideration has a
singularity and, hence, is not identically zero. Further, in
forming automorphic functions for a function group by means
of (5), we can place the poles of the numerator and denominator
at different points of £ and, thus, be assured that the auto-
morphic funetion does not reduce to the trivial case of a constant.

Equation (4) exhibits a relation between the theta function
and the isometric circle. If 6(z) is neither zero nor infinite at
2, then |8(z;)| is greater than, less than, or equal to |6(2)| according
as |¢;z + d;| is greater than, less than, or equal to 1; that is,
according as z lies without, within, or on the isometric circle
of T;. We note that [6(2)|, when not zero or infinity, has a
smaller value at a point of R (exterior to all isometric circles)
than at any congruent point within the domain of existence of
the function.

Behavior at a Vertex.—Let £ be the fixedpoint of an elliptic
transformation lying within the domain of existence of a theta
function. The transformations with £ as fixed point form an
elliptic cyclic group generated by 2’ = T'(2) of the form

, .
T E-KIT L K=enn, ©)
where £ is the second fixed point and % is an integer greater than
1. The fundamental property (4), for T, may be written

6(z') = (%7)—7”0(.2)- (IO)A
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We find, on taking the logarithm of (9) and differentiating,

dT _de! _ (& —§)E — ¢)
dz  dz (- 8HE-F)

Fz) = (z — &)™z — £)m0(2), (12)
we can write (10) in the form
FE) = (@ — )@ — £)0(2")

= (z— " — £)m0(2)

= F(2). (13)
Hence, F(2) is unaltered by the transformation T, and conse-
quently is automorphic with respect to the cyclic subgroup
generated by 7.

Applying Theorem 6, Sec. 41, we conclude that F(z) takes on
its value k times, or a multiple thereof, at &.

Suppose that 6(z) is analytic at £ Then F(z) has a zero at £
of order m at least, owing to the factor (z — £)™. Now, if m
is not a multiple of k, then 6(z) must have a zero at ¢ also, the
order s of the zero being such that

m + s = Ik, . (14)

amn
If we put

where [ is an integer.

If 6(2) vs analytic at &, it is necessarily zero there unless m is a
multiple of k. The order s of the zero satisfies an equation of the
Jorm (14).

If 6(z) has a pole of order p at £, then F(2) has a pole of order
p — m or a zero of order m — p, unless p = m. An equation
of the form (14) holds where we put s = —p, [ being a positive
or negative integer or zero.

Behavior at a Parabolic Point.—There is a parabolic cyclic
subgroup generated by a transformation S with the parabolic
point P as fixed point. S has the form

1 1
TP ,—P + c. (15)
Here we have . P
d dz’ 2 —
& " T (z_—_P) ' (16)
Writing
G(2) = (z — P)™™0(z), (17)

the fundamental relation (10) for the transformation S may be
written in the form

G@#) = (¢ — P)*0(2') = (2 — P)0(z) = G(z). (18)
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The function G(2) is automorphic with respect to the subgroup
generated by S.
On making the customary change of variable

t = e21r'l/c (z—P) (19)

(See Sec. 41; here we use particularly Fig. 32), G(2) is transformed
into a function of £, G(z) = ¢(t), single valued in the neighborhood
of t = 0. We have, then,

0(z) = (z 3(2)21" = (C log t>2mg(t)- (20)

2

The theta function thus has a logarithmic singularity at ¢ = 0.

We consider now the form of g(t) when 6(2) is defined by the
theta series (3). We can take the circle C of Fig. 32(a) small
enough that it contains no point —d;/c; and no point congruent
to a pole of H(z). For C, when small enough, contains only
points congruent to points of the fundamental region R which
lie in the neighborhoods of the parabolic points of the cycle; and
these neighborhoods can be sufficiently restricted to exclude o
and the finite number of points of R congruent to poles of H(z).
Taking C slightly smaller we have bounds for the following
quantities: '

2= Pl< K @< M,
z—l—c—f

where 2 lies within or on the boundary of the triangle z12,P of
Fig. 32(a), exclusive of P itself. In the series

G(e) = E(i‘—gygfz—"ﬂ@o,

2+
Ci

the general term is less in absolute value than the corresponding
term of the convergent series of positive terms K2mM Z|c;|~2m.
G(2) thus remains finite as 2z approaches P from the interior of
the triangle. In the ¢{-plane, then, g(¢) is analytic in the neighbor-
hood of ¢t = 0 and is bounded; hence, g(f) is analytic at t = 0 if
properly defined there.

If we form an automorphic function as the quotient of two
theta series, which may be written

_ =P _ i),
1@ = = Pmae) ~ 0.0)
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we observe that f(z), as a function of ¢, is analytic or has a pole
at t = 0. Then as z approaches P from the interior of R f(z)
approaches a definite finite or infinite limit. It thus satisfies
the requirements laid down in Sec. 40 for the behavior of a simple
automorphic function at a parabolic point.

49. Zeros and Poles of the Theta Functions.—We consider now
function groups in which the region R, lying in 2 has a finite
number of sides (Sec. 40). We consider theta functions having
a finite number of poles in Ry, such as those defined by the theta
series (3). We suppose that g(¢) in (20), as in the case of the
series (3), is analytic at ¢ = 0 or has a pole there; and we assume
further that 6(z) is not identically zero.

We make the same conventions about counting zeros and poles
at ordinary points on the boundary as were made in Sec. 42.
We observe that this may lead to the count of a fractional number
of zeros or poles in the region; thus, at the vertices of a cycle of
angle 2r/k the zeros, from (14), amount to

s m
A
which may be fractional. The order of the zero or pole of g(¢)
at ¢ = 0 will be counted as the number of zeros or poles of the
function 6(2) in the points of the parabolic cycle to which P
belongs.

We now remove the neighborhoods of the vertices and para-
bolic points of Ry by small circles as explained in Sec. 42. Let
Ny, M, be the number of zeros and poles, respectively, in the
resulting region. Then,

NO—M0=2—71r—ifdlog 0(2), (21)

the integral being taken around the boundary—further altered
as in Fig. 33(d) if a pole or zero lies on a side.

Before evaluating the integrals along the sides, we shall
consider the integrals along the small circular arcs just con-
structed. When we let the radii of the arcs cutting off the
vertices approach zero, we find, exactly as in Sec. 42, that
the integrals along these arcs approach mo — n, where n, and m,
are the number of zeros and poles, respectively, that we assign to
the various vertices.

The parabolic points, as usual, are less simple to handle.
The circular arcs A, hiy, . . . , h, about the parabolic points
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of a cycle P, Py, . . ., P, are the transforms of &, hy, . . .,
h.’ which fit together to make up the arc 2,2, of Fig. 32(a).
The arc hy is the transform of %; by some transformation n; =
T(2), and we have,

[.d tog o) = f dlog (ciz + di)™m6(z)
_ e + di\*™
= hk,d log< P > G(2)

d
= om k,[dlog <z + ({)- dlog (2— P)] + [ dlogg®), (22

where h;"’ is the corresponding arc on the circle in the {-plane in
Fig. 32(c). :

We need consider here only the imaginary part of the integral
[d log 6, since the members of (21) are necessarily real. Now,
when we let the radius of C in Fig. 32(a) approach zero, it is easy
to see that the imaginary parts of

d
hk'd log <z + ;}Z‘), j;k,d log (z — P)

both approach zero, being ¢ times the angle through which the
line from —d/cx, or from P to z, turns as z moves along the arc
hi' lying on z,2,.

We have, then, only the last integral in (22) to consider.
Adding the integrals arising from the several vertices, we have

1
5= [[dlog g(0),

the integral being taken around the circle in Fig. 32(c) in a
clockwise direction. Its value is —n’ or m/, where g(¢) has a
zero of order n’ or a pole of order m’ at { = 0.

On shifting the integrals evaluated to the first member of (21),
and letting N, M represent the total number of zeros and poles,
respectively, belonging to R,, we have

1
N—M-= %Eﬁd log 6(2), (23)

the integrals being taken along the sides [; of R,.
Consider the two integrals arising from congruent sides

AB, CD (Fig. 33 (a) or (b)). Let 2’ = (az 4 b)/(cz + d) be
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the transformation carrying ABto CD. Here, —d/cis the center
of the arc AB. We have

L ,d log 62) + L o4 log 6(2') = L 4 log 6(2) + |
LAd log (cz + 4)”‘0(3) = 2mj;Ad log (z + g) = 2ima,

where « is the angle subtended by the arc BA at its center.
The equal arc CD also subtends the angle « at its center; and
we can write the integral as m¢ times the sum of the angles
subtended by the two arcs. We get similar results for the other
sides, which gives the following theorem:

THEOREM 4.—Let N, M be the number of zeros and poles, respec-
twvely, of the theta function in the region Ro; and let oy, o, . .
o be the angles subtended by the sides of R, at the centers of the
isometric circles on which these sides lie. Then

N—-M-= ~2al (24)

We observe that the function has always more zeros than
poles in B,. We note that the difference N — M depends only
upon m and upon the character of the group. It is independent
of the function H(z) used in the construction of the theta series
(3). This independence could have been easily foreseen. The
fact that the automorphic function in (5) has the same number of
zeros as poles requires that the difference N — M for the func-
tions 6:(z) and 6,(z) be the same.

The poles and zeros in a region R; congruent to R, are deter-
mined from (4). If R, does not contain the point « the number
of zeros and poles in R; is the same as in R,. If, however,
R, contains o, N — M is decreased by 2m, owing to the factor
(cjz + d;)?™ appearing in (4).

Suppose R, is a fundamental region with n pairs of sides for the Fuchsian
group of the first kind. Let 2x/ki, 2w/ks, . . . be the sum of the angles
in the ordinary cycles of R,. Then the sum of the interior angles in the
circular polygon is 2#2%‘. .

Consider the rectilinear polygon of 4n sides in Fig. 34. The sum of its
interior angles is 2w (2n — 1). The sum of the angles at the centers of
isometric circles is Xa;; the sum at the remaining vertices is 2#2%‘ +
2nw. Hence,

% (2n — 1) = Zag + 27rzk—1€ + 2nr.
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Substituting the value of Zea; from this into (24), we have

N-—M=m(n—1—2k%)~

This result is given by Poincaré in the memoir previously cited.
A particularly simple application of (24) is to the group of Sec. 25(a).
Here, R is bounded by 2n complete circles, and a; = 2x. For R, then,
N — M =2mn.

Here, R contains «; so for R;, any congruent region,
N —-—M =2m(n — 1).

Yy
RN

I'ig. 34.

650. Series and Products Connected with the Group.—By the
aid of Theorems 1 and 3 we can establish the convergence of
numerous series and products connected with the group. We
illustrate with a few examples.

Let 2., %s, vn, . . . be the transforms of z, u, v, . . . by the
transformation 7, of the group. We have
_ z2—u _ zZ—u 1

2

(enz + du)(cau + dn) (z +@><u n %) Cn

n

n — Up

(25)

n

If z and u be restricted to lie in regions containing no limit points
of the group and having no limit points on the boundary, then,
excepting for a finite number of values of n, the factor preceding
1/¢,? in (25) is bounded.
Suppose that Z|c,|~2 converges; and consider the series
Z(@n — Un),

the summation being extended to all transformations of the
group. Except for a finite number of terms, this series converges
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absolutely and uniformly in the regions mentioned. It is thus
analytic in each variable except possibly for poles arising from
a finite number of individual terms. In a similar manner we
establish the convergence of such functions as

DETo D — uwHe),

whei'e H(z) is defined as for the theta series; etc.
In a subsequent chapter (Sec 99), we shall employ products

of the type
=y =T +52) (26)

in connection with Fuchsian groups of the second kind, where u
and v are distinct from limit points. The convergence here
depends upon the convergence of the series

>

—_—

z2— v,

which is readily established from the known fact that Z|c.|—?
converges. We conclude readily that (26) is an analytic function
of z at all ordinary points of the z-plane except for poles at the
points »,, and that the function is different from zero except at
the set of points u,.

In the general case, where Z|c,|~* converges, we establish
readily the convergence of such series as

2 (#n = Un)(0n — Wn) Q2 —
E(zn — u,)?, E Ry ) o T d 5 H(z,),

and the like.
From (26) we can build a convergent product for the general
case by the insertion of convergence factors, thus

Un—Un

2 — Un z=wn
" ng T Wn,

2 — v,

where w is an ordinary point. Another example in which the
convergence is easily established is the product due to Whittaker!
11— u)(z'.—un) :

(z -_ u)n [ un)(u zn)] 232 Gz—2n)(4—tn

(2 — 20)(u — Un)

where the product extends to all transformations of the group
excepting the identical transformation.

1 Mess. Math., vol. 31, p. 145, 1902.



CHAPTER VI
THE ELEMENTARY GROUPS

I. THE FINITE GROUPS

61. Inversion in a Sphere.—The study of finite groups will
be much simplified by the introduction of transformations of
three dimensional space. In this treatment, the space trans-
formation known as “inversion in a sphere’’ plays a fundamental
réle. We shall now make a digression and derive the salient
properties of this transformation.

Inversion in a sphere is a direct generalization of inversion
in a circle (Sec. 5). Consider a sphere S with center K and
radius p. Let P be any point in space and construct the half
line beginning at K and passing through P. Let P; be a point
on this half line such that KP, - KP = p?; then Py is called the
inverse of P with respect to S. P is, also, obviously the inverse
of P;. S and K are called the ‘““sphere of inversion’ and the
“center of inversion,” respectively. The inversion carries a
point within S into a point without S and leaves the points on
the surface of S fixed.

It is clear also, as in Sec. 5, that any sphere or circle through
P and P, is orthogonal to S. For, any tangent KT from K to
the sphere or circle (Fig. 1) has the property that KT? = KP; -
KP = p2. That is, T lies on S; so that at T the sphere or circle
is orthogonal to S. Further, any other secant through K,
meeting the sphere or circle at P,’, P’ has the property that
KP, - KP' = KT? = p%. Hence, by the inversion, any circle
or sphere through two inverse points is transformed into itself.

We now derive the analytic expressions for the inversion.
.Let K, P, P, be the points (a, b, ¢), (£ 7, ), (&1, m, §1), respectively,
in rectangular space coordinates. Put

rr=(¢E—a)l+ -0+ —c)
r = (F = a0 =)+~ o2 ¢9)
Then it is required that
rr’ = p2 2
117
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Projecting the segments KP and KP,; on the three axes, we have,
from the resulting similar triangles,

"—a "—b ’— o 2
£ =’;_b=? QN L S 3)

E—a {—c T r? r?
These give the following equations for the transformations
p*(¢ — a) p*(n — b) _ P - (s“ - ©).
yoa=2E 2 oy P T0) @)

Expressions for £, 9, { in terms of ¢, ¢/, {’ are got by 1nterchanging
the primed and unprimed variables in (4).

Consider, now, the magnification of an element ds. Let ds’
be the length of the transformed element. We have from (4)

dt = ;’;dg _29_(5__‘1_)(17-’

with similar expressions for dn’ and d{’. Squaring and adding,
ds’”* = dg”? + dn’® + d¢”°
P s 2 2 4p*
= G(dg + dn® + di?) — — (¢ — a)dg + (n — b)dn +
& — o] + ” SPdr(s — a)? + (n — b)? + (¢ — 0%
= g;ds2 - %dr[rdr] + %dﬂ[ﬂ] = ;;ds%
or
;) _ P
ds’ = T—ds. (8)

The magnification depends only upon the position of the
element and not upon its direction. A small triangle in the
neighborhood of a point will have all its sides multiplied by
the same quantity; hence, it is transformed into a similar triangle.
Its angles are unaltered in magnitude. In other words, snversion
in a sphere is a conformal transformation.

We consider now the transform of a sphere or plane =

A+ + ) +BE+Cn+ D¢+ E=0.
This is a sphere (possibly of imaginary radius) if 4 # 0; a plane
if A =0. This can be written equally well—thinking of the
origin as translated to (@, b, ¢)—in the form
Al —a)*+ (0 =0+ ¢ — o)l + B'(§ — a) +
C'tn — b + D'(f —¢) + E' =0,

A2 + B (¢t —a)+C'(n—b)+D'(t —c) + E'"=0. (6)

or
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Then, from (2) and (4), the transform is
ot P2 P2, P2 ’
A—,§+BT—,2(§"G)+CT—,2("1 —b)+DT—,2(§' —c)+ E =0,
r

or ]
E'r"? 4 B'p2(t — a) + C'p%(n’ — b) + D'p2(¢’ — ¢) 4+ Ap* = 0.
)

This is the equation of a sphere or plane according as E’ = 0
or £/ = 0. We have proved that by inversion in a sphere a
sphere or plane is carried into a sphere or plane.

In (6) E’ = 0, if = passes through the center of inversion.
Hence, a sphere or plane through the center of inversion is
transformed into a plane. This could have been foreseen
geometrically.

Since a circle or straight line is the intersection of two spheres
or two planes, and these latter are carried into spheres or planes,
it follows that by an tnversion in a sphere a circle or straight line
1s carried into a circle or straight line. 'The transform is a straight
line if, and only if, the original circle or straight line passes through
the center of inversion.

Finally, ¢f P and Q are two points inverse with respect to a sphere
3, the transformed points Py and @, are inverse with respect to the
transformed sphere =;. This is most easily established geometri-
cally. Through P and @ pass a family of spheres orthogonal to
. The transforms of these spheres pass through P; and @; and
are orthogonal to =;—since angles are preserved. On inverting
in Z;, each of these spheres is transformed into itself. The point
P;, common to all these spheres, is transformed into the second
common point ;. Hence, P; and @, are inverse with respect
to 21.

If 2, is a plane, two points P; and @, such that all spheres
through them are orthogonal to the plane must be equidistant
from the plane and on a common perpendicular to it. That is,
Q. is the reflection of P; in Z;. We thus extend the idea of
inversion to the case in which the sphere of inversion is a plane.
Inversion in a plane is merely a reflection in a plane. This trans-
formation possesses the various properties of inversion in a
sphere which are italicized in this section.

b2. Stereographic Projection.——We now introduce a widely
used method of representing the complex z-plane on a sphere.
Let the complex plane be a plane in three dimensional space, and
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let an inversion be made in a sphere whose center K does not lie
in the z-plane. Then the z-plane is carried into a sphere which
passes through K. The points of the z-plane and the points of
the resulting sphere correspond in a one-to-one manner. Corre-
sponding points lie on a line through K. Corresponding angles
are equal. This correspondence between the points of the plane
and of the sphere is known as a stereographic projection.

For convenience we shall so choose the sphere of inversion
that the transform of the z-plane is the unit sphere with center
at the origin. Let the space axes be so placed that the ¢ and
x-axes coincide with the real and imaginary axes in the z-plane.
Let K be the point (0, 0, 1); and let the radius of S, the sphere of
inversion, be 4/2. Then S passes through the .unit circle Q,
with center at the origin in the z-plane. The points of @
remain fixed on making the inversion. The point at infinity in
the z-plane inverts into K, the center of S. The z-plane then
inverts into a sphere X, through @, and the point (0, 0, 1).
Hence, Z, is the unit sphere

, | B4t =1 ®)
Corresponding points of the z-plane and of =, lie on a line through
(0, 0, 1). The interior of Q, is transformed into the lower half
of Zp; the exterior into the upper half. Circles and straight
lines in the z-plane are transformed into circles on Z,.

The equations connecting a point 2z = z + 4y and the corre-
sponding point (£, 7, ¢) of Z, can be written down at once from
(4). Putting (z, y, 0) for (£, », {) and (Ey n, §) for (¢, 7', ¢') we
have, since

rt=x+y +1=22+4+1
and p? = 2, the equations
2z % _2Z2—1
‘E_zé+’n_zé+1’§_z2+l' ©)
Interchanging primed and unprimed values in (4) and using the
equation
M=+ + -1 =8+ 2+ —-20+1=2(1- ),

we have

- ¢ __¢ _Et+nm
_l—g',y_l—g’, z—l_g_ (10)

b63. Rotations of the Sphere.—If X, be transformed into
itself in a directly conformal manner, the corresponding points

x
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of the z-plane undergo a one-to-one and directly conformal
transformation. That is, the z-plane is subjected to a linear
transformation. We shall be particularly interested in the rigid
motions of space which carry Z, into itself. Such a motion
is, obviously, one-to-one and preserves angles.

The most general rigid motion which carries a sphere into
itself is a rotation about an axis through the center. Thus, in
a rigid motion carrying =, into itself, there is at least one fixed
point P; on Z,, since the corresponding linear transformation
of the z-plane has a fixed point. The center O of X, is also
fixed in rigid motion. Hence, the line OP, is a fixed axis; and
the motion is a rotation.

What is the character of the resulting linear transformation
in the plane? Let P; and P, be the ends of the axis of rotation
(Fig. 35). A great circle through P, and P, is rotated into
another such circle making an angle 6 (the angle through which
the sphere is rotated) with the original circle. Any circle lying
in a plane perpendicular to P,P, is carried into itself. This
latter circle is orthogonal to the circles through P; and P,. We
now make the stereographic projection. P; and P, project into
two points 2;, 2z, which remain fixed as the sphere is rotated.
The circles through P, and P, project into circles through z; and
2;. Then, each circle through z; and 2, is carried into another
such circle making an angle 6 with its former position. The
fixed circles on the sphere project into fixed circles on the plane
orthogonal to the circles through 2z; and z,. This arrangement
of the fixed circles shows that the transformation is (Fig. 7) an
elliptic transformation.

Conversely, any elliptic transformation of the z-plane whose
fixed points are the projections of the ends of a diameter corre-
sponds to a rotation of ¥,. For, we can find a rotation of =,
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whose corresponding transformation of the z-plane has the
same fixed points as the given transformation and which turns
a circle through the fixed points through the same angle. The
given transformation and the transformation corresponding to
the rotation have the same fixed points and the same multiplier,
so they are identical.

We now find the relation between two points 2;, 22 in order
that they be projections of two points P;, P, which are at opposite
ends of a diameter of Z,. If (£, 71, {1) are the coordinates of Py,
then (—#i, —n1, —¢1) are the coordinates of P,. So, from (10),

2, = &+ 1'771, 25 =_§1 + 1'771‘
! 1—-4 1+

Forming the conjugate of z; and multiplying, we have, using (8),

= &%+ m?

R1Rg = — 1—‘—‘51_12_ = —1,
or

1 .
2y = _E; (11)

Conversely, if (11) is satisfied the points on Z, corresponding
to 2; and 2, lie at opposite ends of a diameter.

We shall now prove the following theorem:

TueorREM 1.—The necessary and sufficient condition that a
transformation of the z-plane correspond to a rotatton of Z, is
that it be of the form ~
, az—c¢ _ _

=z id aa + cc = 1. (12)

Let 2/ = (az + b)/(cz + d), ad — bc = 1, correspond to a
rotation of Z,. The rotation has the property that points at
the ends of a diameter remain at the ends of a diameter after the
rotation. So, if z; and 2z, satisfy (11) so also do the transformed
points (azy + b)/(cz1 + d) and (az; + b)/(cz. + d). We have,
then,

2

0.22+b___6§1+a_ 822'—6

2o +d e +b —bntad

the last expression resulting from setting z; = —1/z; in the
preceding. From this identity in 2., we have

d c b a
or

a=M, b= —\¢, ¢= —\b, d = \a.
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From these equatiogs, we have

ad — be = Nad — bé); or 1 = .
Hence, b = —¢ and d = d, and the transformation has the form
(12).

We now assume that the transformation has the form (12)
and prove that it corresponds to a rotation of the sphere. In the
first place, (12) is elliptie, unless it is the identical transformation.
If ¢ £ 0, we have |a] < 1, so that [a + a| < 2. Since ¢ + a is
real, this is the condition that the transformation be elliptic
(Theorem 15, Sec. 10). If ¢ =0, we have |a| = 1; then,
la + a| < 2, unless @ = +1. In this latter case, we have the
identity 2’ = 2.

Again, the fixed points of (12) satisfy (11). Let 2; be one of
the fixed points; then z, satisfies the equation

6212 + (6/ - a)zl + ¢ =0.
Taking conjugates
ézi2 4+ (a — @)z, + ¢ = 0;

whence, dividing by 2,2,
¢ _ 1 _
5 + (a — a)(——21> +é¢=0.

That is, — 1/%, is also a root of the equation determining the
fixed points. The fixed points thus satisfy (11), and, hence, are
the projections of the ends of a diameter. It follows that the
transformation corresponds to a rotation of the sphere.

64. Groups of the Regular Solids.—We propose, now, to
construct finite groups of linear transformations by forming
finite groups of rotations of the sphere Z, and projecting stereo-
graphically on the z-plane. We proceed as follows: Let one of the
regular solids,—a cube, for instance, or a regular tetrahedron—
be placed with its center at the center of Z,. There exist certain
rigid motions of space which carry the regular solid into itself.
These motions, which interchange the faces in various ways,
leave the center of the figure fixed. Hence, each such motion is a
rotation about an axis through the center. By these motions,
the sphere =, undergoes certain rotations about diametral axes;
and, by stereographic projection, the z-plane is subjected to
corresponding linear transformations.

It is clear that the set of all rigid motions which carry a body
into itself constitutes a group of rigid motions. For, the succes-
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sion of two such motions, as well as the inverse of any, is a rigid
motion which also leaves the body invariant, and, hence, belongs
to the set. The set of linear transformations of the z-plane
corresponding to the group of rotations carrying the regular
solid into itself constitutes a group of linear transformations
isomorphic with the group of rotations.

It is evident that the number of rotations which carry a
regular solid into itself is finite. There is but a finite number
of ways, for example, in which a given face can be made to

coincide with itself or with

K some other face of the solid.

N A#H Hence, in the z-plane we have

groups containing a finite num-

5 G ber of linear transformations.!

M 55. A Study of the Cube.—

We begin with the most

familiar of the regular solids—

the cube. Let a cube be placed

M with its center at the origin

(Fig. 36) and with its edges

parallel to the coordinate

K axes. We may suppose that

the cube is inscribed in Z,.

We study the axes about

which the cube can be rotated into itself. These are of three
kinds. '

There are, first, the axes joining midpoints of opposite faces
as KK’ in the figure. There are three such axes. Rotations
about each of these axes through angles of 90, 180, and 270
degrees carry the cube into itself. There are, thus, nine rotations
about the three axes which carry the cube into itself.

Second, there are the axes joining opposite vertices, as MM’
in the figure. There are four of these axes. Rotations about
each axis through 120 and 240 degrees carry the cube into itself.
There are, thus, eight rotations arising from the four axes.

Finally, there are the axes joining the midpoints of opposite
edges, as NN’ in the figure. There are six of these axes, a rota-
tion about each of them through 180 degrees carries the cube into
itself.

t All these groups are treated in KLEIN’s ‘‘ Vorlesungen iiber das Iko-
saeder.”

Fiag. 36.
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From the three types of axes we have 9 + 8 4+ 6 = 23 rota-
tions. To these we add the identical transformation; that is,
the case of no rotation. The group of rotations which carry the
cube into itself consists of 24 rotations.

The corresponding group in the z-plane consists of 24 linear
transformations. The setting up of these transformations is a
mere matter of algebra. We have, first, to find the two points
where an axis of rotation meets Z,. We next project the two
points on the z-plane (Equation (10)). Let 2, 2; be the pro-
jected points. We then sct up the transformation

!
? =z _ 2

21—22 2— 29

(13)
where 0 is the angle through which the cube is rotated.

We consider a few examples from Fig. 36. The points L(1, 0, 0) and L’
(-1, 0, 0) project into 2, = 1 and 2; = —1. The angle 6 is »/2, =, or
3r/2; s0 € = ¢, —1, —i. The three transformations corresponding to the
rotations about LL’ are

22 —1_,2-1
Z+1" Y41
The points M(—1/4/3, —1/4/3, 1/4/3) and M'(1//3, 1/7/3, —1//3)

1 3 1 3
project into, from (10), 2; = — 7§i_1—1, 20 = 73_’;3—7'—1 Here § = 2x/3 or

4r/3; ett= 15(—1 + inV3) or %(—1 —44/3). On substituting in (13)
we have the desired transformations.

The points N(—1/4/2, 0, 1/4/2) and N'(1/4/2, 0, —1/4/2) project into

k=1, —1, —.

21 = —(v/2 +1)and 22 = v/2 — 1. Here § = rande® = —1. On
substituting into (13) and simplifying we have

' = - 21

2 =8@k) = 241 (14)

The points K and K’ project into « and 0, respectively. The correspond-
ing transformations in the plane are the rotations 2’ = kz, where k = 4, —1,
—1t. The three rotations are powers of the transformation

2 = T() = iz (15)

It is evident that, if an axis passes through the midpoints of
opposite faces, the corresponding three linear transformations
are powers of a single transformation of period four. If the
axis joins opposite vertices, the corresponding two transforma-
tions are powers of a transformation of period three. If the
axis joins the midpoints of opposite edges the corresponding
linear transformation is of period two. The fixed points of the
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elliptic transformations which form the group are thus divided
into three sets. All the fixed points of any one of the sets are
congruent. Thus, K can be carried into L, K’, L', or any point
at the end of an axis of the same kind, by means of a rigid motion
which carries the cube into itself. Hence, the projections of
all these points are congruent. But K cannot be so carried into
M or N. Similarly, the points corresponding to the ends of the
axes of the kind to which M M’ belongs are congruent. The same
is true of the points corresponding to N, N’ and similar points.

We can form a fundamental region for the group by con-
structing the isometric circles. We shall, however, proceed in
a different manner. Consider the triangle M HQG, in the figure,
formed by joining the vertices at the ends of an edge to the
midpoint of an adjacent face. By a suitable one of the rotations
about KK’, the triangle can be carried into another such triangle
abutting along the side M@, or one abutting along HG@. By the
rotation about NN’, we get a triangle abutting along MH. If
we project the triangle MHG on the surface of the sphere, the
origin being the center of projection, we have the spherical tri-
angle formed by the arcs of great circles KM, KH, MNH. This
spherical triangle is a fundamental region on the sphere for the
group of rotations. Its stereographic projection in the z-plane
is a fundamental region for the group of linear transformations.

Let 2y, 2y, 2a, 2x (= ) be the projections of M, N, H, K.
Then the fundamental region has two pairs of congruent sides.
The transformation 7' (Equation (15)) carries zxzx into 2x2a; the
transformation S (Equation (14)) carries zyzy into zyzy. There
are three cycles: zx constitutes a cycle of angle n/2; zy is a
cycle of angle r; and 2y and 2y constitute a cycle of angle 2r/3.
These cycles give the relations 7* = 1 and S? = 1, which we
know already, and (ST")?* = 1, which is easily verified.

We can construct 23 other triangles on the cube by joining
the ends of an edge to the midpoint of an adjacent face. We
can carry M H(@ into any one of these by a suitable rotation. If
these 23 triangles be projected on the sphere and then projected
stereographically on the z-plane, we have the 23 regions congruent
to the fundamental region constructed above.

The transformations S and 7 connecting congruent sides of the
fundamental region are generating transformations for the group.
For, by the combinations of S and 7, we can construct regions
adjacent to the fundamental region, regions adjacent to the new
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regions, and so on as long as there are any free sides. We thus
cover the whole plane; and all the transforms of the fundamental
region are accounted for.

The preceding group of 24 linear transformations is known
as the “octahedral group.” This name is due to the fact that
it is the group arising from the regular octahedron. Let the six
intercepts of the sphere on the coordinate axes—K, L, K’, etc.—
be joined by lines to form a regular octahedron (Fig. 37). The
octahedron admits the same rotations about KK’, LL’, etc., as
the cube. It is easily seen that an axis, as M M’, joining opposite
vertices of the cube joins the midpoints of opposite faces of the
octahedron; that an axis, as
NN’, joining the midpoints of
opposite edges of the cube
also joins the midpoints of
opposite edges of the octa-
hedron; and that the octa-
hedron and the cube admit
the same rotations about these
axes.

b6. The General Regular
Solid.—Let the number of
faces of the solid be F, the
number of its vertices be V,
and the number of its edges
be E. Let u be the num-
ber of edges bounding each face, and let » faces meet at the
vertex.

The number of rigid motions carrying the regular solid into
itself is easily found. The solid can be brought into coincidence
with itself so that a given edge aob, is made to coincide with any
edge a:b; or with b,a;. Then the number of rotations carrying the
regular solid tnto itself is equal to 2E.

Let the regular solid be inscribed in Z, and we project stereo-
graphically on the plane as in the preceding section. The
various fixed points of the linear transformations in the plane
are the projections of the ends of the diameters about which the
rotations take place. A diameter is an axis about which the
solid can be rotated into itself if, and only if, it passes through
the midpoint of a face, through a vertex, or through the midpoint
of an edge. The number of fixed points of the group is then
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F +V 4+ E. Using Euler’s formula, which applies to any
simply connected solid,

V+F=E+2, ’ (16)
we have that the number of fized points in the group is 2E + 2.

The rotations about an axis through the midpoint of a face
are all through multiples of an angle 27 /u; that is, the rotations
are powers of a rotation of period u. The rotations about an
axis through a vertex are powers of a rotation of period ». The
rotation about an axis through the midpoint of a side is of period
2. These statements are true for the corresponding transforma-
tions in the plane.

A midpoint of a face can be carried into the midpoint of any
other face; a vertex can be carried into any other vertex; a
midpoint of an edge can be carried into the midpoint of any
other edge by a rotation which carries the solid into itself.
Hence, the fixed points of the plane are separated into three
sets of congruent points: F' fixed points are congruent; V others
are congruent; and the remaining £ are congruent.

A fundamental region for the group can be got, as in Fig. 36,
by joining the vertices at the ends of an edge to the midpoint
of an adjacent face to form a triangle; then projecting this
triangle on the sphere; and, thence, projecting stereographically
on the plane. The transforms of this fundamental region are
the like projections of the 2E — 1 other such triangles which
can be drawn on the solid. The congruent sides of this funda-
mental region are connected by a transformation 7' of period u
and a transformation S of period 2. S and 7 are generating
transformations for the group. They are connected by the
relation (ST)” = 1.

In the following table, the various regular solids are listed
with the number of their faces, vertices, etc. In the last column
N (=2E) is the number of transformations of the group:

TaBLE 1

F 14 ’ E “ v N
Tetrahedron................. 4 4 6 3 3 12
Cube....................... 6 8 12 4 3 24
Octahedron.................. 8 6 12 3 4 24
Dodecahedron............... 12 20 30 5 3 60
Icosahedron................. 20 12 30 3 5 60
Dihedron................... 2 n n n 2 2n
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The dihedron is an ideal solid of zero volume. Let a regular
polygon of n sides be inscribed in @o, the equator of Z,. We
shall look upon this figure as a regular solid with two coincident
faces. The line KK’ is an axis about which the figure can be
rotated into itself through multiples of the angles 2r/n. Also,
any diameter through a vertex or through the midpoint of a
side of the polygon is an axis about which the figure can be
rotated through the angle 7 into itself. The group of rotations
of this figure also carries into itself the double pyramid formed by
joining K and K’ to the vertices of the polygon inscribed in Q.
This latter figure, however, is not a regular solid.

We note the same sort of duality between the dodecahedron
and the icosahedron that exists between the cube and the octahe-
dron. If we interchange the numbers F and V and the numbers
w and » in the tabulated values for the dodecahedron, we have the
entries for the icosahedron. It is not difficult to verify the fact
that the icosahedron can be so placed as to have precisely the
same group of rotations as the dodecahedron. The axes joining
the midpoints of the opposite faces of one solid are made the axes
joining the opposite vertices of the other.

Two further groups remain to be mentioned. The four group
corresponds to the four rotations of the sphere =, which carry the
real axis into itself and the imaginary axis into itself. It may be
regarded as a limiting case of the dihedral group in whichn = 2.

There is, finally, the simplest of all the finite groups—the
elliptic cyclic group. This group has two non-congruent fixed
points. We can give it a geometrical origin, if we like, by
considering it as arising from the group of rotations which
carries into itself a regular pyramid formed by joining the
vertices of a regular polygon inscribed in @, to the point K.

We have found five types of finite groups of linear trans-
formations: the elliptic cyclic group, the dihedral group (including
the four group), the tetrahedral group, the octahedral group, and
the icosahedral group. Each of these groups can be transformed
after the manner of Sec. 15, to get other finite groups. The
possibility of further finite groups will be investigated in the next
section. We shall find that there are no others.

67. Determination of All the Finite Groups.—We first prove
the following theorem:

TueoreM 2.—If a group contains two non-parabolic transforma-
tions which have one fized point in common and the other fixed
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points different, then the group contains parabolic transformations
with the common point as fixed point.

Let the group be so transformed that « is the common fixed
point and 0 and 1 are the remaining fixed points. The two
transformations are then of the form

S1=K12, Sz=K2(Z—1)+1, K1¢1,K2;él.
Combining these in the product given below, we find readily

(K — 1)(Ky — 1)
K,

U = Sf—lSleSg-l =2 +

This is a translation; that is, a parabolic transformation with «
as fixed point. Any power of this transformation U=», n % 0,
is parabolic with « as fixed point.

A finite group has only elliptic transformations. It follows
from the preceding theorem that all transformations of the
group which have one fixed point in common have the second
fixed point in common, also. If » transformations (including the
identical transformation) have a common fixed point, e, we shall
call ¢ a fixed point of order ». These transformations form
a cyclic subgroup; and the transformations are powers of a trans-
formation with multiplier e?/». Congruent fixed points are
of the same order. Thus,ife’ = T(e);and S;,7 = 1,2, . . . are
the transformations with. e as fixed point, then the » trans-
formations T'S;T—, and no others, have ¢’ as fixed point.

Given a finite group of N(>1) linear transformations, so
transformed, if necessary, that « is not a fixed point for any
transformation. Let R be the fundamental region exterior to all
the isometric circles. We shall investigate the cycles of the
region.

Let 20 be a vertex belonging to a cycle of angle 2x/k, & > 1.
Then we found in Sec. 26 that z, is a fixed point of an elliptic
transformation with multiplier €2/, There is no transforma-
tion with 2z, as fixed point and with multiplier ¢ where 0 < 6 <
2n/k; 50 2, is a fixed point of order k.

Consider now a fixed point e of order v lying outside B. There
is a point ¢’ congruent to e lying within or on the boundary
of R. But ¢ is the fixed point of an elliptic transformation
of order », and has isometric circles passing through it. Hence,
¢’ is a vertex of R. That is, each fized point of order v is congruent
to a vertex of R belonging to a cycle of angle 27/ v.



Sec. 571 DETERMINATION OF ALL THE FINITE GROUPS .131
Let a, b be finite inner points of B. We form the function

_(z—a)zr—a) - - - (w1 — a)

flz) = (z—0b)(z1 — b) - - - (2y—1 — D)

17

where z;, 2, . . . 2y_; are congruent to z. This function is
automorphic with respect to the given group, since if z be trans-
formed into z; the variables 2z, . . . , 2y_; are permuted and
f(2) is unaltered. It has zeros of the first order at a and the
points congruent thereto and poles of the first order at b and
congruent points. It has a single pole in R; hence, it takes on
every value once in R (Sec. 42, Theorem 11).

The proposition that an automorphic function takes on every
value the same number of times in the fundamental region
requires that we count the values in a particular way at the
vertices. Let f(z0) = A; and let f(z) take on the value A r
times. We count the value A as taken on r/k times in the
vertices of the cycle (Sec. 42 (2)). In the present case, r/k = 1;
whence, f(z) takes on the value A exactly k times at z,. The
derivative, f'(z), has k — 1 zeros at 2,.

Now let us look upon f(z) as a rational function in the whole
plane. It has N poles; so it takes on each value N times.
It takes on the value A only at the vertex z, and the points
congruent thereto; and at each such points it takes on the value
k times. It follows that the point z, and the points congruent
to it form a set of N/k congruent points. Since any fixed point
is congruent to a vertex of R, we can state this result as follows:
A fized point of order v belongs to a set of N/v congruent fized
points. The order of a fized point is a submultiple of N.

Consider f’(z). Since f(z) has N poles of the first order, its
derivative has N poles of the second order. Hence, f’(z) has 2N
zeros. The roots of f’(2) can all be located. At a finite point
which is different from a fixed point, f(z) # 0. Otherwise,
f(z) would take on its value twice at the point; this is contrary
to the fact that f(z) takes on no value more than once in R or in
any of the regions congruent to B which cover the plane. At
infinity we have developments of the form

Cy . , _ C1
f(z)=co+-;+---, f(z)—_gé'f'"'

Here, ¢, # 0, since f(2) takes on the value ¢, only once at infinity.
Hence, f'(z) has a zero of the second order at infinity. The
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remaining zeros of f'(z), 2N — 2 in number, are at the fixed
points.

Let the fixed points of the group fall into s sets of congruent
points. Let the orders of the points of the sets be vy, vy, . . . ,
v.. Then the sets consist of N/v;, N/vs, . . . N/v, points,
respectively. Summing the zeros of f/(z) and equating to
2N — 2, we have

8

2%2(”:‘—1)

i=1

2N — 2,

or
s

1 2
— 1) =9 4. 18
2(1 vi) 2 N (18)
The integers N and »; for any finite group must satisfy (18).
Here N > 2 and »; > 2; also N/v; is an integer. We have
s > 1; for is s = 1, the first member of (18) is less than 1 and
the second is greater than or equal to 1. Also, s <4; forl — 1j

> ; and the first member equals or exceeds s/2, which is greater

than the second member if s > 4. There are then two cases to
consider s = 2 and s = 3.
If s = 2, (18) becomes

1-—~1+1———1—=2——2;whence,N+N-=2.
121 12 N V1 Vo

We have N/v; = N/v, = 1. Hence, N may be any integer and
vi = v, = N. The two sets of congruent fixed points contain
one point each; and each fixed point is of order N. The groups
satisfying these conditions, obviously, consist of the cyclic groups
of N transformations.
If s = 3, (18) reduces to
1 1 1 2
ntntn=1ty (19)
Let the subscripts be so chosen'that v, < v2 < v;. Then v, = 2,
for, otherwise, the first member does not exceed 1. Then,

1 1 1 2

w2t (20)
Then, v, = 2 or v, = 3; otherwise, the first member does not
exceed 14.
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If v, =2, we have v = N/2. If N is any even number,
N = 2n, the equation can be satisfied.
If v, = 3, we have, from (20),

1 1 2

st (21)
whence, v; < 6. We find that each of the possible values
vs = 3, 4, 5 gives an integral value of N; namely N = 12, 24,
60, respectively.

We have found then that, except for the cyclic group (s = 2),
all finite groups have three sets of congruent fixed points. The
orders of the points, the numbers in each set, and the total
number of transformations are only such as appear in the
following table:

TasLE 11
V1 ve V3 N/V1 N/Ilz N/II3 N
2 2 n n n 2 2n
2 3 3 6 4 4 12
2 3 4 12 8 6 24
2 3 5 30 20 12 60

That there actually exist finite groups corresponding to the
possibilities set forth in Table II is evident on an inspection of
Table I. In that table, there are three sets of congruent fixed
points containing F, V, and E points. The corresponding
orders are u, », and 2, respectively. The first possibility in
Table II is realized in the dihedral group (in the four group, if
n = 2), the second in the tetrahedral group, the third in the
octahedral group, and the last in the icosahedral group.

TaEOREM 3.—T'here are no finite groups of linear transformations
other than the elliptic-cyclic groups, the groups of the regular solids
(¢ncluding the four group), and the transforms of these latter groups
by means of linear transformations. .

We have found that when s = 2 the only groups arising are
the cyclic groups. We shall now show that any group with three
sets of congruent fixed points is the transform of a group
arising from one of the regular solids. We shall prove (which
amounts to the same thing) that if two groups have the same
values of vy, vy, v3 one is the transform of the other.



134 THE ELEMENTARY GROUPS [Sec. 57

Given two finite groups with the same values of vy, vs, vs.
Let each be so transformed, if necessary, that « is not a fixed
point. If the transformed groups are the transforms of one
another, the same is true of the original groups. Let the group
S consist of the transformations S;, . .., Sy and have the
fixed points ai, as, . .., ays, of order »;, the fixed points
by, b, . . ., byys, of order »;, and the fixed points ¢y, ¢s, . . .,
Cy/v, Of order v;. Let the group S’ have the transformations
Sy, . .., Sy, the fixed points a\/, . . . , a’y/,, of order »,, the
fixed points b,/, . . . , b'y/,, of order »;, and the fixed points
¢’y . . ., ¢y of order v;.

We now use formula (17) to set up an automorphic function
f(2) for the group S and an automorphic function f1(z) for the
group 8’ where the constants a and b in the formula are different
from the fixed points. Let f(a;) = 4, f(b;) = B, f(e;) = C;
Hi(ai) = A, f1(B)) = B, fi(e/) = C'. Lett = (at; + b)/(ct: +
d) be the transformation carrying the distinet points ¢ = A/,
B’, ¢’ into the distinct points 4, B, C, respectively, and form
the function &) + b

af1(z) +
P& = ey +d
Then, F(a’) = A, F(b)’) = B, F(¢;') = C. The functions F(z)
and f(z) have N poles each, and, hence, take on any value N
times.

We shall represent the group S in the z-plane and S’ in a
second or z’-plane. We shall set up a correspondence between
the points of the two planes by means of the equation?

F(2') = f(2). (22)

To each value of z there correspond N values of 2’; for a given z
determines one value of f(z) and this value is taken on by F(z’)
at N points 2’. Likewise, to each 2z’ correspond N values of z.

If 2z # ai, b;, ¢; then f(2) is distinct from A, B, C and the
corresponding values of 2’ are N distinet points in the 2’-plane.

If z = a;, then f(z2) = A and the corresponding values of 2’
fall into N/»; sets of »; equal values each; namely, 2’ = a//,
as’, . . . Consider the arrangement of the »; values of 2’ in
the neighborhood of a;/ when z is in the neighborhood of a..
We have the following developments in the neighborhoods of

1 This correspondence was suggested by Prof. P. Koebe.
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the points in question, since each function takes on its value »,
times:
f@&) =4 +k(z—-a)*+ - -, k = 0.
F@)=A4+FE —a/)"+ -+ -, k' # 0.

Then, (22) becomes
(= a/) U+ ) == a) et - )
Extracting the »;-th root,
@ = a)F1n At ) = e = a)E A+ ),

k=12, .-, »,

where €1, . . ., ¢ are the »-th roots of unity. From these we
have the »; developments in the neighborhood of a;,

k 1/ v,
Z =a/+ €x<k/> (z—a)+ - -

Hence, although »; values of 2’ become equal at a;, these values
belong to distinect branches. Similar reasoning applies to b;
and c;.

The relation (22), then, gives in the neighborhood of any
point of the z-plane N distinct function elements. These
elements combine to form N single-valued functions of z.  Other-
wise, since there are no branch points, the N sheets bearing the
values of 2’ are not connected. Consider one of the functions,
2’ = T(2). To each value of z there corresponds one and only
one value of 2’. Interchanging the réles of 2z and 2/, to each 2’
there corresponds one, and only one, z. Hence, 2’ = T'(z) is a
linear transformation (Sec. 1, Theorem 3, Corollary 1).

The transformation 7' carries the fixed points of the group
S into the fixed points of the group S’; since when z = a;, b;, ¢;
then T'(z) = a/, b/, ¢i/. Then the group U; = TS;T-! is a
group with the same fixed points and of the same orders as the
group 8’. Is the group U the same as the group S’?

Let U; and S;’ be transformations with the fixed point a;
and the same multiplier. We shall show that the second fixed
points are identical. Suppose they are different. We combine
U; and S/ in all possible ways to generate a group I'. A point
a;’ (#a;’) is carried by each of the transformations into another
of the points a:’; that is, a; has a finite number of distinct
transforms by the group TI. But I contains parabolic
transformations with a; as fixed point (Theorem 2); and by
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repetitions of such a parabolic transformation ¢;’ has an infinite
number of distinet transforms. This contradiction proves
that U; and S; have the same fixed points; whence they are
identical. We thus identify each transformation of U with a
transformation of S’. The group S’ is the transform of S
by a linear transformation, which was to be proved.

The Polyhedral Functions.—The automorphic functions belong-
ing to the finite groups, which, owing to their connection with
the regular solids, are called ‘‘polyhedral functions,’’ are readily
set up. The function f(z) in (17) takes on.each value once in
the fundamental region. Hence (Sec. 43, Theorem 14), the
most general simple automorphic function belonging to the group
is a rational function of f(2).

58. The Extended Groups.—Intimately connected with the
rotations which carry a regular solid into itself are the reflections

A

74; 2

in planes of symmetry which, likewise, carry the solid into
itself. In the cube, Fig. 36, there are nine planes of symmetry:
three planes through the midpoints of four faces (the coordinate
planes), and six planes containing opposite edges. These planes
intersect the sphere Z, in nine great circles. These circles are
projected stereographically on the z-plane in Fig. 38. The real
and imaginary axes and the unit circle Qo arise from the first
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three planes of symmetry mentioned above; the remaining two
straight lines and four circles arise from the latter six planes.

What is the transformation of the z-plane corresponding to
a reflection in a diametral plane of the points of Z,? On making
the inversion which projects =, stereographically on the z-plane,
a diametral plane IT through a great circle C is carried into a
sphere = through C’, the stereographic projection of C. Since
IT is orthogonal to Z,, = is orthogonal to the z-plane and has C’
as equator. Two points on Z, inverse with respect to II are
carried into two points of the z-plane inverse with respect to =
and, hence, inverse with respect to C’. Hence, if the points of =,
be transformed by a reflection in IT the corresponding points of
the z-plane undergo an inversion in C’. Reflection in the nine
planes of symmetry of the cube, then, correspond to inversions
in the nine circles of Fig. 38.

The planes of symmetry divide the surface of the cube into
48 equal triangles. One such is the triangle GHP formed
by bisecting the triangle M HG by a line from G to the midpoint
of MH. This triangle projects on the triangle KNH on the
sphere and the latter projects stereographically on the shaded
triangle in the upper left hand corner of Fig. 38. The triangle
GPM corresponds to the unshaded region in the lower left-hand
corner of Fig. 38; and the remaining triangles on the cube cor-
respond to the remaining triangles of Fig. 38.

Now, let us form a group by combining the reflections in
planes of symmetry in all possible ways. Each such reflection
carries GHP into one of the 48 triangles on the surface of the
cube. Further, by suitable sequences of such reflections,
the whole surface of the cube can be covered; that is, GHP can
be carried into any other triangle. It is easily seen that two
such sequences which carry GHP into the same triangle transform
all points in the same way and so are identical. The group thus
contains exactly 48 transformations. In the z-plane the cor-
responding transformations carry a given triangle of Fig. 38
into each of the triangles of the figure.

This group in the z-plane is known as the ‘““extended group.”
It is found by combining in all ways the inversions in the nine
circles in Fig. 38. Each triangle is a fundamental region for
the group. The transformations are of two kinds. An even
number of inversions is a linear transformation; an odd number
is an inversely conformal transformation of the plane into itself,
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and has the form 2’ = (az + b)/(cZ + d) (Sec. 5, Equation (23)).
There are 24 transformations of each kind. The former cor-
respond to the rotations of the sphere which carry the cube into
itself, since an even number of reflections in diametral planes is
equivalent to a rigid motion. Among the inversely conformal
transformations are the nine inversions from which we formed the
group.

If we shade the alternate triangles in Fig. 38, we note that a
transformation which carries a shaded triangle into a shaded
triangle or an unshaded triangle into an unshaded triangle
is a linear transformation; a transformation which carries a
shaded triangle into an unshaded triangle or wvice versa is a
transformation which reverses the sign of the angle. The former
24 transformations constitute the octahedral group. A shaded
and an unshaded region together constitute a fundamental region
for the group.

It is easy to see that the extended group can be generated
by three inversions; namely, in the sides of any one of the tri-
angles of the figure. By repeating these three inversions, any
triangle of the figure can be carried into any other.

The groups of the remaining regular solids can be extended
in a precisely similar way. We shall not treat the several cases
in detail. By repeated reflections in planes of symmetry, a given
edge aobo can be carried into an edge a;b; in four ways—so that
aoby coincides with a;b; or with b,a;, and so that angles are
preserved or angles are reversed. The extended group cor-
responding to the sequence of reflections then consists of 4F
transformations, where E is the number of edges.

The planes of symmetry divide the surface of the regular
solid into 4F triangles, each formed by joining the midpoint of
a face to the end and the midpoint of an adjacent edge. The
projection of these triangles on the sphere and thence on the
z-plane gives a system of triangles with properties analogous to
those of Fig. 38. From the tetrahedron we get 24 triangles;
from the icosahedron 120; from the dihedron 4n. In each case,
half the transformations are linear transformations and half are
transformations with reversal of the sign of the angle. The
former constitute a subgroup identical with the group of the
regular solid.

The extended groups will reappear in a later chapter in the
study of the Riemann-Schwarz triangle functions.
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II. THE GROUPS WITH ONE LIMIT POINT

59. The Simply and Doubly Periodic Groups.—The groups
with one limit point are of particular interest. They comprise
the groups whose automorphic functions—the simply and doubly
periodic functions—have been studied more than any other
automorphic functions. Further, as we shall find later, these
groups form one of the three classes of groups whose automorphic
functions are employed in the simplest theory of uniformization.

A group with but one limit point can contain no hyperbolic
or loxodromic transformation; for each of the two fixed points
of such a transformation is a limit point. Each transformation
of the group is either parabolic or elliptic. Each transformation
has the limit point as fixed point; otherwise, the limit point
would have a transform which would be a second limit
point. The group cannot consist entirely of elliptic transfor-
mations. For, the second fixed points do not all coincide;
otherwise, the group would be a finite cyclic group. It follows
from Theorem 2 that the group contains parabolic transforma-
tions. The group, then, consists either of parabolic transforma-
tions alone or of parabolic and elliptic transformations.

Let the group be so transformed that the limit point is carried
to infinity. Then all the transformations are of the form

2 = Kz 4+ b,

where K is the multiplier of the transformation. The parabolic
transformations (K = 1) are translations; the elliptic transfor-
mations are rotations:

If the group contains only translations, it is either a simply
pertodic group with a period strip (Fig. 12) as fundamental
region or a doubly period group with a period parallelogram
(Fig. 13) as fundamental region.

We prove these facts briefly. The translations are of the form S; =
z 4+ i, @ being called a ‘“period.” We have 8”18y - « - S, = z +
M + meQe + - -+ 4+ m,Q; that is, any linear combination of periods
with integral coefficients is a period. Now, let all the periods be plotted in
the complex plane. These points have no cluster point. If there were a
cluster point, the transformation S;S;7! = z 4+ Q; — Q;, where ©; and Q; are
taken sufficiently near the cluster point, would have an arbitrarily small
period; and the group would be continuous.

Let w be a nearest period to the origin; that is, one of the finite number
at the minimum distance. Let L be the line joining the origin to w and let @
be any period lying on L. We can write @ = Mw, where M isreal. We
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shall show that M is an integer. Suppose not; and let m be the nearest
integer to M. Then |M — m| < 14; and the period @’ = @ — mw is such
that |@| = [(M — m)w| € Y|w|. This is contrary to the assumption that
w is the nearest period to the origin. The transformation S =z + Q is
then a power of 7 = z + w; namely, S = TM. If all the periods lie on L,
the group is the simply periodic group generated by T'.

Suppose, next, that there are periods not lying on L. Let o’ be at the
minimum distance from the origin among these. Then any period in the
plane can be written @ = Mw + M'w’, where M and M’ arereal. We now
prove that M and M’ are both integers. Suppose not; and let m and m’
be the nearest integers to M, M’. Then |M — m| < 13, [ M’ — m'| £ 15.
Consider the period

Q =Q— (mw + mo') =M —mo+ (M —m)o" #0.
Here we have
2] < Yl + 2’| € |o’].
This is impossible unless @ lies on L. But, then, M’ — m’ = 0 and |Q'| <
14|w|, which is impossible. It follows that M and M’ are integers.

A transformation of the group, S = z + ©, can then be written in the
form S = TMTM') where T' =2 4+ w, Ty =2z + «’. The group is the
doubly periodic group generated by 7' and T:.

We can assume, without loss of generality, that a period of
smallest absolute value is 1. Let @ = z/w, where w is a smallest
period, and transform the group by G.

S=z+9 GSG'=Gluz+ Q) =2+

When Q = w, the periodis 1. Otherwise, [Q/w| > 1, since [2] > |«

The most general group with one limit point and containing
only parabolic transformations is the transform of a simply or
doubly periodic group.

60. Groups Allied to the Periodic Groups.'-—We now consider
groups containing parabolic and elliptic transformations. We
show first that the multiplier of an elliptic transformation is
limited to a small number of possible values. Let S =2z 4+ @
and S, = Kz 4+ b be a parabolic and an elliptic transformation
contained in the group. Then the translation

S8t = sl<z—£ b4 9) — 2+ KQ

has the period KQ. Let the minimum period be 1; then, taking
Q = 1, K is a period. Now, the multipliers of the transforma-
tions with a common fixed point of order » are
Ky(=621rf/y), K”2, R Kyv—l_
1 For the treatment in this section and the next see KoEBE, P., Math. Ann.,
vol. 67, pp. 164-168, 1909.
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These multipliers—the »-th roots of unity—liec on the unit
circle Q.

The possible values of K and the periods +1 must be so
spaced about @, that the distance between any two distinct
periods is not less than 1. Otherwise,
there is a period of smaller absolute value K
than 1, contrary to hypothesis. If v >7,
(Fig. 39) we have |K, — 1| < 1, which
is impossible. If » = 5, we have |K,?

+ 1| < 1, which is impossible. Hence, -1
v is limited to the values 2, 3, 4, 6.
Also v = 4 and » = 3, or » = 6, cannot
both appear; since |Ky — K;| < 1 and K2
|[Ky — K¢| < 1.

Two elliptic transformations with the
same multiplier, S; = Kz + b, S; = Kz + b/, have constants b,
b’ which differ by a period. For,

s2sl—l=K<z;{b)+b'=z+b'—b,

K,

Ks

which has the period b’ — b. Conversely, if Q is any period,
there is a transformation with the multiplier K and the constant
b + Q; namely, where S = 2z + Q,

SS; =Kz+b+ Q.

Then all transformations with the multiplier K which the group
contains, and no others, are comprised in the formula

Si=Kz+ b+ @ (23)
where b is the constant for one such transformation and Q;is any
period or zero. The finite fixed point of (23) we find to be
b4+
Et‘ - —1-__:?

In locating the fixed points from (24), it suffices to find those
which lie in a period strip or period parallelogram of the subgroup
of translations. The remaining fixed points differ from these
by periods. For, if U is any transformation of the group, US;U-!
has the same multiplier as S; and has the fixed point U(%;). In
particular, each fixed point has a congruent fixed point lying in
the period strip or period parallelogram.

We treat first the case in which » = 2 for all the fixed points;
so K = —1. We can transform the group by a translation

(24)
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carrying b to the origin; so we can take b = 0. The resulting
transformations,

Si=—2+4+Q, Ti=2+ 9,

where the T'; form a simply or doubly periodic group, are easily
shown to be a group. The fixed points, from (24), are §; =
Q./2. The location of the fixed points (marked ‘“2”’) in a
period strip and a period parallelogram are shown in Figs. 40 and
41. The half of the strip or parallelogram whose congruent sides
are joined by arrows is a fundamental region for the group. We
verify readily that certain transformations carry the region into
regions abutting along each of its sides, and that all except the
identical transformation carry it outside itself.

Fia. 40. Fia. 41.

If » > 2, the subgroup of translations cannot be simply
periodic. For K, is then a period which is not a multiple of 1.
Since K, is at a distance 1 from the origin and no period can be at
a less distance, we may, according to the previous section, take
K, as the period of the second generating transformation. The
doubly periodic subgroup is generated by T =2 + 1 and T =
2 + K,. The doubly periodic group is, thus, a very special one.

Consider the case » = 4. We have Ky, = 7, K2 = —1 = K,,
K3 = —i. Since K,* = 1, we may write the transformations,
both elliptic and parabolie, in the form

S; = K2 + Q; = Kgnz +m + m/i.
Both group properties are readily established for these trans-

formations.
For K = ¢and K = —1 we have from (24)

_m+mi _ (1+7)(m+ mh) g~—"—1—+—7ﬂ
hEroy T 2 P BT
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The first formula gives the points marked ‘“4’: in the period
parallelogram in Fig. 42. The second gives those marked “47”’
and in addition those marked “2.” These latter points are of
order 2. The fixed points when K = —1 are, of course, the same
as those for K = 7. We can show easily that the square whose
congruent sides are connected by arrows is a fundamental region
for the group.

4 ? 4
2 4 -2
s
N
4 2 4
Fic. 42.

The cases » = 3 and » = 6 are pictured in Figs. 43 and 44.
The group in each case is

Si=Km2+m+mK,, n=1,2, ..., n
The fixed points are located as in the preceding figure. In the

latter case there are fixed points of three orders, 2, 3, and 6.
In Fig. 43, the parallelogram has been drawn from the periods

3 3

<
(Y

Fig. 43. Fic. 44.

1 and K; 4+ 1(=Kj); this latter period is at a distance 1 from
the origin and may be used, as well as Kj itself, as the period of
the second generating transformation.

We observe that in Figs. 42, 43, and 44, the transformations
connecting congruent sides of the fundamental region are elliptic.
Each of these groups is generated by rotations.

The groups constructed in this section, together with their
transforms by means of linear transformations, include all
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the groups with a single limit point which contain elliptic
transformations. .

61. The Automorphic Functions.—We shall now set up all the
simple automorphic functions for the groups with one limit point.
We suppose the group so transformed that the limit point is at
infinity, the smallest period is 1, and an elliptic point of highest
order (if elliptic points exist) is at the origin.

For the simply periodic group, the function e is an auto-
morphic function taking on each value once in the period strip.
Hence (Sec. 43, Theorem 14), the most general simple automorphic
function connected with the group is a rational function of e2iz,

In the group of Fig. 40, the function cos 27z is a simply periodic
function which takes on each value twice in the period strip
(since it has two zeros, z = +14, in the strip). Now cos 2r
(—2) = cos 2rz. The function thus admits the elliptic
generating transformation; so it is automorphic with respect to
the group of the figure. It takes on each value once only in
the upper half of the strip, the other value being taken on in the
lower half. According to Theorem 14, cited above, the most
general simple automorphic function connected with the group is a
rational function of cos 2rz.

The group of Fig. 41 is treated similarly. The Weierstrassian
function ) :

T’(Z) = 212 + E:['(?;}W - ?21?:,’ (25)

the summation being extended over all non-zero periods Q;, is
a doubly periodic function with a pole of the second order in the
period parallelogram. Hence, B(z) takes on each value twice in
the period parallelogram. But P(z) is an even function,
PB(—2z) = P(z)—as we see on changing z to —z and Q; to — Q;,
which does not alter the set of periods. Then $(2) takes on each
value once in the fundamental region of the figure. The most
general simple automorphic group is a rational function of PB(z).

For the doubly periodic function itself there is no automorphic
function with a single pole in the period parallelogram in terms
of which to express all automorphic functions rationally. Let
f(2) be a simple automorphic function belonging to the group;
that is, an elliptic function. = Then f(z) can be written in the form

@) = 14[f(2) + f(=2)] + 24[f(2) — f(—2)].
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Here, f(—2) is also an elliptic function. The first term is an
even function of 2; and so is automorphic with respect to the
group of Fig. 41. It is a rational function of P(z). The second
term is an odd function. Now P’(z) is also an odd elliptic
function. Hence, 14[f(z) — f(—2)]/P'(z) is an even function
and so is a rational function of PB(z). The most general simple
automorphic function is then

f(2) = Ri[B(2)] + B’ () R:[B(2)],
where R; and R, indicate rational functions.
Consider now the groups of Figs. 42 to 44. The transforma-
tions here are of the form
=Krze+ Q, n=12, ..., p (26)
where » = 4,3, or 6. The function $(2) is not automorphic with
respect to the groups. We have, from (25),

1 ’ 1 1
B(z:) =m+2 [(K"z—{- Q — Q) _Q_ﬁ]

) ey @)

Now, the division of a period Q; by K,” amounts to rotating it
through the angle —2xn/» about the origin and carries it in
each of the three cases into another period ?;/. Such a rotation
carries the set of all periods into itself. We have, then,

1 1 ' 1 1
B@) = gm [<z Fonyt E[@ +o/ - et 9—”
= e BC + 2 = 2B, 27)

For » =4, (Fig. 42) K = +¢, +1 and K, = +1. Then,
B(2)? is automorphic with respect to the group. PB(z)? has a
pole of the fourth order in the period parallelogram and takes on
each value four times. The period parallelogram contains four
copies of the fundamental region in the figure. Hence, the
function takes on each value once in the fundamental region. It
follows (Sec. 43, Theorem 14) that the most general simple auto-
morphic function belonging to the group is a rational function
of P(z)2

Differentiating (27) and (26), we have

T& ( l)dZ] = K, Z"SB ( )’ dz7 = K,,",
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whence,
Be) = m PG (28)

If » =3 (Fig. 43), K, is a cube root of unity and K,’» = 1.
Then PB’(2) is automorphic with respect to the group. P’(z)
has a pole of the third order and takes on each value three
times in the period parallelogram. The period parallelogram
contains three copies of the fundamental region of the figure;
hence, the function takes on each value once in the fundamental
region. The most general simple automorphic function belonging
to the group is a rational function of P’(z).

If v = 6 (Fig. 44), K, is a sixth root of unity and K,3» = +41.
Then P’(z)? is automorphic. This function has a pole of the
sixth order and takes on each value six times in the period
parallelogram. The period parallelogram contains six copies of
the fundamental region of the figure; hence, the function takes on
every value once in the fundamental region. The most general
simple automorphic function belonging to the group is a rational
function of P’(z)2

III. THE GROUPS WITH TWO LIMIT POINTS

62. Determination of the Groups.—The remaining elementary
groups—those with two limit points—are of less interest. We
shall derive them briefly. Given such a group, so transformed
that the limit points are zero and infinity. Then each trans-
formation must carry a limit point either into itself or into the
other limit point. The transformations (a) which have 0 and
« as fixed points; and (b) which carry 0 to « and « to 0, are
readily found to have the following forms:

@2 =Kz, ()2 =5 (29)

The former are hyperbolie, elliptie, .or loxodromic transforma-
tions, according to the value of K;; the latter are elliptic with the
fixed points ++/c;.

Taking logarithms in (29) and setting log z = w, log 2’ = w’,
log K; = Q;, log ¢; = Q;/, we have

(a) W =w+ Q@ + 2mni, () w = —w + Q + 2nxz, (30)
the integers m and n depending upon the values used for the
logarithms. If the transformations in (29) form a group, so,
also, do those in (30), and conversely. The group (29) is con-
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tinuous or discontinuous according as (30) is continuous or
discontinuous. Thus, (30) is continuous if it has arbitrarily
small periods, Q; + 2mn? = e. Then log 2’ = log 2z + ¢ and
2/ = ez, which differs arbitrarily little from the identity.

The groups (30) are of the type studied in Secs. 59 and 60
for v = 2. Suppose, first, that the transformations (b) do not
appear. In (a) we can take one of the primitive periods to be
a pure imaginary. Since 27 is a period, this primitive period
is of the form w = 2n¢/k, where k is an integer. If there are no
periods other than multiplies of w, the group (30)(a) is simply
periodic and is generated by the transformation v’ = w + w.
The group (29)(a) is then generated by 2/ = ewz = eritkz. It
is a finite eyclic group and can be discarded, since it has no
limit points.

If (30)(a) is a doubly periodic group, let w, ' be a pair of
primitive periods, w being the period found above. Then o’ is
not a pure imaginary. The general transformation of the group
is w' = w + mw + nw’ and the general transformation of the
original group is 2’ = emetnw’z, If k = 1, so that w = 2r¢, then
em> = 1 and the group is simply 2’ = e"’2. Putting K = e/,
K, = e», we have the following types of groups:

(A) 22 = Krz; (B) 2 = K*K;m2 |K| % 1, K; = e?i/k,
(A) is a hyperbolic or loxodromic cyclic group. (B) contains
elliptic and loxodromic transformations and possibly also
hyperbolic transformations.

If the transformations (b) appear in (30), they have the form
(Equation (23) with K = —1)

w = —w + b + me + nw'.
The group can be transformed by a translation that carries b
to the origin (which amounts in (30) to a transformation carrying
AVeto1);so we can takeb = 0. Fromlogz = — logz 4 mw +
nw', we get 2’ = emwtner [z 'We have then the following further
groups:
(C) 2 =Kre, 2 = I—{-; (D) 2 = K»K\"2, 2 = K"Kym,

P z

For any values of K, K; such that |K| % 1 and K, = e%ri’k the

sets of ‘transformations (4)-(D) form groups of the kind sought.
The most general groups with two limit points are the groups (A)-

(D) and their transforms by means of linear transformations.



CHAPTER VII
THE ELLIPTIC MODULAR FUNCTIONS

63. Certain Results from the Theory of Elliptic Functions.—
The earliest automorphic functions to be studied were the
elementary ones—the circular functions, the elliptic functions,
and the rational or polyhedral automorphic functions. Of the
non-elementary functions the so-called “elliptic modular func-
tions’’ were extensively studied before the erection of a general
theory of Fuchsian functions. By an elliptic modular function,
or more briefly, a modular function, is meant a stmple automorphic
function belonging to the modular group or to one of its subgroups.!

In Sec. 37, we constructed the
fundamental region for the
modular group. By transform-
ing the group so as to reduce
infinity to an ordinary point,
we could set up automorphic
functions by means of the theta
series of Poincaré (Chap. V).
Instead of following this process,
however, we prefer to follow the
historical order of development
and to derive the modular func-
tions in such a way as to bring
out their connections with the elliptic functions. To this end we
recall certain of the properties of the Weierstrassian function P(2).

Let w, o’ be a pair of primitive periods so denominated that for
the ratio

\

A ———

\
e ——
€

Fia. 45.

’

w .
f=—(;=z+zy, 1)

1 The most complete treatise on these functions is Fricke-KLEIN, ““Vor-
lesungen iiber die Theorie der elliptischen Modulfunktionen,” two volumes
of some 1450 pages. See, also, VivanTi, ‘“Fonctions polyédriques et modu-
laires.” Brief accounts will be found in HurwiTz-CouraNT, ‘‘ Funktionen-
theorie,”” 2nd ed., pp. 220-230, and in BIEBERBACH, Lehrbuch der Funktionen-
theorie, vol. 2, pp. 95-114,

148
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y is positive; that is, which shall be called v and which o’ is
governed by the requirement that the angle wOw’ shall be positive
and less than = (Fig. 45). We use the symbol @ = mw + m'o’
for the general period. The elliptic functions

BE) =+ E'[@_—IQ—)—Z - ;] | (@)

where the summation extends to all non-zero periods, and its
derivative

oy — 2 T
P'(z) = 2 22 '(_z“—_—@;;' 3)
are connected by an algebraic relation (Theorem 12, Sec. 43).
This relation is the following

P'(2)? = 4B(2)* — g2B(2) — g5, 4)

4 ’
2 : 1 2 : 1
ge = 60 @7 Js = 14:0 ?26. (5)

This relation is got most easily by combining P(z) and P’(z) into a
polynomial in such a way that the pole at the origin disappears. Then
the polynomial reduces to a constant (Theorem 10, Sec. 42). In the
neighborhood of the origin, we have

1 1 2z | 322 | 423 b2
G- aetetatgtogt

!
We now insert this value in (2) and sum. We note thatz

where

1 1

QT e @8
= . - . = 0 by virtue of the fact that the term containing @ = mw + m'w’
is cancelled by the term containing € = —mw — m'ew’. We have

1 "1 "1
P) = 22 3222‘94 5242 Qb B
or
1
B(2) =22+g(2)z2+g§z4+ e

From this series, we have, at once, the following:

, 2 .9 g:
%(z)=_25+1(§z+"7323+""
1 30 3¢5 |
B@® = s t90a T og T '

e =t 202 _4gs
@ = =527 T

On combining these equations we find
P'(2)? — 4P(2)° + 2P() = —gs +c2* + - - -
The first member of this equation is an elliptic function with no singularity

in the fundamental region; hence, it is a constant.
Setting z = 0, we see that its value is —g; and (4) is established.
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The function P’(2) satisfies the following:

(-9 -5 (- ()

the first of which follows from the fact that —Q/2 and Q/2
differ by a period and the second from the fact that $’(z) is an
odd function of z. It follows that if P’(z) is analytic at Q/2;
that is, if Q/2 is a half period, then P’(2/2) = 0. Three of
these half periods lie in the period parallelogram. The three
quantities

T ST T

are then the roots of the equation
43 — got — g3 = 0. ©)

The three quantities e;, es, e; are unequal. PR(z) takes on
each value twice in the period parallelogram. Since P’(z)
vanishes at w/2, P(2) takes on the value e, twice there, and so
cannot take on the value e, elsewhere in the parallelogram. By
similar reasoning e, and e; are unequal. The condition for
equal roots in (7) we find readily to be the vanishing of the
expression

A= 923 - 27932. (8)
Hence,
A0

64. Change of the Primitive Periods.—We consider the
problem of finding all pairs of primitive periods; that is, periods
in terms of which we can express all other periods by adding
integral multiples of the two periods. The periods

w, = ' + bw, w; = cw’ + dw 9)

a, b, ¢, d being integers, are primitive periods if, and only if, w, o’
can be expressed as sums of integral multiples of w;, ,’. This
condition is necessary, by definition. It is also sufficient.
For, any period @, being expressible in integral multiples of
w,w’, is then expressible in integral multiples of w,, w,’. Solving
(9) we have

o = aw, + Bwi, @ = yw,' + dw;,

where, putting D = ad — be,

d b c
a———D—: ﬁ-——D: ")’-———D’ 0 =

Si=
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Then
d—b 1
aa — B'Y == a > c = -

If @, B, v, 6 are integers, then 1/D is an integer; whence, D = +1.
Obviously, if D = +1, the four quantities are integers. Hence,
the necessary and sufficient conditions that (9) be primitive periods
ts that ad — bc = +1.

The ratio of the new periods satisfies the relation

. (10)

Let us require that the periods be so named that in the expression
71 = x1 + 11, y: shall be positive. Then 7; as well as 7 lies in
the upper half plane. Now, the transformation (10) is non-
loxodromic if D > 0 and is loxodromic if D < 0. In the former
case, the upper half plane is carried into itself; in the latter it
is carried into the lower half plane. We have then
ad — bc = +1. (11)

The set of transformations (10) is the modular group.

656. The Function J(r).—Expressing the quantities (5) and
(8) in terms of the ratio r, we have

! 1
9 = Y = 60 E: S S
gz g2(w) w ) d (mw /w1)4
60~ 1 1
= ol E (*m*"*vr'j; = ;’192(1, ™)

L A0~ 1 1
5= 906 = 0 D e = 0317

1
A= A(""J wl> = g2(wy w')ﬁ - 2793((-") w,)2 = w_le(l, T)-

(12)

It is a well-known result that the series (5) converge abso-
lutely for any pair of primitive periods w, »’ whose ratio is not
real. Hence, the series for g»(1, 7) and g3(1, 7) converge abso-
lutely for any value of 7 which is not real. We show below
that these series converge uniformly in any closed region not
containing real points. From this, it follows that ¢.(1, 7) and
gs(1, 7) are analytic functions of 7 in the whole upper half r-plane.
So also, then, is A(1, 7).

We niay establish the uniform convergence as follows: Let S be a closed
region in the r-plane not containing real points. Let n be the minimum
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distance from the boundary of S to the real axis; and let |r| < N in S.
We now show that e > 0 can be chosen sufficiently small that

|m + m'z| > elm + m'i]; or |m + m'r|* — &|m + m'i|2 > 0,
for all values of m, m’ in the summation and for all = in S. Writing r =
z + 1y, the first member of the last inequality may be written
lm + m'z + im'y2 — &|lm + m'i|?
= m? + 2mm'c + m'’z? + my? — Em? — em'?

= m2[1 _ 52] + ['1m + Icm'alc]2
k? . k

+ m 2 — (B — 1)a2 — €.

Here, since z is bounded, |z| < N, and |y| > 7, we can take k(>1) near
enough to 1 and e(>0) small enough that all the terms in the last member are
positive whatever m and m’ are; which establishes the desired inequality.
The terms of the series for g.(1, 7) are less in absolute value than the cor-
responding terms of the series of positive constant terms

! 1
2 m + m'i|tet
which is known to converge. It follows that the series for g.(1, 7) converges

uniformly in 8. The uniform convergence of the series for gs(1, =) is simi-
larly established.

We now combine the quantities in (12) to form a function
from which the factor w cancels and which is, therefore, a function
of the ratio r alone: \ (L8

_ g2 _ g4, T .
JO =X =N (13)
The numerator and denominator are analytic functions of r, and
the denominator does not vanish, in the upper half plane.
Hence, J(r) is analytic in the whole upper half r-plane.

Let w, ' of given ratio o’/w = 7 generate a group. Then, the
periods w,’ = aw’ + bw, w1 = cw’ + dw, where a, b, ¢, d are any
integers such that ad — bc = 1, are primitive periods for the
group. Since the new periods generate the original group, they
lead to the same P-function and to the same constants g2, g3, A.
Hence, the function J is unaltered. Now, the ratio of the new
periods 7, = w,’/w, is connected with that of the old by Equation
(10); hence, we have, for any transformation of the modular

group, .
ar + b _
J(cr T d) = J(r). (14)
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66. Behavior of J(r) at the Parabolic Points.—J(7) is analytic
at all finite points of the fundamental region R, of Fig. 46. We
now consider its behavior at the upper end of the region. The
sides which meet at infinity are congruent by the transformation
7 =74+ 1. In accordance with Sec. 41, we make the change

of variable
t = e?rir, (15)

This transformation maps the part of R, above the line DEF,
with the equation y = k > 1, on the interior of the circle K whose
equation is |{| = e~?*, congruent points on the two sides going
into coincident points on a radius (Fig. 47). The function J
takes on the same values at a point of this radius other than the

I |
D :E F
|
Ry
I
|
|
IC
A ! N
/ | B \ K
/ | \
/ | \
)
-1 0) 1
FiG. 46. F1c. 47.

origin, when approached from the two sides, and so is single
valued and analytic in K, with the possible exception of the
origin. This is also true of ¢:(1, ) and g¢s(1, 7), for each is
unaltered by the transformation 7/ = 7 + 1. Thus,

’ 1
0l 7 1) = 60 G 1)

! 1
=0 2 o
= g1, 7), (16)

the terms of the second sum being merely a rearrangement of
those of the sum defining go(1, 7). Similarly, gs(1, 7 4+ 1) =
g3(1y T)'
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In order to express g.(1, 7) and g¢s(1, 7) as functions of ¢, we
shall employ two well-known expressions for the cotangent:!

1 ’ -
7rcot7ru=a+2 [u-}l-m_%i] 17)
and neTE
cotru—zw—’_i w = erin,
whence,
weot mu = —mi[l + 2w + 2w? 4+ 2w3 4+ - - - . (18)

We now equate the second members of (17) and (18) and differ-
entiate, respectively, three and five times with respect to u, using
each time the relation dw/du = 2riw. We have the following
results:

1
-6 > ey = 1ot + 8wt -,

m= — o

1
- T g — 6 2 PN
120 > (s = 6470 + 3200 4 -,
where the terms 1/u* and 1/u® have been put under the sign of
summation. Setting u = m'r (m’ > 0), so that w = e?in't =
t™ we have

1 8nt | ,
D s gl s

m=— o

1 8%, , '
> b = sl T2 A ]

m= — oo

We can write?

)

60[ > L4 > E(?lemi_y

m=— o m =1 m=— o

}: -+ 1675 E(tm’ + 8¢2m 4 . .. )]

. m' =1
1 For the first, see Oscoop, W. F., “Lehrbuch der Funktionentheorie,” 2nd
ed., p. 507.

’ ’
1 1
2The values of E s a0d E ;o Which are used here and in (20) are

92(1} 7)

It

1. .
readily got from (17) by expanding = cot nu — u I powers of u, differ-

entiating three and five times, and setting v = 0.
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Now, the functions in the last summation are analytic in the
whole interior of K, including the origin. Since the series
converges uniformly on the circumference of K, the sum is an
analytic function throughout K. Also, we can collect the
powers of . We have

g2(1,7) = 7444 + 320t + - - - ]. (19)
Similarly,
~ ' - 1
sl ) = 14"[ 2t S X ]
m=—o m'=1 m=— o
25 1675~ ., m,
= 140 [975—?2(;: + 326 ... )]
m’ =1
= {35, — 44350 + - - -] (20)
From (19) and (20) we find
AL, 7) = g2(1, 7) — 27¢3(1, 7)2 = ='2[409G¢t + - - - ], (21)
and finally
T = BT T 8200 - )
A, 7) ~12(40067 + - - - )

The function J(r), when expressed in terms of ¢, thus has a pole
of the first order at ¢ = 0.

67. Further Properties of J(r).—The function J(r) has a
single pole of the first order in Ry, according to the convention of
Sec. 42. It, therefore, takes on each value once in R, (Theorem
11, Sec. 42).

TueorREM 1.—The function J(r) takes on each value once, and
only once, in the fundamental region.

Applying Theorem 14, Sec. 43, we determine all functions which
are automorphic with respect to the modular group and have no
other singularities than poles in the fundamental region.

TueoreEM 2.—The most general simple automorphic function
belonging to the modular group is a rational function of J(r).

We next consider the values of J(r) at the vertices A, B,
Cof R,. At A wehaver =p = —14 + 14in/3. Here, pisa
cube root of unity, so p> =1 and p2+p+1=0. If, in

! 1
(1, ) = 60 X G gy



156 THE ELLIPTIC MODULAR FUNCTIONS [Sec. 67

we multlply numerator and denominator by p8, thus 1nsert1ng a
factor p? in each factor in the denominator, we have

GOPSE (mp2 + m/)4

,jl . 1
60p22‘ (' —m — mp)* p*g2(1, ),

for the terms of the last summation are merely those of the
original sum arranged in a different order. From this, since
p? # 1, we have

g2(1, p)

g2(1, p) =0, J(p) = 0. (23)
J vanishes also at the congruent point B.
At C we have r = 7. Then,

~’ 1
1902, G g iy
= 140162 ———1——7— = —ga(l,’i).

(mz — m’)®

g3(1: 7’)

From this we have

We propose now to find all points of Ry at which J(7) is real.
We consider the reflection of a point 7 in the imaginary axis;
namely 7 = —7, where, as hitherto, the bar indicates the
conjugate imaginary. We have

N — S T - I S
92(1; T) = 602 (m’__ m’f)“’ 92(1) T) = 602 (m + ,'nfl,l;.—)ky
50, g2(1, 7') = g2(1, 7). Similarly, gs(1, ') = gs(1, 7); and
J@") = J(7). (25)
There are two cases in which J(7') = J(r). If 7 lies on the
imaginary axis, it coincides with its reflection, and 7’ = . If
7 lies on the boundary of R, its reflection ' lies at a congruent
point on the boundary at which J has the same value as at r.
In both cases we have
J(r) = J(@),
and J(r) is real. That is, J(r) is real on the boundary of R,
and on the imaginary axis.
There are no further points of R, at which J(r) is real. For,
if the function is real at any other point 7; of Ry, we have J(r;)
= J(r;) = J(1"); and the function takes on the same value
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at the two distinet inner points 71, 71/ of R, which is contrary
to Theorem 1.

It follows from the preceding that the imaginary part of the
function J(r) = u + i has always the same sign in each of
the halves into which the imaginary axis divides Bo. If o, > 0

and v;, < 0 at two points of R, on the same side of the imaginary

axis, and if 7 trace a curve A from 7, to 7, lying in R, and not
meeting the imaginary axis, then » = 0 at some point of . At
this point, the function is real, which is contrary to what we have
just proved.

It remains to find in which half v is greater than zero. Asr
moves from A to C along the boundary of Ry, J(r) moves from
0 to 1 to the right along the real axis in the J plane. Points in
the neighborhood of the first path and to the left of it go into
points in the neighborhood of the second path and to the left of
it; that is, into points.of the upper half J-plane. Thenv > 0 in
the left half of R,. S :

We collect our results into the following theorem:

THEOREM 3.—Writing J(r) in terms of its real and imaginary
parts, J(r) = u + w; then v > 0 at the inner points of R, to the
left of the imaginary axis; v < 0 at the inner points of Ry to the
right of the imaginary axis; v = 0 on the boundary of Ry and on
the tmaginary axis. Also, v,’ = —uv,, where 7’ is the reflection of -
in the tmaginary axis.

The last statement of the theorem is an immediate conse-
quence of (25).

The function z = J(r) maps the left half of R, in a one-to-one
manner on the upper half z-plane and maps the right half similarly
on the lower half-plane. Asr moves upward along the imaginary
axis from C to «, z moves from 1 to the right to 4+ . The
two halves of the z-plane are joined to the right of 2 = 1. R,is
mapped on the z-plane bounded by & slit which extends along the
real axis fromz = 1 toz = —o.

68.\~The Function A(r).—Of the elliptic modular functions
belonging to a subgroup of the modular group, and not auto-
morphic with respect to the whole group, we shall treat here
only one. The function which we shall consider is defined as

follows,

A = Zz;e“ (26)

1 — €3
where ey, e;, e; have the definitions given in Equation (6).
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We note first that \ is, in fact, a function of the ratio  alone:-
We write B(z; w, »’) to call attention to the dependence of the
PB-function on the periods. Since all the terms in the series (2)
defining P are of the (—2)nd degree in 2, w, w’, we have

B(z; 0, o) = k2P(kz; ko, ko'), k 5= 0. 27)

Applying this to Equations (6), taking £k = 1/w, we have

c (o) = (i) |

e =P w-;w,; w}“’) iE(l-}m‘r, 1, T)) (28)

e3=%(%;“’: )'— 2%<2: ))

On forming the quotient in (26). » cancels, and M is a function
of = alone.

The uniform convergence of the series that define the func-
tions of 7 appearing in (28) can be proved for any closed region
in the 7-plane which does not contain points of the real axis.
This proof follows the lines of the convergence proof in Sec. 65
‘and will not be given here. These functions are then analytic
in the upper half plane. Since e,, e;, ;s are unequal, A\ (7) s an
analytic function of r, and nowhere takes on the value O or the
value 1, in the upper half r-plane.

Consider the group generated by a pair of periods w, ' whose
ratio o’'/w is 7. Let wi, w,’, Equation (9), be a second pair of
primitive periods with the condition that ad — bc = +1. The
ratio of the new periods is given by (10). For the new periods,
we have

e = $(_(:L_—;jw> o) = %<cw + dw —|2— aw’ + bw)’
(29)

e

Since we are dealing with the same group and, hence, have the
same P-function, we have the same constants as before. They
are possibly arranged in a different order. And a rearrangement
of the constants in (26) alters the value of A, in general.
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= If now (co’ + dw)/2 and w/2 differ by a period, that is, if
(cw’ 4+ (d — 1)w)/2 is a period, we have

91;(90)’ ;_ dg) — %(;)’ or ell = ¢,.

This occurs if, and only if, ¢ is even and d is odd. Similarly, if
(aw’ + bw)/2 and w’/2 differ by a period, that is, if ((¢ — 1)’ +
bw)/2 is a period, we have e¢;’ = e;. This occurs if a is odd and
b is even. If the preceding conditions hold, the remaining
roots are equal, ex’ = e,, and X is unchanged.

Now if b and ¢ are even, b = 2b’, ¢ = 2¢/, then, a and d are
necessarily odd, as a consequence of the relation ad — bc = 1;
and we have

ar + 2b’
<§c’—r_+—d

) = \(r), ad — 4b¢ = 1. (30)

A(7) is thus unaltered by all the transformations of the subgroup
treated in Sec. 38 and whose fundamental region was found in
Fig. 30. (For convenience this region is repeated in Fig. 48.)

69. The Relation between \(r) and J(r).—If we make a
transformation of the modular group which does not belong to
the subgroup of (30), there is an interchange of the roots ey, es, €.
All values of (26) which can result are contained in the following
table:

€y — €3 €3 — €1 1 € — €9 A—1
_=)\, = y = )

e — €3 e2—¢€ 1 —N e3—e A 31)

€y — €3 1 €3 — €3 __ A €y — €

% -t 11—
ea—e; N e—e AN—1 e;—e )\j

These six transformations of A constitute a group, namely, the
group of the anharmonic ratios (Sec. 36).

If, now, we form a rational symmetric function of the six
quantities (31), we have & simple automorphic function F(r)
belonging to the modular group. For, in the first place, any
modular transformation merely interchanges the quantities
€1, €2, e3in a certain way and does not alter a symmetric function
of these quantities. And, in the second place, such a symmetric
function of the roots can be expressed as a rational function of
the coefficients gs(w, '), g3(w, '), and, hence, also of g»(1, 7),
gs(1, 7). The latter two functions have no singularities other
than poles in R, (including the parabolic point); whence, a
rational function of them has no singularities other than poles.
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Then F(r) is a simple automorphic function. It follows from
Theorem 2 that F(r) is a rational function of J(r).
We shall consider the following symmetric function:

£ = o+ 0 Ly ) (M +1)<1+1)<X—}1+1)
(O +1)%2 = NN — 1) dor
N 4+ 2 — 2\ A —

- (T = N ' (32)

Putting this in terms of ey, e, €3, we have

(2 + €1 — 2e5)*(e2 + €3 — 2e1)*(er + €5 — 2e2)* (33)
(e1 — e2)(e2 — e3)(e1 — e3)?

From Equation (7) we have e; + e; + e3 = 0, eieses = g3/4.

-Using these relations, we can write the numerator of (33) in the

form

F(ir) = —

36
(“363)2<—361)2(‘362)2 = Fg:iz‘
The denominator of (33) is equal to the discriminant of (7), save
for a constant factor. We have, in fact,

(e1 — €2)%(ea — e3)%(er — €3)2 = }{6(923 — 27g5°).
Then,

_ 3sg 2— _ _
F(r) = i = 57932 = 271 — J(»)]. (34)

From (34) and (32) we have, with a little calculation,

F(r) 4 (1 —=N+n)3
27 T 27T N1 — N2
70. Further Properties of \(r).—We first note that for each
point of B, there exist five other points which are congruent by
the modular group. In Fig. 49 we have superposed the modular
division of the plane on B,. Representing the left half of R,
and the triangles congruent to it by the + sign and the right .
half and its congruent triangles by the — sign, we observe that
there are exactly six copies of each. Then J(r) takes on each
value siz times in B,.

We next show that A(r) is a simple automorphic function.
The only doubtful matter is its behavior at the parabolic points.
Consider the parabolic point at infinity. If, in accordance with
Sec. 41, we make the change of variable ¢, = e (the sides of By
being congruent by the transformation 7 = = + 2), the upper

J(r) =1-— (35)
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end of By is mapped on a region similar to Fig. 47, and \ goes
over into a function of ¢; which is analytic in the neighborhood
of the origin. If N has an essential singularity at ¢; = 0, it takes
on certain values an infinite number of times. Then, from (35),
J takes on certain values an infinite number of times in By, which
is impossible. Hence, X is analytic at {; = 0 or has a pole there.
Similar remarks apply to the other parabolic points. Then \(r)
is a simple automorphic function. It, therefore, takes on each
value the same number of times.

|
|
] R
Bo
>
|

. P + —

r | \ -
|
1

L
a1 ) 1 -1 1
* Fiag. 48. Fia. 49.

The exceptional values 0, 1, «, which are taken on nowhere
in the upper half plane, are necessarily taken on in the para-
bolic points 0, +1, <. The points +1 and —1 are\congruent
and bear the same vg.lué ‘We sha.ll now deternfine in which
points these values are taken on One method of procedure
would be to seek the limit approached by A\(7) as 7 approaches the
parabolic point from within the region. An easier method is the
following:

Let us make the change of periods (see (9) and (10))

3
w! =0 +w 0y =w 7, =7+ 1.

The new constants are

T fs) )
i = ‘B<92£> = gB<w _lz_ wl) = 63, € = e,

)\,_82/—63,_63—62_ A
= = = = i
e’ — e3 e — €y A —

and




162 THE ELLIPTIC MODULAR FUNCTIONS [Sec. 70

Now, when we make this change of primitive periods, r = 0, —1,
o go into 7/ = 1, 0, =, respectively; and A = 0, 1, « go into
N =0, «, 1, respectively.. Since 7 = « is unaltered, the
corresponding value of A is unaltered. Hence, A() = 0.
Again, make the change of periods

w1' = —w, w1 = (.0/, T = —;
Then,
e/ = gB wy — gB (A_’{ = ¢4
1 2 2 3
ey = 413(‘321) = i13<—;’> = ey, € = ey
and
N=2"%_1_2»
€3 — e; ’

Here,r = 0, —1, © gointor; = =, 1,0, respectively;and A = 0,
1, © go into M =1, 0, «, respectively; whence, \(+1) = «,
A(0) = 1.

We shall now prove the following theorem:

TuEOREM 4.—The function \(r) takes on each value once, and
only once, in the fundamental region B,.

Each simple automorphic function belonging to the subgroup s
a rational function of (7).

We find, first, the order of the zero of \(r) at the parabolic
point at . As7 — o« in By, A = 0, and, from (35),

N — 444, (36)
Changing the variable to ¢; = e, we have from (22) and (15)
=1 S 2
J—1728t+00+01t+"'—1728t12+00+0111+"'

J thus has a pole of the second order at ¢, = 0. Hence, from
(36), X has a zero of the first order. Since A(r) has one, and
only one, zero in B,, it takes on every value exactly once.

The second statement of the theorem is a consequence of
Theorem 14, Sec. 43.

The reality of A(r) can be treated by the method used in
studying the reality of J(r). We find here, also, that \(—7)
=X\(r); and by repeating practically verbatim the reasoning in
connection with Theorem 3, we show that \(r) is real on the
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boundary of By and on the imaginary axis. The right half of B,
corresponds to the upper half A-plane.

We close the chapter with a general theorem concerning
modular functions.

THEOREM 5.—Given a subgroup of the modular group whose
Sfundamental region consists of k copies of the fundamental region
Ry of the modular group. Then any simple automorphic function
f(r) belonging to the subgroup s connected with J(r) by a relation
of the form

<I>(f yJ ) =0,

where ® is a polynomial of degree not exceeding k in f. .
" The fact that an algebraic relation between f and J exists
follows from Theorem 12, Sec. 43, since J(r) is, obviously, a
simple automorphic functjon with respect to the subgroup. To
each value J, of J, there correspond not more than k distinet
values of f; namely, the values of f(r) at the k points of the
fundamental region at whi¢h J(r) = Jo. That is, the irreducible
relatiorwonne‘gting f and.J is of degree k at most in f.

The equatioh (35) conr&ecting J .and \ is an example.



CHAPTER VIII
CONFORMAL MAPPING

71. Conformal Mapping.—The present chapter will be devoted
to the problem of mapping one region conformally upon another.
This problem, as we shall see subsequently, has an important
bearing upon certain of the applications of automorphic functions.

Let f(2) be a function which is single valued and analytic in
a plane region S and which takes on no value twice in the region.
Then, the relation 2’ = f(2) sets up a one-to-one correspondence
between the inner points of S and the inner points of a plane
region S’ in the z’-plane. In this correspondencews-this trans-
formation of S into S’—angles are preserved. We Say that the
Sfunction f(z) maps S conformally on S’. It is well known, also,
that, conversely, if one region is transformed into another with
preservation of angles, the correspondence between the points is
determined by an analytic function 2z’ = f(2). In speaking of
conformal mapping we shall understand always that the points
of the two regions involved correspond in a one-to-one manner.

We can extend this simple notion in important respects. We
can first remove the requirement that f(z) take on each value
only once 'in S’. .We require, of course, that f(z) shall not
be a constant. The neighborhood of a point @ in S at which
f'(a) # 0 is mapped on % %e region in the neighborhood of
b = f(a). At a we have the dévelopment

| d=b+f@e—a)+ - ; (1)
and, for a suitably small region about a, the corresponding
points in the z’-plane satisfy the relation

1, : .
z=aq +f'(a)(z b) + (2)
That is, the inverse function is single valued, hence, the mapped
region is¢plane. ‘If, however, f"(a) = 0, we have a development
of the form ) '

z’=b+c(z-a)"+~v-,n>1,c;€0, v (3)
and the inverse function
z=a+c@E@ -V +. .., . -(4)

164
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is not single valued. To each point near a correspond n points
near b. By representing 2’ on an n-sheeted region with a branch
point at b we can secure the desired one-to-one character.

We can’combine the various values of 2’ into branches with
suitable branch points (which may of course be absent) into a
surface S’ with a finite or infinite number of sheets, so that the
correspondence between the points of S and those of 8’ is one-to-
one. We say that f(z) maps S conformally on S”. Here S’ is
merely a part of the Riemann surface—possibly the whole sur-
face—of the function inverse to f(z). The conformal character
fails to hold at the branch points, but.the correspondence is
continuous there. The number of branch points in S’ may be
infinite, but each is of finite order.

Again, we can replace S by a similar ﬁnltely or infinitely
sheeted region with interior branch points of finite order on
which the function f(2) is analytic, in general, and is single
valued. We thus have the mapping of one many-sheeted region
upon another.

Finally, we shall admit the point at infinity as an inner point of
either S or §’. This presents the existence of poles of f(z) on S.
If f(2) has a pole at a, the corresponding point in S’ is at infinity.

In the first part of this chapter we shall be concerned primarily
with plane regions, although we shall employ. certain simple
two-sheeted regians in the derivation of some of the results. We
turn, fipst, to the proof of some useful preliminary theorems.

72. Schwarz’s Lemma.'—In the study of properties of func-
tions, and particularly in connection with the problem to be
considered later, of mapping regions on circles, the following
proposition is often a powerful tool.

TueoreM 1. ScEWARZ’S LEMMA.—Let f(2) be analytic in the
unit circle Qo and vanish dt the origin. If |f(2)| < 167 Qo, then
If@)]< 2l in Qo and |f(0)] < 1. The inequalities |f(2)| = ||,
z # 0, and |f'(0)| = 1 hold if, and only if, f(z) = e.

The function f(z) /z is analytic in Qo, if_properly defined
at_the_ origin. Let Q. be a circle concentric with @, and of
radius r less than 1. The function takes on its rhaximum abso-
lute value on the boundary; so, if z is in @,

@
z

S

1 ScawaRrz, H. A., Ges. Abhandl., vol. 2, p. 110; C. CaraTHEODORY, Math.
Ann., vol. 72, p. 110, 1912.
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Since r may b@ taken as near 1 as we like, z being held fixed, we

have
2

s 1.¥ (5)

This is the first of the required ineqhalities. We get the second

by setting z = 0: : -
z !

AL OR? ©)

If, now, |f(2)/2| = 1 at an interior point, either there are
near-by points at which [f(z)/2] > 1, or else f(z2)/z = const.
The first alternative is contrary to (5); so, if either of the inequal-
ities of the theorem hold, we have f(2)/z = €%, or f(z) = ez
Conversely, if f(z) is so defined, the equalities hold.

As an application of Schwarz’s lemma, we shall prove a
theorem concerning the mapping of a region and of a subregion
on the unit circle. This proposition is the function theoretic
equivalent of a well-known property of the Green’s function.

By a subregion of S is meant a region S; such that every
interior point of S, is an interior point of S but not every interior
point of S is an interior point of S;.

THEOREM 2.—Let w = f(2) map a region S conformally on the
unit circle Qo and let w, = f1(2) map a subregion S, of S on Qo, the
common point a being in each case carried to the origin. Then
at any point of S, other than a '

@] > [f@)] @)

Also, if a is an ordinary point,
£ @] > If (a)]. ' (8)

When S is mapped on @, by w = f(2), S; is mapped on a
subregion S;’ of Q,. We now make the inverse of the trans-
formation w, = f1(2) and follow it by the transformation w = f(2).
The first maps Qo on S;; the second maps S; on S;’. The suc-
cession of the two is a function w = ¢(w;) which maps @, on S;’.
So |¢(w;)] € 1. Since w; = 0 goes into w = 0, Schwarz’s lemma
is applicable; and we have

lw| = |e(wi)]| < |wil,

. which is+the desired result (7). It will be noted that the equality
sign of the lemma cannot hold, since ¢, is not mapped on itself.
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At an ordinary point—that is, neither a branch point nor
infinity—both functions have non-vanishing derivatives. We
have then from Schwarz’s lemma

dw _ | f'(a)
- |‘P (O)I = % fl,(a)
which establishes (8).

73. Area Theorems.—Let f(z) be analytic within a circle Q.
Then 2’ = f(2) maps the interior of @ conformally upon a region S
of one or many sheets—possibly an infinite number—the mapping
being conformal except at the branch points of S at which it is
continuous. We shall prove the following theorem relative to
the areas of @ and S.!

TraEOREM 3.—The function f(2), analytic within a circle of
radius R and center a, maps the interior of the circle upon a region
whose area A satisfies the inequality

A > 7|f'(a)|2R2 9)
In particular A may be inﬁiMe. The equality holds if, and only
if, f(2) = a0 + a:2. :

We can suppose, without restrlctmg the generality, that
a = 0. Let @ be the circle 2| < R’ < R. @’ is mapped on a
region of finite area A’. * The element of area is multiplied by
|f’(2)|? in the mapping, so

AL f [ 7@ dady,

the integral being extended over Q’.
We have

<1’

f@) =ac+ awz +a?+ - - -,
the series converging when |2| < R. Then, .
17722 = (a1 + 200z + Basz® + - - - )(@1 + 2d:2 + 3822+ -+ - ).
Putting the double integral into polar coordinates, z = re', we
have

= LR,rdrﬁ2r(a1 + 2a2réi0 + - - )@y + 2dgre~® + - - -)d6.
We now multiply the t@o series and integrate term by term.
When the integer n is different from zero, we have .j(; T einody = 0,
whence,
Al = 21rfR,r[a1d1 + 4asa@.r? + asagrt + - - - ldr
= r[a,@,R'? + 2a.,a.R'* + - -+« %+ na,@.R*™ + - - -]
1 BieBERBACH, L., Palermo Rend., vol. 38, pp. 98-112, 1914.
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Letting R’ approach R, the sum of this series of positive terms
either becomes infinite or approaches the sum =[a.a:R? 4+ 2a.dG,R*

+ - . - ], provided this latter series converges. In either case,
A > ra,a,R? = =|f(0)|2R2
The equality holds if, and only if, a2 = a; = - - - = 0, in which

case, f(z) = a0 + a2

As a special case of this theorem, let lengths at the center
of ‘Q be unaltered in magnitude, so that |f’(a)] = 1. Then,
A > mR?; that is, the area of S equals or exceeds the area of Q.

We next -consider the mapping of the exterior of the unit
circle on a plane region where the thapping function is such that
the point at infinity remains fixed and where the shift in the
position of a sufficiently large z is bounded.

TareorEM 4.—If the function

w=f() =z+ co+ + o+ (10)

maps the exterior of the unit circle Qo on a plane region, then

- 161 + 2¢065 + 3csfs + - - - < 1. 1)

Here, f(2) is analytic outside Qo except at fmﬁmty and the
series (10) converges when |z| > 1. :

Consider the circle Q: |2| = r > 1. This is mapped by (10)
on a simple closed analytic curve C in the w-plane. Writing
z = re", then, as @ increases from 0 to 2w, z moves counter-
clockwise around @ and w = f(re®) moves counter-clockwise
around C.’ - _ '

C encloses an area A’ > 0 which we now proceed to find.
Writing w = X + 7Y, we apply the familiar formula

4 = %fXdY — YdX,

the line integral belng taken counter-clockwise around C. We
have

w—i—w,Y_'w—“w.

‘ X="— =g
On substituting these values, we have the following result:
1 f2rf ydY 1 o _dw
5= = XL _
A" =5 ( BT do) wh ( P35 )d"'

The second term in the last mtegrand is the negative of the
conjugate imaginary of the first. We need merely integrate the
first term and multiply its imaginary part by 2.
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We have, from (10),
w = re® + o + %le—ia + s_ze—m + ..

% = il:rei" — C_rle—io - _2.,0_26—2i9 -

w = re—w + CO + 7ew+ eZtG +

On multiplying the last two series together and integrating term
by term, employing the fact that >‘;%e““’olf) = 0 when n # 0, we

have
2r dw o B I ciC1 26262 ’
J; wﬁdﬁ = sz[r . o . J
Then, oo
A/=7r7.2__01_61._.2c2c—2_.36363_... >0
. T2 r4 —,‘4 7-6 \ *
Letting r approaan 1, we have . »
A = 71'[]. — €11 — 26262 —_ 36363 — ] >-,0’

fromswhich we have (11}. Here A is the (outer) area of the
part of the plane not covered by the map of the exterior of Q,.
It may be zero.

We observe that ‘A </ = unless f(z) = 2z + ¢,. Except in the
case of a translation, the part of the plane left uncovered by
the map has a smaller area than the part not covered by the
original region |z| > 1. o

74. The Mapping of a Circle on a Plane Finite Region.—We
are now in a position to prove the following remarkable theorem:

THEOREM 5.—Let w = f(2) map the interior of the unit circle Qo
on a plane finite region, subject to the conditions f(0) = 0, f'(0) = 1
Then, whatever the mapping functwn may be, the circle |lw| < L
lies within the mapped region. Further, no other point of the
w-plane is interior to all possible maps of the kind stated.

The mapping function has the series expansion

w=Fz) =24 a%>+ax*+ -, (12)

convergent when |z| < 1. .
We find readily that the function

w=F(2) = [f()P* =z + Mawe® + - - - (13)

also gives a plane finite map of Q.. For, ¢ = f(2?) maps Q, in
a one-to-one manner on a finite region lying on the two-sheeted
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surface with branch points at 0 and «; and w = /¢ maps this
two-sheeted region on a plane finite region.

If we now put z = 1/Z, w = 1/W, the function just formed
gives a plane map of the exterior of Q, in the Z-plane on a plane
region in the W-plane. We have

1 _ oy . G2
F(1/z) — Z 27
This is a mapping function to which 'Theorem 4 applies. We
have then from (11) that 14a.d; < 1. That is, if (12) gives a
plane finite map of the interior of @, then

las] < 2. (15)

Now let ¢ be a finite point of the w-plane not lying in the
map of the interior of @, by (12); that is, ¢ is an external or
boundary point of the map. Obviously, ¢ = 0. Then the

function
wl=5_01;(i=z+<az+i>22+ SR

W = + o (14)

f®)

gives a plane finite map of the interior of @,. So we have

[
s+ CIJ <2 (16)
From (15) and (16) we have
o< 41> 4 - an

~ 4

Then, the points of the circle |w| < 14 are all interior points in
the map, which was to be proved. ,

We now set up a mapping function with a boundary point at
the minimum distance from the origin in the map.

The sign of equality in (17) can hold only if |a;] = 2. Taking
as; = 2, then (14) has only. two terms, as we see from (11). On
working back from (14), we have the function

/

w=(1'—'2)2 <1_})2
2

We shall show that this function does, in fact, give a plane
finite map of Qo of the kind mentioned in the theorem and that
there lS a boundary pomt of the mapped region on the circle
lw| =

The function (18) -has the . required value and derivative
at z = 0. Also, it is analytic within Qo,. To each value of w
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correspond two values of 2. If 2; is one of them, 1/z; is the
other and not both can lie in @,. A value of w is then taken on
once, at rhost, in Qo; hence, we have a plane ma.p Whenz = —1
we have w = —14, a point on the circle |w| = 14.

The boundary of the mapped region is got by setting z = ¢
in (18), and letting 6 vary from 0 to 2r. We have

70

. pi02 0 O\2
(= (e_tE - 615) 4 sinzg

Then (18) maps the interior of @, on the whole plane bounded by
a slit along the real axis, from —14 to — .

By combining (18) with suitable rotations about the origin
in the 2z- and w-planes, we can set up a finction

w = (20)

z

(I + ez)?
which maps the interior of Qo on the w-plane bounded by a slit
beginning at any point w = l4e of |w| = 14 and extending
radially to infinity. Any point w such that |w| > 14 lies on
the boundary of one of these mapped regions. The circle |w|
< 14 is then the complete locus of points interior to all possible
maps of the kind stated in the theorem.

CoroLLARY.—Let w = f(z) map the circle |2 — a| < p con-
formally on a plane finite region S. Then the circle

w — s < T, (1)

lies in S.
By a suitable change of variable this falls under the preceding
theorem. Here f'(a) 0, since the map is plane. We put

— f(a) z—a
W= L=
Then the function o

of'(a) )
maps |Z| < 1 on a plane finite region and satisfies the conditions
of the theorem at Z = 0. Then |W]| < 14 lies in the ‘map.
From this we have (21) at once.
75. The Deformation Theorem for the Circle.—~When a
mapping is performed by means of a function f(z), infinitesimal
lengths in the neighborhood of z are multiplied by [f{)|. We
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shall now get limits for this deformation in the mapping con-
sidered in the preceding section..

THEOREM 6.—Let w = f(2), where f(0) = 0, f'(0) = 1, map
the interior of the unit circle Qo on a plane finite region. Then at
any point z = re® within Q,

1— , ' 1+r'
(1+ )3\ If()l —1‘)3.

Further, no closer limaits hold for all mapping functions of the type
stated.

Holding 2z fixed, we set up a linear transformation which
carries @, into itself and 0 to z; and follow this by a transforma-
tion involving f(z2) such that z is carried back to thé origin,
inserting such .a factor that the derivative of the final trans-
formation at the origin is 1. Such a sequence with ¢ as the
independent variable is the following:!

,_itr 1) — 1)
U= a1 FO = sa =z (24)
This gives a finite plane map of |{| < 1 on the w-plane.
Differentiating in order to get the first terms of the expansicn
of F(t), we have
F’(t) — f/(t ) 1 —zz f/(t/)
7@ —2) G+ 1? )@ + D
F”(t) f”(t,)(l - zz) zzf,(t ) .
f@@E+ 1) )@+ 1)

Setting ¢ = 0, whence ¢’ = 2, we have

(23)

FO) =0, F/(0) = 1, Fr(0) =1 @1 =7 _ o

f2)
We have, then, o . ,
wi = F(t) = t + %[f ('?,8)—_ ™ - 22]# + - (@25)
Applying the inequaiity (15) we have
1f"&A =1 _ '
§ ——‘f—,(z)———' — 2zl 2,
o () 2z 4
F) T—r <T=r (26)

! BIEBERBACH, L., Math. Zgit., vol. 4, pp. 295-305, 1919; Glasnik prirod.
drustva, vol. 33, pp. 1-24, 1921; Lehrbuch der Funktionentheorie, vol. 2,
pp. 87, 88
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Now let z move from the origin along a radius, so that

|dz| = |e®dr| = dr; Zdz = re~®dz = rdr.
On integrating (26), using the fact that the absolute value of the
integral is less'than or equal to the integral of the absolute
value,we have

:f"(2)dz _ r 2rdr | v 4dr
ki 7 .£1—r2{<j; 1=

1+r
—7r

and

|log f'(2) + log (1 — 7?)| < 2 log

Here the logarithms are real except log f'(2), which we write in
terms of its real and imaginary parts,

[log|f'(2)} + log (1 — r*) + i arg f'(2)| < log (1 + :) - (27

Considering the real part of the expression appearing in the first
member, we have

tog @) (1 = < og (117)’

~tog(1 7Y < log 1@l = 1 < tog (1)

r
(i + r) @A =) < <1 + :>2

From tms we have (23).
That no better limits are possible appears from a consideration
‘of the mapping funection (18)

whence,

oy 14z
f(z) = (1 z)2 J'(2) = (-1“__—2,)3
At the real points +r, both limit values are taken on.
From (27) we have also a limit for the angle through which
a lineal element at 2 is rotated in the mapping; namely,

jre /)| < 21og (757 (28)

CoROLLARY.—Let w = f(z) map the circle |z — a| < p on a plane
finite region. Then, at any point within the circle the following

inequalities hold @
1—7r f(z 147
A+ < r@ < a=n 29)

where e
z = a -+ pre®. )
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This is proved immediately by applying (23) to the function
(22). "
THEOREM 7.—Let w = f(2), where f(0) = 0, f'(0) = ¥, map the
interior of the unit circle Qo on a plane finite region. Then at any
point z = re®® within Qo
r ° r
T+ < |f()] < a=n (30)
No closer limits hold for all mapping functions of the type stated.
On multiplying the second inequality of (23) by |dz| and
integrating along a radius from the origin to a point 2, we have

[T e et

< o ( 1 - :~~;)3dr,

or
r
[f(2) < aT=nt

As to the first inequality, we note that |f(2)| is the length of
the line segment L joining w = 0 to w = f(z) in the w-plane. If
|f(2)] < 14, this line segment lies in the mapped region and is
the map of some curve C in Q, joining 0 to z. We have for the
length of L

1@l = [5G .

Here, the sum of which the integral is the limit is made up of
non-negative real terms; so that we can replace each term by a
smaller quantity and be assured that, on addition, the inequality
persists. We have on C _
|dz| = |ebdr + ire®df| = |dr + ird8| > |dr|
and, using (23),
1—7r rl—r T
11> [t > | et = ae
If |f(2)| > 14, the first inequality of (30) holds without further
investigation, since 14 > r/(1 + r)Z
The function

2
f2) = m

attains both limits; whence no closer limits are possible.

It is an immediate consequence of the theorem that w = f(z)
maps the circle |2| < p < 1 on a region in the w-plane whose
boundary lies in the ring formed by the two circles |w| = p/
(1 4+ p)? and |w| = p/(1 — p)2. This ring is independent of
the particular mapping function used.
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CoroLLARY.—Let w = f(2) map the circle |2 —a| < p on a
plane finite region. Then, at any point within the circle the
Sfollowing inequalities hold:

r

At N @ < @) — @) < g il @], @
where
z = a + rpe,
We find these inequalities on applying the preceding theorem
to the function (22).
76. A General Deformation Theorem.—We shall now derive
a deformation theorem for more general regions.

/’—\

Z2

+A + |+ ]+ +1
AN )

N __’/

Fia. 50.

TuEOREM 8.—Let 2’ be a plane finite region and let Z be a sub-
region whose boundary consists of interior points of Z'. Let w =
f(z) map Z' on a plane finite region.

Then there exists a constant M, dependent on = and 2’ but
independent of f(2), such that if 21, z; are any two tnterior or boundary

points of =
1 I (z1)

M= |77
Since X, together with its boundary, consists of interior
points of Z’ there exists a constant d > 0 such that a circle C
with any point a within or on the boundary of Z as center and
with radius d lies within 2’. C is then mapped on a plane finite
region. For any point z whose distance from a does not exceed
rd, r < 1, we have, from (29),
@ 147
f@ =0 —r?
We now rule parallels to the real and imaginary axes at a
distance h = 14d apart, thus dividing the z-plane into squares

(Fig. 50). Since Z is a bounded region, only a finite number N

< M. (32)

33)
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of these squares contain points of . If z lies in the same square
as a or in any of the four squares adjacent to it, we have [z — a| <
144/5d < 34d; and we have, from (33),
f@) o 1+3%
f@ = Q- 33)°

If 2; and 2z, are two points of =, we can’ since T is connected,
construct a chain of points of Z: < -

2y, &1, £ - - 0, b, 2y (35)

such that adjacent points of the sequence are in adjacent squares
(unless 2z; and z; are in the same square), the total number of
points of the sequence, n + 1, not exceeding N + 1. We have,
then,

= m. (34)

< mr < mb.

@) _f@) fE)] )f’(sn-o

fee2)|  1f'(E)] 7 1f (&) ['(z2)
Taking M = m”, a quantity which depends only on the regions
2 and Z’, we have the second inequality of (32). Interchanging
2, and 2z, we have the first inequality.

It will be noted that in the -preceding proof we have not
required that either = or 2’ be simply connected.

This theorem is readily extended to the case in which X is
a closed point set, connected or disconnected, consisting only of
interior points of 2’. For, such a point set can be imbedded in
a connected region which satisfies the conditions of the subregion
in the theorem. The theorem can also be extended without
difficulty to the case in which 2’ has a finite number of sheets,
provided no branch point or point at infinity is an interior
point of 2’.

THEOREM 9.—In the mapping of Theorem 8 there exists a con-
stant L, independent of. f(z), such that if 2., 22, 23 are any three
interior-or boundary points of Z, then,

< |f(z2) — fz0)| < LIf'(23)]- (36)

We use again the chain (35). From (31) and (32), we have

3 3/
(8 = Fe| < (2l @] < gl en)] = 'l e,
say. Similarly,

F(&) — fE| < mIf G, -+ - 1) = fen)] < mlf(es)l.
Then, .

[f(z2) — f)| < (&) — f@)| + f(&) — FE) + - - - +
[f(z2) — f(§n1) < n/|f'(25)| < N'| f'(25)].
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Taking L = Nm’, a quantity depending only on the regions =
and 2’, we have (36).

77. An Application of Poisson’s Integral.—Let f(2) = U. +
1V, be analytic in a circle @ of radius p and center at the origin
and continuous on the boundary. Putting z = re?, and letting
t = pe' be a point on the circumference, Poisson’s integral may
be written in either of the following forms:

1_~ 2w (1 - - >dll/
U, = 5 U P

271'0 ‘I_ZZ ét’
s\

U, = - f %U‘p o~ Ty : (38)

2r0 2 — 2prcos (0 —y) + r?

(37)

Poisson’s integral may be derived as follows: Consider the integral

O
2MJ‘(t - z)(l —7)

The integrand has the single singularity at ¢ = z in @, so, from the theory of

residues,
J = [ f@) ] - f(2) =U=+iEf,‘
t=2

2z 2z
1= -
P P

Again, since dt = ipe¥dy = itd}, the integral can also be written

J = 1 r2e fi)dy _ U, + 1V,
o o(t—z>(1—2‘ f (1—-(1_4)

t . .
Now 1 —==1— ':—; =1 - ;; the denominator that appears in the last

mtegrand is the product of conjugate imaginaries and is, therefore, real.
Equating the real parts in these two expressions for J, we have (37). *

If z = 0, (37) becomes

Uo = "1_

g b U @)

Suppose; now, that U, > 0 in @, and let 2 lie in or on a circle
Q» concentric with @ and of smaller radius N\p. We have on @,

2z 2]
1—-p—2=1—)\2,

0

>\p

>1-\
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We have then, from (37) and (39),

1 2« 1 — A2
U< o f, Uit —aye
14+
U. < T——)\UO' (40)

This inequality holds within @, also.
We apply this result as follows: Let f(2) have the further
property that [f(2)| > 1in Q. Then, log f(z) defined as follows:

log f(2) = log J(0) + [ Tog &) = log () + [ LI,

where log f(0) is any one of the 1ogarithms of f(0), is analytic
in @ and continuous on the boundary. The real part of this
function, log |f(2)|, is positive or zero throughout. If 2z is in

@, we have, from (40), A
1+
log [f(2)] < T—

log |f(0)],

whence,
1+\
1—X\

If@ < 1FO) (41)

By a simple translation, we can apply formula (41) to a circle
@ with center a and radius p. If f(z) satisfies the conditions
stated above in @ and if @\ is concentric with @ and of radius
A (A < 1), then,

N 1+
@L< If@) 1= (42)
when z is in or on Q.

The following theorem will be of frequent use in connection
with subsequent convergence proofs.

TaEOREM 10.—let =’ be a plane finite region and let = be a
subregion whose boundary consists of interior points of Z’'. Let
f(z) be a function which is analytic in Z', is bounded, |f(z)| < C,
and does not vanish. Then, there exist positive constants K;, K., K
such that if 21, and 2z, are any two points within or on the boundary
of =

K@) < [f(z1)] < Kl f(2)|VE. (43)

Here, K1, K,, K depend only on Z, Z', C, and are independent of
f@). ‘
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The function F(z) = C/f(2) is analytic in 2’ and [F(z)l =1
We employ the chain of points (35) connecting z; and z,. We
have, from (42),

1+

IF(EI)I S ]F(Zl)lny b= T E

AN
INNIAN

\W

Similarly,
[F (&) < [F(EDI* < IF (=0

and so on; so that, finally,
[F(z2)] < IF(z0)|™ < |F ()| = |F(21),

where we put K = Nu. On replacing F(z) by its value in terms
of f(2), we have, on simplifying,

Jfel < € Klf(22)|K

This is the required second inequality (43). The first inequality
is got by interchanging 2z, and 2z, and simplifying. We observe
that K is independent of C.

78. The Mapping of a Plane Simply Connected Region on
a Circle. The Iterative Process.—A plane simply connected
region (p. 222) may consist (a) of the whole plane; (b) of the plane
with the exception of a single boundary point; or (¢) of a region
with a bounding infinite point set, of curve. ’

In the first two cases it is impossiblé to map the region on a
circle. If w = f(2) maps (a) on the unit circle @, with center at
the origin (and if it can be mapped on any circle it can be mapped
on @), we have |f(2)] < 1 in the whole plane, so, by Liouville’s
theorem, f(z) = const., which is impossible. Similarly, if (b) is
mapped on the unit circle we have |f(2)| < 1 in the neighborhood
of the bounding point «, hence, the function is analytic at « also,
if properly defined there. As before, f(z) = const., which is
impossible.

THEOREM 11.—A plane simply connected region whose boundary
consists of more than one point can be mapped conformally on a
subregion of the unit circle Q.

Suppose, first, that there is a point 2z, of the plane which
is neither an interior nor a boundary point of the given region S.
Then, we can construct a circle Q" about 2, such that no point
within or on @’ is an interior or boundary point of S. Then, the
linear transformation 2’ = T'(z) which carries Q" into Qo and
carries the exterior of @’ into the interior of @, maps S on a
region S, lying within Q,.
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It may be, however, that every point of the plane is an interior
or boundary point of S. Such is the case, for example, if S
consists of the whole plane bounded by the positive real axis.
In this case, let « and 3 be two boundary points, and consider the
mapping of S by the f}lnction

N i ’ = — a (if 8 =
Z =4/, 5 01:2 Ve —al(ifp *). (44)
This function maps the two-sheeted surface = with a branch line
joining « and B on the whole 2z’-plane. S is a subregion of
= and is mapped on a plane region S’ which covers only a part
of the z’-plane. Thus, if 2z; is an interior point of S, the point

———

S ——

. Fig. 51.

P with the same coofdinate z = z; in the second sheet is a point
of 2 which is exterior to S.. On applying (44), P is carried into
a point which is neither an interior nor a boundary point of S'.
By the method of the preceding paragraph, S’ can be mapped on a
region lying within Q,.

We consider now the problem of mapping a plane simply
connected region S, which lies within @y upon @, itself. We
shall suppose that the origin is an interior point of So. This can
be secured, when not otherwise true, by making a linear transfor-
mation which carries @, into itself and carries an interior point
of the region to the origin. Qur method of procedure will be to
map S, upon a region S; which fills more of Qo; to map S; upon a
still larger region S: in Qo; ebe. By a suitable application of the
process we shall arrive, in the limit, at a mapping of S, on Q.

Let 802 (we use the .square to avoid radicals) be an interior
point of @, and an exterior or boundary point of S,. We now
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form a two-sheeted surface (Fig. 51) with a branch point at 8,2
and with no other branch points within Q,. Let Z, be the part
of this surface within the double circle which |z| = 1 cuts from
the two sheets. We represent S, on this surface so that in the
neighborhood of the origin S, lies, say, in the upper sheet. S,
is a subregion of Z,.

We now map~ Zo on the plane interior of Q, in the z;-plane.
The following sequence of transformations accomplishes this end:

— B2 :

s = ——z[’?o?ﬁi:'—l} t = ‘\/s, 2y = :é%) (45)
where 1 — ¢ > 0. For, the first transformation maps X, on
a two-sheeted surface bounded by |s| = 1 (Equation (47),
Sec. 12) and with branch point at the origin; the second maps
this latter surface on a single-leaved surface [t| < 1; and the
third maps this circle on the circle |z;] < 1. The mapping is
conformal except at the branch point z = 8,2 The mapping
of the subregion S, is conformal without exception.

We now impose the requirement that in the mapping of S,
the origin shall remain fired. When 2z = 0, t = +iv/Bs%. Let
the square root be so chosen that 78, is the value of { when
2z = 0 in the upper sheet. If z; = 0 when ¢ = 18,, we find that

¢ = —18p. Expressing z in terms of z;, we then have
21+ B 2iBo
= _.—__’ B = S s @ 4
=z E 1 0 1 Begy (46)

We shall further require that the derivative of the mapping
Junction shall be real and positive at the ortgin. This requirement,
which prevents the rotation of the region, can be met by inserting
a factor e¢? in one member of (46). This amounts to rotating
about the origin in the z-plane before making the sequence of
transformations (45), and alters no other requirement of the
mapping. From (46), we have

dz =Bo = - 2iBo__
dzi1/, o T+ BoBa
The derivative will be real and positive if we multiply the second

member of (46) by —i80/\/BoBo, Which is of absolute value 1.
The mapping function is then

Bo . Z1+Eo_
'\/[TBO przl+1

2= —1

(47)
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The function just derived, and which.we shall represent by
2, = f1(z) maps S, conformally on a plane region S, lying on the
interior of the circle @, in the z,-plane.

This map of S, has the important property that the distance
of each point (the origin excepted) from the origin is increased in
the mapping. This is an immediate consequence of Schwarz’s
lemma (Theorem 1). Formula (47) maps Q, in the z;-plane on
a two-sheeted region bounded by |z| = 1. We have then
|2(21)| € 1; whence, applying the lemma, |z| < |z1]. It follows,
from this, that if A, is the shortest distance from the origin to
the boundary of S, and A, is the shortest distance from the
origin to the boundary of Si, then h; > h,.

We now select 8,2, an interior point of o but not an interior
point of S;, and use a function analogous to (47) to map S; on
a region S,. S, will be similarly mapped on S;; and so on. The
general mapping function—that which maps S, in the z,-plane
on S, in the 2z,,,-plane—is

— 1Bn 2 L zn+1 + Bn, B — ‘_—'27:57_;__..
\/[Tnén ke ann+1 + 1 " 1 + 61167;
For corresponding points of S, and S,;1, other than the origin,

we have [2,41| > [2,|. If A, is the shorfest distanee from the
origin to the boundary of S,, we have

hir > h. ‘ (49)

Zn = (48)

The point 8,2 is within @, and exterior to or on the boundary
of S,. We shall impose but one condition on its selection. As
n increases B2 shall not approach the boundary of Qo unless h.,
approaches 1. This condition can be satisfied by requiring, say,
that —

18,7 < 1 J;h". (50)
(In previous applications of the method 38,2 has been selected as
the nearest point to the origin on the boundary of S,. Then,
|822| = ha.; and the condition is satisfied.)
The variable z, which appears in the n-th step of the process
is a function of 2, which we shall represent by

zZn = fa(2). (51)

This function maps S, conformally on S;.
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79. The Convergence of the Process.—We shall now prove:

I. That lim A, = 1; that is, the boundary of S, lies in the
circular ring bounded by Q, and |z.| = ks, and as n increases
the width of this ring approaches zero.

I1. That when n becomes infinite, f.(2) approaches a function
f(z) which is analytic in S,.

III. That 2’ = f(2) maps the interior of S, conformally on
the interior of the unit circle Q.

1. The Movement of the Boundary Out to Qo,—The distance A,
increases with n and remains less than 1; so h, approaches a
limit » € 1. We shall show that 2 < 1 is impossible.

Consider the derivative at the origin. We have, from (48),

dzn N _ B 2\/@ _ 2
dzn+1 0 '\/B;En " 1 + an’}n 1 + Tn2

where |8,| = r.. Now, if h < 1, r, remains always less than a

quantity less than 1; 7, <1 — 7,9 > 0. We have, then,

dz,.+1 _ 1 + 7'"2 . (1 —_ 77',,,)2
() e U5

where ¢ =%2/2. Then,
N AN dz, o
£(0) = (Eé)a(dzl)o . (dzn_l)o >A+on ()

Now, consider the map of the circle |z| < hy, which lies in
So. Applying Theorem 3 the area A, of the map in the z,-plane
satisfies the inequality ’

A, >7|f./(0)|2he? > 7(1 + €)2"he%.
By taking n large enough (1 + €)?*, and hence A,,.can be made
as large as we please. But this is impossible; the map .of the
circle in question lies in @y, whence A, is less than the area of
Qo. The hypothesis that A < 1 thus leads to a contradiction;
hence h = 1.

II. The Convergence.—In order to prove that f.(z) converges
in Sy and that the limit function f(z) is analytic in S, it suffices to
prove the following: Given any region ¥ which together with its
boundary lies in S, and which contains the origin, then f.(2)
converges uniformly in 2. To establish this proposition we shall
prove that, given e > 0, then for n sufficiently large the inequality

[frsn(2) — fu(@)] < € ' (54)

holds in = for all positive integral values of p.
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Again we consider conditions at the origin. We have
(f2(2)/2).=0 = f'€0). This derivative is positive by construction
—in fact, is greater than 1—and increases with n. since
(Equations (52) aind (53))

Fasa(0) = £ <o>(dz"“)0 [1+( — )’ ]fn (0) > £./(0). (55)

Furthermore, we found at the end of (I) that f,.’(0) is bounded.
It follows that f,'(0) approaches a limit as n becomes infinite.
Hence, given 7 > 0, there exists an n such that

If’n+p(0) - fn,(o)l <n A (56)
for all positive integral p.
We now apply Theorem 10 to the functionf—”ﬂz)—f”(z)

We have just found that this function does not vanish at the
orgin. It vanishes nowhere else in S, since |fuip(2)| > [fa(2)].
Let = be a regfon which with its boundary lies in S, and which
contains the points of 2 and its boundary as interior points. The
function is analytic in and on the boundary of 2’; so it takes on
its maximum absolute value on the boundary. On the boundary
[frip@)] €1, |fa®)] <1, and |z| > &’ where b’ is the shortest
distance from the origin to the boundary of Z’. Hence, for any 2
in 2’ and for any » and p -

Jrin(2) = fa(2)

4

hl
The conditions of Theorem 10 are satisfied- hence (taking z; = 2
and z, = 0)

IRCESCIP K 710 —f./(O)]”K

Here, K, and K are independent of n» and p, and the inequality
holds for zin 2. When 7 is so chosen that (56) holds we have in

z

| Frin®) = Ju@)] < Kant/xlz| < Kn/x. (57)
By "takingl 7 small enough the last member of this inequality is
less than e and (54) holds.

It follows from the uniform convergence of f,(z) in = that the
limit function f(z) is analytic in . Since = may be chosen large
enough to enclose any preassigned interior noint of S, it follows
that f(2) is analytic in the whole interior of S. '
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III. The Mapping.—In order to prove that z’ = f(z) maps the
interior of S upon the interior of Q, we shall show that if « is in
Qo then f(z) takes on the value « once, and only once, in S;. We
shall base the proof upon a theorem of Hurwitz! which we shall
now establish. -

ToeorEM 12.—Let fo(2), n = 1, 2, . . . , be analytic in a region
S and continuous on the boundary, and as n becomes infinite let
fau(2) converge uniformly to a limit function f(z) in the closed region
S. Further let f(z) not vanish on the boundary. Then for n
sufficiently large, n > N, fu.(2) and f(z) have the same number
of zeros in S.

We can draw a regular boundary C' within S sufficiently near
to the boundary of S that on and outside C in S [f(z)] > K > 0.
For n sufficiently large, » > N’, owing to the uniform conver-
gence, |f(z2) — fa(2)] < K/2 on and outside C, so that |f.(2)]
> K/2. Then f(z) and f.(2) have no zeros in S on or outside C.
On C, f,/(2) converges uniformly to f’(z).

The number of zeros of f(z) and f.(2), n > N’, within C are,
respectively,

_ 1 pfdt 1 pfld,
" amide f 0 T 2mide £t

== g {0 56 [

Owing to the uniform convergence on C we can, by taking n
sufficiently large, » > N > N’, make the integrand less than
1/L, where L is the length of C. We have, then,

1 L
Im-Mnl<mL[dt|=m< 1.

80,

But |m — m,| is an integer, and can be less than 1 only if it
is zero. Hence m = m,, which was to be proved.

Now, consider any interior point a of Q. Let 2n = fu(2)
map So on S, where h, > |a|. Then S,, n > m, contains «; and
since the mapping is one-to-one, f.(z) takes on the value «
once and only once. Let @, be a circle of radius X and center at
the origin, where |a| < X\ < Am. Qn liés in S,, and contains .
Let Cn be the curve in Sq which 2z, = f(2) maps on Q,,;and let C
be any curve in S, enclosing C,.

1 Hurwitz, A., Malh. Ann., vol. 33, p. 248, 1888.
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The functions f.(2) — « satisfy in C the convergence require-
ments of Theorem 12. Furthermore, the limit function f(z) — «
does not vanish on C. For z, = f.(2), n > m, maps C on a curve
enclosing Q..; so that, on C, [f.(2) — a| > X\ — |a/, and the same
inequality holds for the limit function. It follows from Theorem
12 that fa(2) — « and f(2) — « have, for n sufficiently large, the
same number of zeros in C. The former has one zero, since «
is taken on once in C; hence, the latter has one zero, and f(z)
takes on the value a once in C. Finally, since C may be taken
large enough to include any inner point of S it follows that f(z)
takes on the value a once and only once in S,.

It is clear that f(z) takes on, in S,, no value on or outside Q,.
For we have in S,,|f.(2)] < 1; hence in the limit |f(z)| < 1. If
|f(2)] = 1 at an interior point of S, we have [f(z)] > 1 at a
neighboring point, which is impossible. The function 2’ = f(2),
then maps S, conformally on Q,.

We have proved the following imertant theorem:!

THEOREM 13.—The interior of any plane simply connected
region whose boundary consists of more than one point can be
mapped conformally upon the interior of the unit circle Q,.

Having proved the existence of one function which maps
a region on @, there arises the question of the existence of
other mapping functions. This question,is disposed of by the
following general theorem whieh.is easily established:

THEOREM 14.—If 2’ = f(2) maps a region S conformally upon the
unit circle Qo, then the most general function mapping S on Qo s

z=9@te -1 (58)

= %y;*fa) aa — cC =

Let Z = F(2) be any function mapping S conformally on
Q.. Then Z is a function of 2/, Z = ¢(2’), which maps @, in a
one-to-one and conformal manner on itself. For, to each 2’ in
Q. corresponds one point in S and to this latter corresponds
one Z in Q,. Conversely, to each Z in @, corresponds one 2’ in
Q.. Further, the neighborhood of 2’ is mapped conformally on

1This theorem was first stated by Riemann in his Dissertation, 1851.
The first proof for the most general simply connécted plane region is due
to Osgood, Trans. Amer. Math. Soc., vol. 1, pp. 310=314, 1900, who
proved: the existence of the Green’s function for such a region.

Th‘e method used in the text was outlined by Koebe in Gétt. Nach. in
1912,
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the neighborhood of z and this latter is mapped conformally on
the neighborhood of Z. From the form of the most general
function mapping the interior of @, conformally on itself, which
we found in Theorem 24, Sec. 12, we have Z = (a2’ 4+ ¢)/
(¢’ + a), where aa — ¢ = 1.

It is clear, conversely, that (58) maps S on Q,; for it is equiva-~
lent to the transformation 2’ = f(2) which maps S on Q,, followed
by a linear transformation which maps @, on itself.

CoroLLARY.—If 8 can be mapped conformally on Qo then there

exists one and only one mapping function such that a given inner
point 2o of S is carried into the origin and a given direction at 2,
is carried into a given direction at the origin.
" Let 2/ = f(2) be one function mapping S on @,. Then we
can so determine the constants in (58) that Z = 0 when z = z,.
By a rotation about the origin in the map a lineal element issuing
from 2, can be given the desired direction at the origin.

Let 2z, = f1(2) and 2z, = f2(2) be two functions mapping S in
the desired way. Then z, = (az; + 7)/(v21 + @), aa — vy = 1.
When z = z, we have z; = 0 and 2, = 0; so ¥ = 0 and we have
2g = azy/a = e'%2,. This latter is a rotation about the origin
but, since there is a fixed lineal element issuing from the origin,
this rotation is through a zero angle. Hence 2, = 2;; and there
is but one mapping function of the required kind.

80. The Behavior of the Mapping Function on the Boundary.—
The study of the behavior of the mapping function when the
variable approaches the boundary has led, in recent years, to a
number of brilliant papers. Certain of the results will be
derived in the present section.

There are certain elementary cases where the results are
immediate. If a plane region S is mapped on a plane region
S’ by a linear transformation, for example, the points of the
two planes correspond in a one-to-one manner, and the corre-
spondence between the boundary points, in particular, is one-
to-one. Again, let the mapping function be analytic at a
boundary point Z of S; and let 2y, 25, . . . be a set of points of
S approaching Z. Then the corresponding points 2/, 22/, . . .
of S’ approach the unique point Z’ = f(Z) on the boundary of
S’.  This simple fact enables us to determine readily the corre-
spondence between boundary points in the two regions
when the mapping is performed by elementary functions analytic
throughout the plane except for a few isolated points.



188 CONFORMAL MAPPING [Src. 80

In the study of the general problem we shall make repeated
use of the following lemma:!

Lemma.—Let f(z) be analytic and bounded, |f(z)| < M, within
and on the boundary of the region ABCD, where AB is an arc of
le] =1, CD is an arc of |2| =" < 1, and BC and DA lie on
radit (Fig. 52), except on the arc AB itself. Let f(2) have the

Sfurther property that in any sub-
Q region 2| > r and for a given

e > 0 across-cut X can be drawn

from a point of BC to a point

of AD along which |f(z)| < .
@ Then f(z) = 0.

Let Q be a circle or@ggﬁﬁél

to AB such that the region S

D A common to @ and [2| < 1, or

Fro. 52. <A/ Qo, lies in ABCD. By a suit-

able linear transformation r =

T(2) we can carry the arc of @, lying in @ into the segment—1,

1 of the real axis and carry S into the upper half of the circle Q,
in the 7-plane. (Fig. 53). Then, the transformation

t+1 —3 T+ 1)’

1-— t - 1—7
maps this half circle on the whole circle @, in the ¢-plane (Fig. 54)
so that the segment —1, 1 goes into the lower half circumference

aB

-1 . 1 Qo
Fia. 53. Fia. 54.

in the {-plane and the semicircular boundary goes into the upper
half circumference. Further, both these transformations map the
boundaries continuously. By these transformations, f(z) goes
over into a function ¢(¢) analytic in @, and on the upper half of
the boundary.

1 KoEBE, P., Jour. fir math., vol. 145, p. 213, 1915.
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Let E be the circle |t| < p < 1; and let E’ be the map of
in S. We now take r near enough 1 that |z| = r encloses E’; and
for a given € we construct the curve \. There is at least one arc
of N\ lying in S which has its ends on @ and which separates S
into two regions, one of which contains E’ and has no point of
Qo on its boundary. The map of this arc is a curve N’ in Q, in
the ¢-plane whose ends lie on the upper half circumference.
This arc divides @, into two regions, of which one contains E
and its boundary consists of A"’ and an arc of the upper half
circumference not reaching to the points +1.

Let A"’ be the curve resulting from rotating A\’ through the
angle = about the origin. Then certain arcs of A’ and \”’ form
the boundary of a region Z lying entirely within @, and con-
taining E. We consider the functions ¢(f) and ¢(—t) in this
region. If {is on N/, —tison N’. On N’ we have |o(¥)| < e,
le(—t)| < M, and/on N, |e()] < M and |o(—1%)] < e. So on
the boundary of = /

/l,w(t)so(—t)l < Me.
Since the maximum absolute value of the function is attained at
the boundary, this inequality holds also in E. Since e¢ may
be made arbitrarily small, we have, in E ¢(t)o(—t) = 0; whence
¢(t), or f(2), vanishes identically, which was to be proved.

In considering the mapping of the boundary, when a plane
region S is mapped on the unit circle @, we may suppose, without
loss of generality, that S lies within €, and contains the origin.
This is a consequence of Theorem 11. The mapping functions
used in the derivation of that theorem are such that when the
region in @, is mapped back on the original region the functions
employed are analytic on the boundary, except possibly for a few
isolated points.

Accessible Boundary Points—Let the boundary of S be
represented by C. A point Z of C will be called an ‘““accessible
boundary point’’ if an interior point of S can be joined to Z by.
a continuous curve L which lies, except for its end point Z,
entirely in 8. We may suppose that L begins at the origin and
has no multiple points. L is defined by an equation of the form
z = 2(t), where z(f) is a continuous function of the real variable
tin anintérval ¢; < t < t2; 2(81) = 0, 2(t;) = Z, and 2(t') = 2(t")
if ¢’ and ¢’ are distinct points of the interval. Such a curve is
known as a ‘““Jordan curve.”
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That simply connected regions exist not all of whose points are accessible
is easily shown by examples. The region of Fig. 55, formed from a rectangle
by making certain cuts from the boundary into the interior, is simply con-
nected. The cuts into the right half of the rectangle are made as follows:
Let AC = h, CD = k. At points of AC whose distance from A are /2,
3h/4, 5h/6, 7Th/8, . . . we erect lines perpendicular to AC of length 2k/3.
At points of ED whose distances from E are 2h/3, 4h/5, 6h/7, . . . we
erect perpendiculars to ED of length 2%/3. Then, all points of the line CD
are boundary points, but none of them is accessible.

The lines issuing radially from A are all of length I, where I < %/2,
! < k, and make angles »/4, /8, v/16, . . . with \AC. Here the interior
points of the line AB are inaccessible boundary points. On the other hand,
the point P to which the spiral boundary curve co»Averges is an accessible
boundary point.

E

/
P
A 5 C

Fia. 55.

D

In the case of a boundary point, such as P, of Fig. 55, to which
we can draw continuous curves approaching from one side
or the other side of the line on which the point lies, it is desirable,
for the simpler statement of our results, to consider P, as a
different accessible boundary point according as it is approached
from one side or the other. We shall consider the accessible
boundary point as defined not.only by its position but by the
curve which is drawn to it.

Let Zi, Z, be accessible boundary points defined by the
curves Ly, Lo. If Z, 5 Z, they are different accessible points.
If Z, = Z, they shall be the same accessible boundary point if,
and only if, the following conditions are satisfied: Let a circle
C be drawn with Z; as center, and of radius sufficiently small
that the origin is exterior to C, As L; is traced from the origin
toward Z,, let P, be the last point of L; on the circumference of C.
The arc N, from P; to Z, lies entirely in C. Similarly, the arc N,
of L, from the last intersection of L, with C lies in C. If, now,
for every such circle C, any interior point of the arc N; can be
joined to any interior point of the arc N, by a Jordan curve lying
entirely in S and C, then the two accessible points are the same.
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With this definition, all curves drawn to P, in the figure from
the right give the same accessible point; all curves drawn to P,
from the left give the same accessible point, but different from the
former. We thus have two accessible points at P,. The point A
of the figure counts as an infinite number of accessible points.

Let 2/ = f(2) be a function mapping the interior of S con-
formally on the interior .of the unit circle @,. We now prove
a series of propositions! concerning the behavior of f(z) as 2
approaches points on the boundary of S.

ProrosiTioN 1.—Let Z be an accessible boundary point of S,
defined by the curve L. Then as z approaches Z along L, 2’
approaches a point Z' on the circumference of Q.

It is clear that if a variable inner point z of S approaches
a boundary point P in any way, |f(z)| approaches 1. For an
arbitrarily small e > 0, the circle |2/| < 1 — € is mapped on a
region S’ of S which, together with its bqundary, consists of
inner points of S. When z lies in the circle |2 — P| < n where
n is small enough that this circle contains no points of S’, then
1 — e < |#/| < 1; whence, |2/| or |f(2)| approaches 1.

As 2z traces L from the origin toward Z, 2’ traces a continuous
curve L’ from the origin. L’ has the equation 2’ = 2'(¢) = f[z(t)],
‘where 2/(t) is a continuous function _of t in the open interval
1, < t <ty L'is without double points. As z approaches Z,
|¢’| approaches 1, and there are one or more cluster points of L’
on the circumference of @,. If there is but one, the proposition
is established. Suppose there are two cluster points Z,’, Z,'
Then, as z approaches Z, L’ passes infinitely often from the
neighborhood of Z," to that of Z,’. Hence, all the points of
one of the two arcs into which Z,” and Z,’ divide the circum-
ference are, cluster points. We now construct a region of the
type of Fig. 52 with AB within an arc of cluster points. For
|z — Z| < e, there is an arc of L’ extending from a point of BC
to a point of DAgnd lying outside any given circle |2/| = r < 1.
Representing the‘nverse of the mapping function by z = ¢(2),
we have on this are lg(2’) — Z| < e. Throughout @, we have
le(2") — Z| < 2. Applying the lemma, ¢(2') — Z = 0, or ¢(2)
is a constant, which is impossible. This establishes the prop-
osition. The function 2’(¢), defining L’, is continuous in the
closed interval ¢, < ¢ < i, if we put 2/(t;) = Z'.

1 KoEBE, P., Jour. fiir Math., vol. 145, pp. 215-218, 1915. Osgood, W. F.,
and Taylor, E. H., Trans. Amer. Math. Soc., volml4, pp. 277-298, 1913.
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ProrositioN 2.—Let L and Ls be curves defining the same acces-
sible point Z on the boundary of S. Then, the corresponding
curves Ly, Ly’ end at the same point of the circumference of Q.

Suppose L' and L, to end at different points Z}’, Z,'. In
any circle C, however small, with Z as center, we ¢an draw a
curve \ lying in S and in C from a point £ of L, to a point 5 of L.
This construction is possible since the two curves define the same
accessible point. Let &, %, N be the maps of & m, N\ in the
Z-plane. If the radius of C is small enough, ¢ js arbitrarily
near Z,, n’ is arbitrarily near Z,’, and N lies without a given
circle |2'| = r < 1. Along X/, if the radius of C is less than e,
we have |z — Z| = |o(¢’) — Z| < e. By taking the arc AB in
the lemma on a suitable one of the two arcs into which Z,/, Z,’
separate the circumference, we have, as in the preceding prop-
osition, ¢(2’) — Z = 0. This contradiction |establishes the
proposition. ‘

Prorosition 3.—Let Ly and L, be curves defining different
accessible boundary points Z, and Z, on the boundary of S. Then
the corresponding curves L.', Ly’ end at different points on the
circumference of Q..

L’z Lo Z
\ a
a' VA a P a
Lj (]
Lll Z
(a)

Fia. 56. Fic. 57.

The proof here is less simple. Suppose, on the contrary,
that L, and L’ end at the same point Z’. Asz traces L; from the
origin toward Z,, let a (which may be the origin) be the last
point of L; within S which lies on L,. Such a point clearly
exists, since, otherwise, L; and L?ﬁ%ﬁne the same accessible point.
We shall erase the parts of L; and L, between the origin and a
and consider the curves as drawn from a to Z; and Z,. Then L.’
and L," extend from the corresponding point a’ in @, to the point
Z' and have no other common point.

The curves L; and L, together form a cross-cut in S extending
from a boundary point to a boundary point which divides S
into two sumply connected pieces. The map in @, of one.of
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these parts, which we shall call G’ (Fig. 56), is bounded com-
pletely by L.’ and L.’ and has the single point Z’ of the cir-
cumference on its boundary. Let G (Fig. 57(a) or (b)) be the
corresponding region in S.

The boundary of G contains in addition to L, and L», a piece of
the boundary of S. This is obvious if Zi s Zs. It is true
also if Z, = Z,; for, otherwise, we could draw in G the curves
whose existence suffices to make L; and L, define the same acces-
sible point. )

We next make a cross-cut in @ in the form of an arc of a circle
joining different accessible boundary points of S. That such a
cross-cut is possible we see as follows: Let P be a point on the
boundary of G and of S distinet from Z, and Z,. Let P; be an
inner point of G whose distance from P is less than the distance
from P to the points of L; and L,. The arc with P as center and
passing through P;, extended in each direction from P; until it
meets the boundary at two points «, 8, is a cross-cut of the
desired kind. (This arc meets the boundary, otherwise S is not
simply connected.) One of the two simply connected parts into
which G is separated is bounded by the arc o8 and by a piece
of the boundary of S, but by no points of L; or L.,. Call this
region g. '

The reason for getting a cross-cut in the form of a circular
arc is that with this particular form of boundary we can map
g on a region to which we can apply the lemma. We now show
that ¢ can be mapped on a semicircle in such a way that the
circular arc «f is mapped continuously on a diameter. We first
make a linear transformation r = T'(2) carrying the arc o8 into
a segment o'f’ of the real axis, and so that g is mapped on
a region ¢; in the r-plane lying, in the neighborhood of «'f,
in the upper half plane. We may take «’f’ as a finite segment
except in the special case that o« = 8. We may suppose that
g is entirely in the upper half plane. If not, a second transfor-
mation of the form

7 —d T — o'\

ﬁ’—'T,_<ﬁ’—T>
maps the r-plane boundéd by the slit «’8’ on the upper half
7’-plane. (A second transformation is clearly unnecessary if

.o/ = B.) The boundary points of g and g; correspond in a
one-to-one and continuous manner.
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Let g1/ be the reflection of g; in the real axis (Fig. 58). We
now map the simply connected region g, + g,’, formed by erasing
the segment o/8’, on the unit circle @, in the ¢-plane in such
a way that an inner point ¢ of the segment o/f’ is carried to
the origin and the direction of the positive real axis at ¢ is carried
into the direction of the positive real axis at-the origin (Fig.
59). This determines the mapping function ¢ = F(r) uniquely
(Theorem 14, Corollary). In this mapping, the interior of the
segment o’B’ is mapped continuously on an analytic curve in Q,.
We shall now show that this curve is precisely the segment —1, 1.

If we reflect in the real axis in the r-plane, thus carrying
g1 + g1 into itself, perform the mapping with the function F,
and then reflect in the real axis in the ¢-plane, we have a conformal
map of g1 + g1’ on Qo. The succ7sion of these transformations

=1t ort=F(),

1t —

1
0 \asvel
\ X )

\ /
\ V4
N 7

S

T1=;, tl =F(’T1),

Fia. 58. Fi1a. 59.

is an analytic function of = which carries ¢ to the origin, ¢ = 0,
and transforms the direction of the positive real axis at ¢ as

before. Hence, F(7) = F(r), since there is but one mapping
function with these properties. If 7 is not real, 7 £ 7, we have
in g, + g1/, since the mapping is one-to-one, F(r) # F(7), whence
F(r) # F(z). That is, ¢ # ¢, and t is not real. Hence, the real
segment o’B’ is mapped on the real segment —1, 1. Incidentally,
from Proposition 1, the one-to-one correspondence may be
extended to include the end points themselves. The region
g1 is mapped on the region g,, the upper half of Q..

We shall now use the region g, for the application of the
lemma. ~On changing the variable from 2 to ¢, we have a function,
z' = f(z) = ¥(t), which maps g, on a region ¢’ lying in G'. The
boundary of ¢’ is a continuous map of a8 and, hence, of the
interval —1, 1. ' If we cut g, in two by any circle |t| = r < 1,
the map of this cut is a curve ¢ cutting ¢’ in two. The part of
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g2 exterior to the circle corresponds to the part of ¢’ which has
Z’' as boundary point. In this latter region, we can draw a
curve N’ within a distance ¢ of Z’ cutting off a smaller subregion
with Z’ on its boundary. The map of N is a curve X in g, lying
outside || = r < 1, joining a point of the real axis to the left
of the origin to one on the right, and along which |[¢(t) — Z'| < e
Since |¢(f) — Z’'| is bounded in Q,, it follows from the lemma
that ¢({) — Z’ = 0; or f(2) is constant. This contradiction
establishes Proposition 3.

ProrositioN 4.—The points which correspond to the accessible
points of the boundary of S are everywhere dense on the circum-
ference of Qo.

Suppose, on the contrary, that there is an arc Z,'Z,’ on the
circumference containing no points which correspond to acces-
sible boundary points of S. Let Z’ be an inner point of this
arc; and let z,/, z,’, . . . be a sequence of interior points of Q,
approaching Z’ as a limit. The corresponding points 2y, 2,, . . .
in S have one or more cluster points on the boundary of S. Let
Z be one of these cluster points; then, we can select a subsequence
£, &2, . . . of 21, 29 ... approaching Z as a limit. The
corresponding sequence £/, &', . . . approaches the limit Z’.
Let L, be a straight line drawn from £, to the nearest (or one
of the nearest) boundary points. L, defines an -accessible
boundary point; hence, the corresponding curve L,’ in @, extends
from &, to a point of the circumference outside the interval

" Zy. Now, given ¢ > 0 and r < 1 we can choose n large
enough, n > N, that all points of L, lie within a distance e of
Z and outside the map in S of |¢/| < r. L.’ is then a curve

. lying outside the circle |2/| = r along which |z — Z| = |¢(¢') —
Z| < e. By choosing AB of Fig. 52 to lie on a suitable one of the
arcs. Z'Z,' or Z'Z,' (one with an infinite number of the curves L', in
its neighborhood), and applying the lemma, we have ¢(2’) — Z = 0.
This identity is impossible; and the proposition is established.

Boundary Elements.'—We now interchange the réles of @,
and S and enquire what point or points on the boundary of S
correspond to a point Z’ on the circumference of @, If a
continuous curve L’ be drawn from the interior of @, to Z’, what
point or points on the boundary of S does the corresponding
curve L come arbitrarily near to—for all positions of L'? An

1 These are the Prime Ends of Carathéodory’s notable paper, Math. Ann.
vol. 73, pp. 323-370, 1913.
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equivalent problem is to consider a sequence of interior points
of Qu, 2/, 2/, . . . approaching Z’ as a limit and to seek the
cluster points of the corresponding sequence 2z, 2, . . . in S—
for all possible such sequences.

We-consider a set of curves Cy, Cs, . . . in S. Let C, be a
Jordan curve joining different accessible boundary points of S
-and lying, except at its ends, in S. Let S, be one of the simply
connected pieces cut off. Let C; be a Jordan curve in S; joining
accessible points on the boundary of S, different from one another
and from the ends of ;.. Let S; be that part which C, cuts off
from S; which does not have C; as part of its boundary. In
general, C,,; is a Jordan curve in S, joining accessible points
on the-boundary of S, different from one another and from the
ends of C,; and S, is that region which C,..; cuts off from S,
which does not have C, as part of its boundary.

We shall impose one further/condition on the curves C,. Any
given interior point of S shall] for n sufficiently large, n > N, be
exterior to the region §1L.W,,Tﬁis can be accomplished, for example,
by so drawing C, that S, contains no points in the map of the

. 1
circle |2/'| < 1 — o

Let C./, S,/ be the maps of C,, S, in Q.

. The closed regions Si;, S;, . . . have at least one common
point on the boundary of S. Likewise the closed regions S/,
Sy, . . . have at least one common point on @, If there are
more than one, there is a common arc on . :

DerinNiTION.—If the closed regions Sy, Sy, . . . have a single
common point Z', then the points common to the closed regions
Si, S, . . . will be said to constitute a boundary element of S
defined by the curves C1, Cs, . . . and corresponding to Z'.

Two sets of curves will be said to define the same boundary
clement if the corresponding points on Qo are the same.

It is easily seen that two sets of curves defining boundary
elements define the same element if, and only if, any region
S. of the first set contains all regions s, of the second set, for
n sufficiently large, and any s, contains all S,, for n sufficiently
large. For, the corresponding regions S,’ and s,’ in Qo which
enclose a single point Z’, have this property.

To each boundary element corresponds, by definition, a unique
point of ,. We now prove that to each point Z’ on @, cor-
responds a boundary element.
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In the following, we represent by U,', V. points on the
boundary of @, which correspond to accessible points U,, V, on
the boundary of S. Let U,, V.’ be an arc containing Z’. Let
the points of the sequence U., Uy, . . ., Vi, Vo', . . . be so
chosen that U.,,, lies between U, and Z’, V',,, lies between
V. and Z’, and the length of the arc U,’'V.,’ approaches zero.
Each arc of the sequence U,'V,, U,’V,, . . . contains the arc
which follows it; and Z’ is the only point common to all.

We can now draw the curves Ci, C, . .. in the manner
explained above such that C, joins U, and V, Then S/,
Ss’, . . . have the single common point Z’; whence Cy, C», . . .
define a boundary element corresponding to Z’.

We have then the following result:

ProrosiTioN 5.—There 1s a one-to-one correspondence between
the points on the circumference Qo and the boundary elements of S.

We now justify our nomenclature by showing that the bound-
ary element constitutes the set of points corresponding to Z’ in
the sense mentioned originally. Each region of the sequence
Sy, Sy, . . . in @, encloses the region which follows it; and a
given neighborhood of Z’ contains all the regions S, from a
certain value of n on. Of the points of the sequence 2/, 25/, .
approaching Z’ as a limit, all but a finite number lie in any
S.’. Then, all but a finite number of points of the corresponding
sequence 2, 25. . . . lie in S,. The cluster points of the latter
sequence all lie within or on the boundary of S,, for all n. These
cluster points must then be points of the boundary element.
Conversely, let Z be a point of the boundary element. We can
choose 2, in Sy, 2, in S, ete., in such a way that 2z, 2, .
approaches Z as a limit. Then the corresponding sequence z,’
in S/, 2z’ in Sy, . . . approaches Z’ as a limit. Thus every
point of the boundary element corresponds to Z'.

We now derive certain propositions concerning sets of curves of
the kind we have defined.

Prorosition 6.—If S;, Sz, . . . do not possess more than one
common accessible boundary point, then C,, C., . . . define a
boundary element.

It is clear from Proposition 3 that a boundary element cannot
possess two accessible boundary points. Suppose, now, that
Sy, Sy, . . . have a common bounding arc. Let Z,, Z,' be
points within this arc corresponding to the accessible points Z,, Z»
on the boundary of S. To the curve L;, L. defining Z,, Z.
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there correspond curves L,’, Ly’ terminating in Z,’, Z,’. In the
neighborhood of Z,, L, lies in S,’; so, in the neighborhood of
Z,, L, lies in S,. Hence, Z, and, likewise, Z, are accessible
boundary points for each region S,. Since we assume there are
not two such points, it \follows that S,’, Si/, . . . have no com-
mon bounding arc; hence, we have a boundary element.

In Fig. 55, let C, be drawn vertically across the region from boundary to
boundary at a distance e, from CD, where e, tends steadily to zero as n
increases. The regions S, have the common boundary line CD, all points
of which are inaccessible,/ and have no other common boundary points.
Hence Cy, C, . . . defing a boundary element comprising the points of CD.
When this region is mapped conformally on a circle, any sequence of points
21,22, . . . in the régiof, such that the distance of z, from CD approaches
zero as n becomes irfz/se; is mapped on a sequence 2/, 22/, . . . converging
to a single point on the boundary of the circle.

ProrosiTioN 7.—If all points on the curve C, for n sufficiently
large lie @in an arbitrarily small neighborhood of a point Z, then
Cy, Cs, . . . define a boundary element.

If we suppose the contrary, then S,’, S/, . . . have a common
boundary arc AB. Using this arc, and the function z — Z
= o(Z') — Z, we apply the lemma at the beginning of this
section. For ¢ > 0 given and for n sufficiently great, |o(2’)
— Z| < e on C,/, where C,’ is a curve lying near the arc AB.
We conclude in the usual way that ¢(2’) is a constant; and this
contradiction establishes the proposition.

In Fig. 55, we can draw the curves from the ends of the radial slits to the
neighborhood of B in such a manner that the curves converge to B. Then,
a boundary element is defined comprising the points of the line AB. This
boundary element contains one accessible point; namely, B.

ProrosiTioN 8.—If the diameter of the curve C, approaches zero
as n becomes infinite, then Cy, C2, . . . define a boundary element.

By the diameter of C, is meant the maximum distance between
two points of C,. We can choose a subsequence Cayy Crgy + .
converging to a point Z. By Proposition 7 this subsequence
defines a boundary element. Each S, encloses all 8§,
for n > nn.; hence, C,y, Cy, . . . define a boundar3; element.

81. Regions Bounded by Jordan Curves.—As a consequence of
the preceding propositions, the following theorem is readily
established:

TuEOREM 15.—Let 2’ = f(2) map a plane region S whose bound-
ary C consists of a closed Jordan curve conformally on the unit
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circle Qo. Then the poinis on the boundaries of the two regions
correspond in a one-to-one and continuous manner.

If at each point Z of C we set f(Z) = lim f(z), as z approaches
Z from the tnterior of S, then f(2) ¢s continuous in the closed region S.

C is without double points and each of its points is an accessible
boundary point. To each point of C, then, there corresponds a
unique point on the circumference of .. To each point of the cir-
cumference there corresponds a boundary element consisting
of one or more points of C. But, since this boundary element
cannot contain two different accessible points, it must consist of a
single point. The correspondence is thus one-to-one.

It is a well-known theorem that when a continuous function
in a two-dimensional region takes on boundary values in this
manner, the sequence of values taken on is continuous on the
boundary and forms with the values within the region a con-
tinuous function.

Numerous consequences of Theorem 15 will occur to the
reader. For example, if we map S on a second plane region =
bounded by a closed Jordan curve T', then the points of C and T
correspond in a one-to-one and continuous manner; and the
mapping function is continuous in the closed region S, if we define
the value of the mapping function on C by the limiting process
mentioned in the theorem. This we see by mapping S on @,
and then mapping @, on =.

Many of the facts concerning the mapping on the boundary
can be extended to a wide variety of many-sheeted regions. We
shall find use for the following theorem and corollary:

TuaeoreM 16.—Let S be a plane or many-sheeted region which is
mapped conformally on Q.. Let the boundary of S contain a
Jordan curve Cy with the property that a Jordan curve K, can be
drawn tn S connecting the ends of Cy and cutting off a plane sub-
region Sy whose complete boundary consists of Cy and K,. Then
the points of C; correspond in a one-to-one manner to the points
of an arc of Qo.

When S is mapped on Q,, S; is mapped on a plane simply
connected region S;" and, so, can be mapped on a circle. S,
is bounded by a Jordan curve. For, K, is mapped on a Jordan
curve,—this includes the end points, by the reasoning of Propo-
sition 1—and the rest of the boundary is on the circumference of
Q.. Then, the points on' the boundaries of S; and S/, each
boundary being a closed Jordan curve, correspond in a one-to-one
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manner. Hence, the points of C; correspond to the points of
an arc of Q,.

It may happen that the boundary of a sheeted region, while
not lying in a plane, can be broken up into pieces, each of which
is a Jordan curve of the kind mentioned in the theorem. Each
piece corresponds to an arc of o, and we have the following
result:

CoroLLARY.—If the boundary of S tn Theorem 16 consists of a
finite number of Jordan curves, A1Aq, AsAs, . . ., A.A1, of the
kind specified, then the points of the boundary and the points of
the circumference of Q, correspond in a one-to-one manner.

When the mapping is continuous on the boundary, there arises
the question of performing the mapping so that certain given
points on the boundary of one region shall be mapped on given
points on the boundary of the other region.

TurorREM 17.—If two regions S and S’ of the type stated in
Theorem 16, Corollary, can each be mapped conformally on a
circle, then S can be mapped conformally on S’ in one, and only
one, way such that three given distinct points on the boundary of S
are mapped on three given distinct points arranged in the same
order on the boundary of S’.

Both S and S’ can be mapped on @,, the mapping being con-
tinuous on the boundary. Let m, n, p be three points on the
boundary of S, arranged so that, proceeding in a positive sense
around the boundary from m, we encounter first n, then p. Let
m’, n/, p’ be three points arranged in like manner on the boundary
of 8. Let ¢t = ¢(2) and t' = ¢(2’) map S and §’, respectively,
on Q. Then m, n, p and m’, n’, p’ are carried, respectively, into
my, ny, p1 and my’, ny', p,’ ordered in the same way on the cir-
cumference of Q,. Now, there is a linear transformation ¢ =
T(t), which carries mi, n,, p1, respectively into m,’, ni’, p,. This
transformation carries Qo into itself, the interior being carried
into the interior. Then the transformation ¢ = ¢(2), followed
by the transformation ¢ = T(¢), followed by the inverse of
t = ¢(2'), is a sequence of transformations which maps S on §’
and carries m, n, p, into m’, n’, p’, respectively.

Suppose, now, that this mapping can be performed by two
functions 2z’ = f(z) and 2’ = F(z). Then, t' = ¢(2’) = y[f(2)]
and ¢, = y[F(z)] map S on @, Hence (Theorem 14), ¢ is a
linear function of ¢’. But when z = m, n, p, we have t’ = t; =
mi, mi, pi; hence (Sec. 3, Theorem 6), &, = t/, or Y[F(z)] =
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Y[f(2)]. It follows that F(2) = f(2), and there is only one func-
tion performing the mapping.

82. Analytic Arcs and the Continuation of the Mapping
Function across the Boundary.—We return to the mapping of a
region S on @, If the mapping function 2’ = f(z) is analytic
at Z on the boundary of S, so that the function can be extended
analytically across the boundary,pand if f'(z) # 0, then the
inverse function 2z = ¢(2’) is analytic at Z' = f(Z) on the
boundary of @,. The neighborhood of Z is mapped conformally
on the plane neighborhood of Z’. The boundary near Z’ is
mapped on an analytic arc z = ¢(e*) through Z.!

If f/(Z) =0, we have f’(2) % 0 in the neighborhood of Z
except at Z itself; and the boundary of S in the neighborhood
of Z consists of analytic arcs. In order that f(z) be capable of
continuation across the boundary it is necessary that the boundary
contain one or more analytic arecs. If there are no analytic arcs on
the boundary C of S, then f(z) has C as a natural boundary.

Tuaeorem 18.—If the Jordan curve Cy tn Theorem 16 is an
analytic arc, then f(2) is analytic at any interior point Z of C; and
so can be extended analytically across the boundary tn the neighbor-
hood of Z. The neighborhood of Z vs mapped conformally by the
function.

Fie. 60.

Let z = ¢(t) be the equation of Cy, where ¥(t,) = Z, ¢/ (¢,) # 0.
The function z = ¢(¢) maps the neighborhood of ¢y conformally on
the neighborhood of Z so that the real axis near ¢, is mapped
on the arc C, near Z. A suitably small region g, (Fig. 60)
abutting along the real axis in the neighborhood of f{,—in the
upper half plane, let us say—is mapped on a region g of S and

- abutting along C, in the neighborhood of Z. This is mapped by
2’ = f(2) on ¢’ in @, abutting along an arc through Z’, the point
1 An analytic curve is a Jordan curve, z = z(t), t: < t < f3, in which

2(t) is an analytic function of ¢ in the interval and the derivative 2'(¢) s 0.
In the present case 6 takes the place of .
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corresponding to Z. Then, 2’ = f[y(t)] maps g;on ¢’, is analytic
in g, and is continuous on the part of the real axis bounding g..

Let h;, b’ be the inversions of g, and ¢’ in the real axis and the
circle Q,, respectively. If we invert in the real axis carrying A,
into g; then map ¢. on ¢’, and, finally, invert in @Q,, carrying ¢’
into h', we have a conformal map of h; on &’ by some function
2’ = F(t), analytic in h; and continuous on the part of the real
axis bounding #;, Now, this transformation affects the points
of the real axis in exactly the same way as the transformation
2’ = fly(®)]. These two functions are analytic in the adjoining
regions g;, h; and take on the same continuous values along the
common boundary. Hence, F(¢) is the analytic continuation of
fly(t)] throughout h.. This latter function is analytic in the full
neighborhood of ¢,; whence, f(z) is analytic in a sufficiently small
neighborhood of Z. The mapping of the neighborhood of Z
on the neighborhood of ¢, and of this latter on the neighborhood
of Z’' is in each case conformal; whence, 2’ = f(2) maps the
neighborhood of Z conformally on the neighborhood of Z’.

83. Circular Arc Boundaries.—The following theorem which
is of considerable importance in various applications may be
derived here:

THEOREM 19.—Let 2’ = f(2) map a region S upon a region S’ in
such a way that a circular arc AB of the boundary of S is mapped
continuously on a circular arc A'B’ on the boundary of S'. Let S,
and Sy’ be the regions got by inverting S and S’ in AB and A'B’,
respectively. Then f(2) can be extended analytically across AB
into Sy and maps S; conformally on S;'.

The proof follows the lines of the proof of Theorem 18. Let 2,
be a point of S;; and let z be the point.in S got by inverting in A B;
let 2’ = f(z); and let 2," be the point in S,’ got by inverting 2’
in A’B’. Then 2, is a function of z;, 2, = F(z,), which, as a
result of one analytic transformation and two inversions, maps S,
directly conformally on S,’. Hence, F(z,) isanalyticin S;. Asz,
and z approach a common point on AB, z,’ and 2’ approach a
common point on A’B’. Hence, F(z,) and f(z) take on the same
values on AB. It follows that F(z;) is the analytic continuation
of f(z) across AB into and throughout the region S,.

CoroLLARY.—If the region S’ of Theorem 19 is the unit circle Qo, and if AB
18 not the whole boundary of S, then the region formed by joining S and S1 along
AB can be mapped on Q.
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In this case, A’B’ is an arc of Qo but not the whole circumference; and
S:’ is the whole exterior of @,. The function 2’ = f(z) maps the region
formed by joining S and S, along AB upon the region formed by joining
the interior and exterior of @, along the arc A’B’. The latter region is a
plane region whose boundary consists of that part of the circumference of
Qo which remains after A’B’ has been removed. By Theorem 13 it can
be mapped on Q,.

.84. The Mapping of Combined Regions.—We shall presently
consider the mapping of a many-sheeted region on a circle.

As an aid to establishing later a much more general theorem, we
shall prove the following proposition:

TusoreM 20.—Let Sy and S» be regions, with boundaries of the
type stated tn Theorem 16, Corollary, each of which can be mapped
conformally on a circle. Let the boundartes Cy, Cy meet in two
points m, n, the region common to
S;1 and Sy being simply connected.
Let m, n be interior points of analytic
arcs on both boundaries, and let the
angle between the bounding arcs of
the common region at each point be
different from zero. Then, the region
formed by combining Sy and Sz can
be mapped on a circle.

The regions S; and S, are
shown schematically in Fig. 61.
Let p be a point of C; lying in S;. Let z; = fi(z) map S; con-
formally on Q,. The points m, n, p are carried into points m,,
n1, py on the circumference of Qo (Fig. 62). The region common
to S; and S; is mapped on a region K in @, bounded by the
arc mpim;. The mapping function is analytic at m and n;

Fig. 62.
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hence, angles at these points are preserved. Hence, the portion
of Cy which lies in S; is mapped on a curve in @, (the heavy line
in Fig. 61) meeting the arc nipim, at m, and n, 4t angles greater
than zero.

We can draw a circular arc A joining m; and n; and lying
entirely in K. It will be convenient to take the arc such that

it makes with the arc n,p;m; an

angle 6 = x/2¢, where s is an

m integer. Let N be the arc got

-~ by inverting nipim, in \; let X’

N4 be the arc got by inverting n,p,m,

in\;andsoon. We find readily

that A® lies on the circumfer-

\ Dy ence of Q. These arcs divide @,

‘,‘12 Q into reg'ions By, BY, B, ...,

B,® asin the figure. Let B, B’,

B”, ..., B® be the correspond-
ing regions in S;.

Let A be the portion of S, exterior to S;. Let 2, = f2(2) map
the region formed by combining A and B, which we shall designate
by A + B, conformally on @,. This mapping is clearly possible,
for, when 8, is mapped on a circle, 4 + B is mapped on a plane
region which can be mapped on @, (Theorem 13). Let A, Bs,

Fiag. 63.

Fia. 64.

ms, Na, Py be the regions and points on which 4, B, m, n, p are
mapped (Fig. 63).

The function f,(2) can be extended analytically across the
boundary of B; we shall show that it can be extended throughout
the whole of B’. Let z,’ = ¢2(2;) be the unique function mapping
B; on B, so that my, ny, p: are carried into ms, ns, ps, respectively.



Sec. 85] THE MAPPING OF LIMIT REGIONS 205

Then (Theorem 19) this function can be extended analytically
across A and throughout B, and maps B, on B/, the inverse
of B2in@y. The functionz’ = ¢2(21) = @o[f1(2)] exists throughout
B + B’ and maps B + B’ on B, + B,'. But, in B, ¢.[fi1(2)] =
f2(2), since both functions map the three boundary points
m, n, p alike (Theorem 17). Hence, ¢o[f1(2)] is the analytic
continuation of fy(2). The function fy(2) maps A + B + B’
conformally on A, + B, + B,’. This latter region is a plane
region and can be mapped on Q.

We now repeat the reasoning, replacing B by B + B’ in the
argument. Let 23 = f3(2) map A + B + B’ on @, (Fig. 64).
The function 23 = ¢;3(2:,) which maps B; + B, on B; + By’
so that mi, ni, p1 go into ms, ns, ps can be extended analytically
throughout B;” and maps B, on B;" the inverse of B; + Bj'
in Qo. By the identity of ¢3[f1(2)] and f3(2) in B 4+ B’, we prove
that f3(2) can be extended analytically throughout B’" and maps
B"” on Bj’. Hence, 23 = f3(2) maps A + B + B’ + B"” on
a plane region which can be mapped on Q.

Continuing in this manner we arrive in a finite number of
steps at a function which maps A + B+ B 4+ - - - + B®
on (o; and the theorem is proved.

85. The Mapping of Limit Regions.—By the method of the
preceding section, we can build up, step by step, by the combi-
nation of a finite number of overlapping plane regions, other
regions which can be mapped on a circle. These latter regions
are finite sheeted and are bounded by Jordan curves. We shall
now prove a theorem wherein the final region is constructed by
an infinite process. By its use we shall be able to deduce results
concerning regions with general boundaries and regions with
an infinite number of sheets. This powerful theorem is due to
Koebe.

TaEOREM 21.—Let ¢1, ¢35, . . . be an infinite sequence of
regions each of which can be mapped on a circle. Let ¢, be a
subregion of ¢ni1. Let ¢ be the region consisting of all points
which are interior to any region ¢,.. Then, ¢ can be mapped
conformally either on a circle or on the whole plane exclusive of a
single point.

Let a be an ordinary interior point of ¢;. Then, a is within
¢n.  Let z, = fu(2) map ¢, on the unit circle @, in the z,-plane
in such a manner that a is carried into the origin and the direction
of the positive real axis at a is carried into the direction of the
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positive real axis at the origin. Then f,(a) = 0; and f./(a) > 0.
This mapping is possible according to the corollary to Theorem 14.
We shall now study the sequence of functions

fl(z)) f2(z)7 fs(Z), T (59)

The regions ¢, are shown schematically at the left of Fig. 65.

The mapping of the first few regions is shown at the right in the
same figure. Let 2z be a point in ¢, and let

Zm = fu(2), 2o = fu(2),n > m (60)

zg-plane z,-plane

Fic. 65.

be the corresponding points in the z,,- and z,-planes. The first
of these functions maps ¢, on @ in the z,-plane; the second maps
¢m on a region lying in @, in the z,-plane. The inverse of the
first function followed by the second,

en.= n[fm—l(zm)] = ‘Pn,M(zm)7 (61)
maps @, in the z,-plane on a region lying in @, in the z,-plane.
The function ¢, m(2m) satisfies the conditions of Schwarz’s
lemma, Theorem 1; hence, we have
dzn
dzm

den _ fi/'(a)
(dzm>o fu @y
@) < 1@, 2 # a5 f(@) < ful (). (63)

In particular,
fan(@| < 1fa(), 2 # a5 faiala) < i/ (a). (64)

|22] = |@n,m(Zm)| < |2m|, 2Zm # 0;
From (60), since

= l'nm(0)] < 1. (62)

we have
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Let a circle Q with center at the origin and radius r < 1 be
drawn in each plane. Let C, be the corresponding curve in
¢, which the function 2, = f.(2) maps on . The curves C;, C.,
enclose a set of regions Sy, S;, . . . lying in ¢, such that S, lies
in ¢, and contains a, and S, together with its boundary C, lies
within S,.;. This last statement follows at once from the fact
that the interior and boundary of @ in the z,-plane are, from the
first inequality of (62), mapped on a region lying within @ in
the z,.:-plane.

Further, r can be taken near enough to 1 that any preassigned
point P of ¢ is an inner point of the regions Su, Smt1, . . . form
sufficiently large. Let ¢ contain P. Then 2, = fu(2) maps ¢m
on @, P going into an interior point P’. It then suffices to take r
large enough that @ contains P’.

The derivative f,'(a) is positive and (Inequality (64)) decreases
as n increases. Hence, it approaches a limit 2 > 0 as n becomes
infinite. We have two cases to consider:

L limf,/(a) = A > 0; IL limf./(a) = 0

The Convergence.—We prove first that ¢n both cases the sequence
f=(2) converges throughout ¢ and the limit function is analytic in .
To prove this, it suffices to prove that the sequence converges
uniformly in S,. The limit function is then analytic in S,.
Since m and r can be so chosen that S.,. encloses any preasssigned
point of ¢, the limit function is then analytic throughout ¢.

Instead of considering functions of z in S,, we shall map
S» on @ in the z,-plane and consider the corresponding functions
of z2m. We have f.(2) = ¢nm(2m); and we shall establish the
uniform convergence of the sequence

<Pm,m(zm)7 ¢m+1,m(zm),¢m+2,m(zm)y e (65)
in Q. Consider the function

Onip,m(Zm) — ‘Pn.m(zm)’

o n>m,p > 0. (66)

This function is nowhere zero in Q,; for, when 2z, ¥ 0, we have
from (63) that |@nyp,m(Zm)| < |@n.m(2m)|, and when z, = 0 we have

Cripm(n) = enm(Em)\ _ [(d2nip) _ [d2a
Zm 0 dzm /, dem ),

_ Fasl@) = 12/ (@)
=@ <
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The function is also bounded in Qq, for from (62) |@n, m(2m)/2m| < 1];
S0
ﬁ?n+p,m(z m) = Pnm(Zm)

P < 2. (67)

The function (66) then satisfies all the conditions of Theorem
10, where the circular regions @ and @, take the place of Z and Z’,
respectively, of that theorem. Hence, we ha,ve (setting 2; = 2z,
and z; = 0)

I‘Pn+p.mr(zm) — onm(2m)
Zm

(@) — f (@)1
< Ko = )

where K, and K are independent of m, n, p, and depend only
upon 7, the radius of Q. The inequality (68) holds for all points
in Q.

Since the sequence f,'(a) converges, we can choose n large
enough that the second member of (68) is less than a preassigned
positive e. We have, then, within and on @

I‘Pn-!-pmt(zwt) - Son,m(zm)l < elZMI < e (69)

for all p > 0. This proves the uniform convergence of the
sequence (65) in Q.

In Case II, we find readily that the limit function s identically
zero. We have but to apply Theorem 10 to the function

On.m(2m)/2m.  We have in Q
"Pn.m(zm) lﬂon.m(zm) /x _ f_‘n ga) )1/
< Ko , — K (fm,( ] (70)

Zm A Zm
By taking n large enough, we can make f,’(a) arbitrarily small,
whence, |¢n, m(2x)| is arbitrarily small. It follows that

(68)

lim @n,m(2m) = O.

Case I.—Let f(2) be the limit of the sequence (59). We shall
prove that the 2’ = f(2) maps ¢ on the circle Q.

The function f(2) is nowhere greater than 1 in absolute value
in ¢, since at each point of ¢ it is the limit of functions which are
less than 1 in absolute value. It will suffice to prove that f(2)
takes on each value in @, once, and only once. When ¢, is
mapped on Qy by 2. = fu(?) let f(z) be transformed into a
function ¢m(2s). Then when 2 is in ¢,., 2, is in o, and

J@) = on(zm) = im @5 m(2m).

n= o
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Let a be a point in @o; and let r be taken large enough that @
encloses «. This fixes K, and K in (68). Taking n = m we
have,

In'(a)

‘1‘;'"'4%1,m(zm)r - zm! < K, I mip(a) ;fﬁg) l/K. 1)

Zm

Let € > 0 be chosen so that
e<r — |a. (72)

Then, since f.'(a) converges, we can choose m sufficiently large
that the numerator in the fraction in the second member of (71)
is arbitrarily small, whereas the denominator f,'(a) is greater
than 2. We can make the second member less than e, and we have

leminm(zm) — 2m| Celon| < e (73)
Letting p become infinite we have
lom(zm) — 2| < e (74)

Now ¢@mip,m(2m) maps @ and its interior on a plane region in the
Zmip-plane. On Q itself |z,,| = r and we have from (73) and (74)

r—e< I‘P"Hrp.m(zfn)[ <r+ter—e< I‘PM(ZM)I <r+e (75)

It follows from the first of these inequalities, together with
(72), that @ is mapped on a curve enclosing «. Hence, for all
P > 0, Omipm(Zm) — a has a single zero in Q. It follows from
the latter part of (75) that ¢m(zm) — o is not zero on Q.
Applying Theorem 12, it results that ¢.(z.) — « has a single
zero in Q. That is, ¢m(2.) takes on the value « once, and only
once, in S,.. Then f(2) takes on the value « once, and only once,
in S,.

We show finally that f(z) cannot take on the value « at any
other point of ¢. Suppose, on the contrary, that this value
is taken on at two points of ¢. Then, r (>|a|) and » can be
taken large enough that both points are included in S,. If in
the preceding reasoning we choose m > », we have the contradic-
tion that f(2) takes on the value « more than once in S,..

Case II.—If lim f./(a) is zero, the limit of the sequence
(59) is identically zero; and we get no map of the surface
¢. In this case, we alter the mapping as follows: Instead
of mapping ¢, on @, we map it on a circle Q, with center at the
origin and radius 1/f,'(a). We take as the mapping function

Z, = Fo(z) = -ﬁ% (76)
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This maps a on the origin, and, since F’(a) = 1, lengths at a
are unaltered. The radius of @, increases with n and approaches
infinity as n becomes infinite. The mapped regions are got
from the circles shown in Fig. 65, by an expansion from the
origin according to the formula Z, = 2z,/f.’(a). @ is carried
into a circle @, of radius r/f,’(a). :

We shall show that the sequence

Fi(2), Fs(2), Fu(2), - - - 77

converges in ¢, that the limit function F(z) is analytic in ¢,
and that Z’ = F(z) maps ¢ on the whole finite plane.

When ¢, is mapped on @, in the Z,-plane by (76), each sub-
region S,,, m < n, is mapped on a subregion of @,. Call the
boundary of this subregion C... The region bounded by
Cy.m is a plane map of @’ in the z,-plane by the function

Z, = F,,(Z) = Fn[Fm_l(Zm)] = \l’n'm(Zm) (78)
We have

Vam® = (G477), = i = (19)

We now apply Theorem 7, Corollary, to the map of @,’. When
Z » lies on the circumference of @.’, the corresponding boundary
point on C,, ., in the Z-plane satisfies the inequalities
r r
(1 __I,_ 7.)2fn/(a) < lan - I‘/’n.m(zm)l S (1 —_ 1.)2fn/(a) (80)
Fixing our attention on a particular S,, in ¢ and its map in
Q.. in the Z, plane, we wish to prove that, given ¢ > 0, there
exists an n such that

l‘:bnzo—p.m(_Zm) - \l/n.m(Zm)l < € (81)
for all p > 0. We arrive at this inequality by considering a
larger region S,, s > m, containing S,.,, and its map on @, in
the Z.-plane.
Since f,/(a) approaches zero as s increases without limit, we
may choose s(>m) so large that

A+ n¥.) _ 6_[(1 - T)me'(fl_)]? (82)
T 2 r
We have from this inequality and from (80), for any n greater
than s, ( e
1 A +nY'(a)  e[A —r¥a'(a)]2
| € T < 2[ ) ] (83)
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Hence, on Q,’

1 1 ! 1 = n¥(a)]?
- | < | ST 84
‘//n+P,S(Za) ¢n,6(Zé)| € [ r ] ( )
Now, the quantity in absolute value signs in (84) is analytic
throughout Q,’. Each of the two fractions has a pole at the
origin, but is otherwise analytic. In the neighborhood of the
origin, we have, since ¥,,,’(0) = 1,
e 1 1
\[/n,s(zs) B Zs + C"ZSZ + cee Zs

i 1 _ 1
'pn+p-8 (ZS> ‘/’n.s (Zs} Zs

and

— Crsp+ - - -
1
~ (gm0t )=o),

where ¢(Z,) is analytic at the origin. The inequality (84)
then holds throughout the whole interior of @', since the maxi-
mum absolute value of the function is on the boundary.

Now @, encloses Q’,, the map of Q,".  Changing the variable
to Z.., we have on Q..

1 1 [ (L*_T>2imL(@]2.
r

VmromZn) ~ HmmlZm) < €

Employing the second inequality of (80), we have

l\bn+p,m(Zm) - Ipn,m(Zm)l <6[(1.— r2‘2fml‘(&)]2I¢"+Z;'m(zm)¢ﬂ.m(zm>i

<e
on Q...

Since the expression in the first member is analytic throughout
Q.’, this inequality holds throughout @.,.’, which was to be proved.

It follows, from the preceding, that ¢, .(Z.) approaches a
limit function ¢,,(Z,) which is analytic in @,,’. The correspond-
ing function of z, namely, ¥u(Z,) = F(2), the limit of (77), is
analytic in S,.. Since S, may be taken so large as to enclose
any given point of ¢, it follows that (77) converges in the whole
of ¢ and that the limit funection is analytic.

We now prove that Z’ = F(2) maps ¢ on the whole plane
exclusive of the point at infinity. Let « be any finite point; and
let m be chosen so that »/[(1 4+ r)%f'..(a)] > |a|. Then on Q,.’,
from (80),

Wu(Zw)| = }llznwi‘pnm(zm)[ > |a[
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Then, ¢m(Z.) — a does not vanish on @..’; hence, from Theorem
12, this function and ¢, .(Z.) — «, for n sufficiently large, have
the same number of zeros in @,’. The latter function has one
zero in Q,’, since Z = ¢, .(Z,) maps @, on a plane region
to which « belongs. It follows that ¢..(Z,.) takes on the value
« once in Q,'; that is, F(2) takes on the value « once in S...

We prove, as in the previous case, that « is not taken on
at two different points of ¢. For, S, can be so chosen that it
contains both points; and we have a contradiction with what
we have just proved. Hence, « is taken on only once. This
completes the proof of the theorem.

The limit surfaces ¢ fall into the two classes, those which can
be mapped on a circle and those which can be mapped on the
finite plane. It is conceivable that a surface can belong to
both classes; that by forming the approximating regions ¢,
¢2, . . . in certain ways we should get one case, and in other ways
the other. But this is not possible. For, if ¢ can be mapped
both on @, and on the finite plane, then the finite plane can be
mapped conformally on Q¢; and we found at the beginning of
Sec. 78 that this is impossible.

As a convenient test for distinguishing between the two
cases, the following theorem is useful:

THEOREM 22.—If the limit region ¢ of Theorem 21 1s bounded in
part by a plane piece of curve, then ¢ is mapped on a circle.

If we assume the contrary then, making a linear transformation,
there exists a function 2’ = f(z) mapping ¢ on the whole 2’-plane
exclusive of the origin. We draw a Jordan curve in the form
of a cross-cut ¢ cutting off from ¢ a plane finite simply connected
region S whose bounddry consists of ¢ and a part & of the given
boundary of ¢. We construct S so that the point of ¢ which is
carried to infinity in the mapping is exterior to S.

The map of S in the z’-plane is a finite simply connected region
S’ bounded by a closed Jordan curve. This curve is the map of g.
As z traces ¢, approaching either end, the corresponding point
2 approaches the origin. If we map S’ conformally on the unit
circle o, the boundary points of S’ and @, correspond in a
one-to-one manner (Theorem 15). The succession of these two
mappings is a conformal map of S on Q.

Now let Ly, L; be curves drawn in S to two different accessible
points of A. The corresponding curves L,’, Ly’ in S8’ both ter-
minate at the origin. The corresponding curves L,"’, Ly’ in @
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both terminate at the same point on the boundary of @,. This
contradiction to Proposition 3 of Sec. 80 establishes the theorem.

86. The Mapping of Simply Connected Finite-Sheeted Regions.
Before studying the general finite-sheeted region, we consider
regions formed by putting square elements together. By a
square element we shall mean (a) the plane interior or exterior of a
square together with its boundary; or (b) the region formed by n
superimposed equal squares hanging together at a single interior
branch point of order .

The square element is simply connected and can be mapped
on a circle. The mapping of (a) follows directly from Theorem
13. In (b), let zo be the branch point. Then z — z; = ¢* maps
(b) on a plane simply connected region in the ¢-plane, which can
be mapped on a circle.

Suppose, now, that we put square elements together—like
the pieces of a patch-work quilt—to form finite-sheeted regions.
We shall establish the following proposition:

If a finite number of square elements be adjoined to form a stmply
connected region with a boundary consisting of more than one point
and with no branch points other than those belonging to the tndividual
square elements, the resulting region can be mapped comformally on a
cercle.

The proof is by induction. We assume that all regions of
the kind mentioned formed by adjoining n square elements can be
mapped on a circle, and prove that any region formed with n 4 1
elements can be mapped on a circle. Then, since any region of
one square element can be mapped on a circle, the proposition
holds.

A region S, of the kind mentioned in the proposition formed
with n 4+ 1 square elements can be constructed by adjoining
to a like region S, a square element S, where a part of the bound-
ary of S belongs to the boundary of S,11. S and, by hypothesis,
S. can be mapped on circles. We shall apply Theorem 20.
Now, S and S, abut along a common bounding arec mn but there
is no common region. But, since the points of mn are not
branch points, S can be slightly enlarged to form a square element
S’ which has with S, a common simply connected region and
where the boundaries of S, and S’ meet as required in the theorem.
Then S, + S’ can be mapped on a circle. The subregion S,4; is
mapped on a plane simply connected region which can in turn be
mapped on a circle, which was to be proved.
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THEOREM 23.—A simply connected region with a finite number of
sheets and of branch points and whose boundary consists of more
than one point can be mapped conformally on a circle.

We shall show that a given region of the kind stated in the
theorem can be got as-the limit of a sequence of regions formed
from square elements. We first transform the region so that all
boundary and branch points lie within the unit circle @,. This
can be done as follows: Let P be an inner point of the region whose
coordinate 2z, is not the z-coordinate of any boundary point
or branch point. (Such a point clearly exists, since the number of
branch points is finite and the boundary points in any sheet do
not fill any area.) We can draw a circle C with 2, as center such
that all boundary and branch points are exterior to C. Then if we
make a linear transformation carrying 2, to « and C into the circle
Qo, we have the branch points and boundary points within Q.

We can suppose further that the z-coordinate of each branch
point, z = x + ¢y, is such that x and y are both irrational.
For, the points whose z-coordinates or whose y-coordinates
differ from those of a branch point by a rational quantity lie
on a denumerable set of straight lines parallel to the z- and y-axes.
Let z; be a point in the neighborhood of the origin and not lying
on any of these lines. Then, a translation which carries 2, to the
origin carries the branch points into points whose z- and y-coordi-
nates are both irrational. We take z; near enough to the origin
that the branch points and boundary points lie in @, after the
translation.

We now proceed to cut the region, which we shall call ¢,
into square elements by lines parallel to the z- and y-axes.
Each cut will be made through all the superimposed sheets. We
first cut along the sides of the square K whose vertices are 1 + <,
1—14 —1+1 —1—14. K contains @,. The exterior of K in
each sheet is a square element lying entirely within or entirely
without ¢. The former we shall call the elements of the first set.
By an element we mean here and subsequently a square element all
of whose intertor and boundary points are interior points of ¢.
There is at least one element in the first set; namely, that into
which the point P was carried.

We next cut up the finite sheeted region within K. Let »
be an integer sufficiently large that the diagonal of a square of
side 1/» is less than the shortest distance between the points
of the z-plane at which branch points occur. We cut the square
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along sides parallel to the y-axis through the points —1 + %;
-1+ %: -+ - and along lines parallel to the z-axis through

—1 4+ I_z,’ — 7 + g:», -+ +«. None of the pieces into which the

region is cut contains more than one branch point. The square
elements resulting from this cutting lying in ¢ are the elements of
the second set.

We next cut up what remains of the region. We cut each
previous square into quarters along lines joining the midpoints
of opposite sides. The elements that result constitute the
third set. Similarly, we divide the latter squares into quarters,
cut up what remains of the region, and take out the elements
of the fourth set; and so on ad infinttum.

We now adjoin the elements to form regions. Let ¢; be an
element of the first set. Let ¢o consist of ¢; together with all
elements of the first and second sets that can be joined to ¢; to
form a connected region. In general, let ¢, consist of ¢,
together with all elements of the first n sets that can be joined to
¢a—1 to form a connected region. In the process of adjunction all
cuts separating adjacent squares of ¢, are closed up. As the
boundary of ¢, consists of interior points there are elements
adjoining ¢, along its boundary. The process is never brought
to an end; and we get an infinite number of regions.

The region ¢, is made up of a finite number of square elements.
All branch points of the region are interior points of elements.
For, owing to the manner of making the cuts, a point on the
boundary of an element has either a rational x or a rational y,
whereas at a branch point both z and y are irrational.

Further, ¢, is simply connected. Suppose not; then ¢,
has two or more bounding curves. Let C;, Cs be two of these
curves. We can draw a curve C’ in ¢, separating C; and C,. ('
divides ¢ into two parts, one of which contains no boundary
points of ¢. Let this part contain C;, say. Then C; bounds a
subregion S; of ¢ abutting on ¢., and S; has no further boundary.
In our process of cutting into elements S, is entirely divided into
elements when or before we arrive at the n-th set; so, S; belongs to
¢n, which is a contradiction.

It follows from the proposition at the beginning of this section
that ¢, can be mapped conformally on a circle.
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We next show that for n sufficiently large ¢, contains any
preassigned point P; of ¢. Let P, be a point of ¢,. P, and P,
can be joined by a curve L lying entirely within ¢. There exists
a d > 0 such that no point of L can be joined to a boundary
point of ¢ by a line lying in ¢ and of length less than d. If n
be taken so large that the diagonal of the square elements of the
n-th set is less than d, L is completely covered by elements of the
first n sets. All these elements belong to ¢,, whence P, is an
inner point of ¢,.

In the sequence of regions ¢, ¢z, . . . certain successive
regions may be identical. Thus, there may be no elements of the
n-th set that can be added to ¢,—1, so that ¢, and ¢,_, are identi-
cal. But, after a finite number of steps, we arrive at elements
which can be added to ¢,—;. We now rewrite the sequence in the
same order, but including only one of a succession of identical
regions. The resulting sequence,

¢1; ¢n2, ¢n3) ¢

satisfies all the conditions of Theorem 21. Hence, the limit
region, ¢ itself, can be mapped either on a circle or on the whole
plane exclusive of a single point.

Suppose the latter case to hold. Then, making a linear
transformation of the plane on which we map, ¢ can be mapped on
the whole ¢-plane exclusive of ¢ = 0. Let z = ¢(¢) be the
mapping function. ¢(¢) is analytic in the ¢-plane except at the
origin and at the points corresponding to z = « in ¢. Let m be
large enough that ¢, contains all the elements of the first set,
and let S, be the map of ¢, in the ¢{-plane. Points outside S,.
are mapped on the interior of the square K. Outside S, then
2| = |o(t)] < v/2. This inequality holds in the neighborhood
of the origin; so, the function is analytic at the origin if properly
defined there. The function z = ¢(f) maps the neighborhood of
the origin on a plane sheet or on a finite number of sheets con-
taining a branch point according as ¢’(0) # 0 or ¢’(0) = 0. In
either case, ¢ = 0 goes into a single point; and ¢ has a single
boundary point. As this is contrary to the hypothesis that ¢
has more than one boundary point, it follows that ¢ is mapped on
a circle.

87. Conformal Mapping and Groups of Linear Transformations.
We close this chapter with examples of the connection between
conformal mapping and groups of linear transformations.
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The ideas here introduced are fundamental in the developments of
the following chapter.

Let the simply connected plane strip in Fig. 66 be formed
by the adjunction of regions =, each of which is carried into an
abutting region by the translation Z’ = Z + h. Let the strip be
mapped on the unit circle @, in the z-plane (Fig. 67), S, being the
map of Z,.

Fra. 66.

The strip—ecall it ¢—has a group of conformal transformations
into itself; namely, the group Z, = Z + nh. What can be said
of the relation between the corresponding points z and z, in
Q,? If we carryzto Z, Z to Z,, and Z, to z,, we have a sequence
of three conformal transformations. Hence, the correspondence .
between 2 and z, sets up a conformal transformation; whence,
2, = T,.(2), where T,(2) is analytic. Further, in this sequence
of mappings Q. is mapped on ¢, ¢ on itself, and ¢ on Q; that

Fig. 67. Fig. 68.

is, 2z, = T.(z) maps @, conformally on itself. It follows from
Theorem 24, Sec. 12, that T, is a linear transformation.

We find readily that the transformations T, satisfy both
group properties. Also, the group is properly discontinuous,
since each transformation, other than the identical transfor-
mation, carries S, outside itself. In fact, the group is the cyclic
group generated by T;. A fundamental region for the group is
S, together with the inverse of Sy in Q.
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We now get a similar group in a different way. Consider the
ring-shaped region lying between two curves in the Z-plane.
Let the region be rendered simply connected by means of a
cut connecting the boundaries. Call the severed region Z,
(Fig. jé\). Now, let us provide ourselves with an infinite number
of copies of =y and use them to build up an infinitely sheeted

region. Let one copy 2=; be:exactly superposed on =, and
joined, as in the figure, along one edge of the cut. Let another
copy 2_; be placed below Z, and joined along the other edge
of the cut. Similarly, a copy 2, is superposed and joined along
the remaining free cut in =;; Z_, is joined along the frce cut in

Z_;;'and so on. .

Now, theregion¢, =2, + - - - +Z+ - - - 4+ Z,issimply
connected and can be mapped on a circle (Theorem 23). Hence,

by Theorem 21, the limit region ¢ can be mapped on a circle or the
“whole finite plane. In this case (Theorem 22) the mapping is
on a circle. Let Z = f(2) map the surface spread over the
Z-plane on @ in the z-plane.

The region ¢ admits a group of conformal transformations
into itself. If =, be placed accurately on Z,, Z; will coincide
with 2,41, Z_; with Z,_;, and so on; and ¢ will be mapped
conformally on itself. The transformations of ¢ for n = 0,
+1, +2, ... clearly form a group. When ¢ is transformed
in this way the corresponding points of @, undergo a transfor-
mation 2z, = T,(2). By reasoning identical with that used in
the former example, we conclude that T, is a linear transforma-
tion which carries @, into itself. The transformations 7', form
a group isomorphic with respect to the group of transformations
of ¢ into itself.

Consider the mapping function Z = f(z). Let P be a point
of ¢ and let P, be the point into which it is carried when X, is
carried into Z,. The corresponding points z and z, satisfy the
relation 2, = T,(2). The coordinates of P and P, are Z = f(2)
and Z, = f(z,), respectively. But, when X, is carried into
2., each point of ¢ is superposed on its original position. Hence,
the Z-coordinate is unchanged and

f(z) = f(2).

That is, the mapping function is unaltered when a transforma-

tion of the group 7, is made.

We can readily generalize the method of Fig. 68 and get
much more complicated Fuchsian groups. We can take an
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initial plane region with n boundaries and cut it into a simply
connected region Z,. We superpose copies of Z, joining along
the edges of the cuts, to form an infinitely sheeted region which
can be mapped on a circle and which admits a group of conformal
transformations into itself. The details of this generalization
offer no difficulty. '



CHAPTER IX

UNIFORMIZATION. ELEMENTARY AND FUCHSIAN
’ FUNCTIONS

88. ’E/he Concept of Uniformization.—As early in his study
as ana¥ytical geometry and the calculus, the student of mathe-
matics becomes acquainted with the advantages of the para-
metric| representation of curves. Thus, he finds that the circle

\ w2472 =1 (1)
can be \*eﬁresented in the parametric form
N . Z =sinz, W = cosz. (2)
Another paréﬁnetric representation of the same curve is
2z 1 — 22
Z=1gw WEigw ®

In plotting the curve, or in evaluating integrals involving W
and Z; that is, containing Z and 4/1 — Z?, he finds that certain
simplifications result from the use of the parametric equations.

Looked at from the standpoint of the theory of functions, the
relation (1) defines W as a two-valued function of Z. In (2),
and also in (3), both W and Z are expressed in terms of single-
valued, or uniform, functions. We say that the functions (2),
or (3), uniformize the function defined by (1).

DeriNiTION.—Let

. W = F(2) @)
be a multiple-valued function of Z; and let
' W =We), Z=2@) (5)
be non-constant single-valued functions of z such that -
W) = F(Z(2)); (6)

then, the functions (5) are said to uniformaize the function (4).

The variable 2 is called the uniformizing variable. '

If there is one pair of uniformizing functions there are clearly
infinitely many others. We have but to put z = f(f), where
f(t) is a single-valued function of ¢, in (5), and we have, if the

: 220,
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functions exist, a pair of uniformizing functions with ¢ as the
uniformizing variable.

We shall be interested, primarily, in uniformization by means
of automorphic functions. In the example given above, we note
that the functions (2) are automorphic functions of 2.

We have found (Sec. 43) that between two simple automorphic
functions fi(z), f2(2) belonging to the same group and having
the same domain of definition, there exists an algebraic relation
G(fy, fo) = 0. If W is an algebraic function of Z defined by
the relation G(W, Z) = 0, then the functions W = f1(2), Z = fa(2)
uniformize the algebraic function. The converse theorem that
any algebraic function can be so uniformized will be proved in
the present chapter.

Before taking up the study of this problem we turn to a brief
discussion of Riemann surfaces and their connectivity.

89. The Connectivity of Regions.—The general algebralc
function is defined implicitly by the equation
GW, Z) = P(Z)W™ + Py(Z)W™' + - - - + Pu(Z) =0, (7)
where Py(Z), . .., Pn(Z) are polynomials, and-G(W, Z) is
irreducible. Except for certain isolated values of Z, to each
value of Z correspond m distinet values of W. The Riemann
surface for W as a function of Z is a closed m-sheeted two-sided
surface with a finite number of branch points. The uniformiza-
tion of the function depends upon the way the Riemann surface
is joined together, and brings up the question of the connectivity
of the surface. .

We consider regions lying on such a surface, and we suppose
each region considered to be bounded by curves—Jordan curves,
say. As a special case of a bounding curve, we include the
point. Thus, the region consisting of the interior of the circle
Qo exclusive of the origin has two boundaries, @, and the origin.

We shall consider the question of altering a region and of
separating it into two or more regions By cutting it along curves.
Except possibly at its ends, a cut shall pass only through interior
points of the region and shall not pass twice through the same
point. As a cut is drawn, it severs the surface; so that two sides
or banks of the cut belong to the boundary of the new regions
or region. These banks are considered a part of the boundary
in making subsequent cuts, or in continuing the same cut.

A cross-cutis a cut beginning and ending in the boundary. Thus
in Fig. 69, where the region is bounded by the rectangle and the
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circle, g, and g, are cross-cuts. A sigma cross-cut (gs) is a special
kind of cross-cut which begins in the boundary and ends in one
of the banks of the cut itself. A loop-cut (qs) begins at an interior
point and ends at the initial point. A sigma cross-cut is equiva-
lent to a loop-cut followed by a cross-cut.

A finite-sheeted region with a boundary is called “simply
connected”’ if every cross-cut separates it into two pieces. The
clementary properties of such a iegion—for example, that the
two pieces into which a cross-cut separates the region are them-
selves simply connected; that a loop-cut separates the region
into two pieces, one of which is simply connected; that the
boundary of the region consists of a single connected set of
points—have been considered as being probably sufficiently well
known to the reader to be used without proof in the preceding
chapter, and they will be taken for granted here. We shall
devote our limited space to the derivation of certain propositions
which are necessary for the study of regions which are not simply
connected, and which are less likely to be already known to the
reader.

d;

q{ /
Qg @ qy

Fia. 69.

We shall deal only with regions with boundaries. A boundary-
less region will be given a boundary by marking a point or by
cutting out from the surface a small circle at some point.

A region which can be rendered simply connected by one
cross-cut is called ‘“doubly connected.” In general, a region
which can be rendered simply connected by 7n cross-cuts is
(n + 1)-ply connected or of connectivity N = n 4+ 1. That
two different systems of cuts which render the region simply
connected contain the same number of cross-cuts is a consequence
of the following theorem: _

THEOREM 1.—If a region or set of regions is cut by a system of
vy cross-cuts into oy simply connected pieces and by a system of v,
cross-cuts into ag stimply connected pieces, then

vy — oy = vy — aa. (8)
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We suppose the cuts slightly deformed, if necessary (this
does not affect the number of cuts or of pieces), so that the
beginning or end of no cut in one system lies on a cut of the
other system, and so that the cuts of the two systems have a
finite number s of points of intersection. We now make both
systems of cuts and count the number of pieces.

Having made the first system of cuts and got a; pieces, we
make the second system of cuts. When, in making a cut of the
second system, we meet a cut of the first system, the cross-cut
ends and a new cross-cut begins; so that each point of inter-
section increases the number of cross-cuts by one. The second
system of cuts then is a set of », + s cross-cuts in the regions
made by the first system of cuts. Each is a cross-cut in a
simply connected region and increases the number of simply
connected regions by one. We have, then, a; + »; + s simply
connected regions as a result of the two systems of cuts. Making
the second system of cuts first, we have, similarly, as + »; + s
simply connected pieces. Equating the two expressions for
the number of pieces,

as + v+ 8= a;+ vs + 5,
from which (8) follows.

If a1 = asin (8), then »; = »,; that is, if the number of simply
connected pieces is the same for two systems, then the number
of cross-cuts is the same. In particular, the number of cross-cuts
which yield a single simply connected piece is independent of
the way the cuts are made.

TaEOREM 2.—If a region is divided by v cross-cuts into o simply
connected pieces, the connectivity of the region s

N=yv—a+2 9
If n suitably made cross-cuts result in a single simply con-
nected piece, we have, from (8),
v—a=mn-—1,
whence,
N=n+1l=v—a+2 (10)

It remains to show that, under the circumstances of the theorem,
the region is of finite connectivity; that is, that a finite number of
cross-cuts can be made which result in a single simply connected
piece. If the region is not simply connected, we can make a
cross-cut, by hypothesis, which does not cut it in two. If the
resulting region is not simply connected, we can make a second
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cross-cut not cutting the surface in two; and so on. Let m such
cuts be made without cutting the surface in two; and let these
cuts have s intersections with the » cuts of the theorem (the cuts
being deformed slightly, if necessary, as in the proof of the
preceding theorem). These cuts superimposed on the preceding
v cuts amount to m + s cross-cuts in the set of « pieces; hence we
have o + m + s pieces. Now make the m cuts first and then the
v + s cross-cuts. We start with one piece and each of these
v + s cuts adds one new piece at most; and we get » + s + 1
pieces at most. Hence,

at+m+s<v+s+1, m<v— a4+l
H G

W
»Q

F E
@) (b)

Fic 70

It follows from this inequality that, in applying the preceding
scheme, we cut the region into a simply connected piece in a finite
number of steps. The number of necessary cross-cuts is, then,
from (10),n = » — « + 1.

TaeorEM 3.—If m cross-cuts are made in a region of connec-
tivity N without cutting it in two, the resulting region is of connec-
tivity N — m.

N — 1 suitable cross-cuts make the original region simply
connected. We may use for these the given m cuts together with
N — 1 — m other cross-cuts suitably made. These latter cuts
render the new region simply connected; hence, 1ts connectivity
isS(N—=1-m)+1,or N —m.

TueorREM 4.—A region of finite connectivity ts of odd connectivity
if 1t has an odd number of boundaries and of even connectivity if it
has an even number of boundaries. N

We show first that a cross-cut increases or decreases the number
of boundaries by one. Consider, first, the ordinary cross-cut
(Fig. 70 (a)). If the cross-cut joins points on two_different
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boundaries, CG . .. EA and BF . .. HD (each traced in a
positive sense, that is, with the region on the left), then we
have, after the cut, the single boundary CG . .. EABF . . .
HDC; and the number of boundaries is decreased by one. If the
cross-cut joins points on the same boundary CG . .. HDBF
. . . EA, then we have, after the cut, two boundaries, CG . . .
HDC and BF ... EAB; and the number of boundaries is
increased by one.

In the case of a sigma cross-cut (Fig. 70 (b)), the inner bank of
the loop forms a new boundary, whereas the remaining banks of
the cut combine with the boundary from which the cut issued to
form a single boundary; hence, the number of boundaries is
increased by one.

Let the region have k boundaries and let n cross-cuts make it
simply connected. The i-th cross-cut increases the number
of boundaries by e;, where ¢, = +1. We have as a result of
the n cuts ¥ + ¢; + + - -+ + e, boundaries. But, at the end,
there is a simply connected piece with a single boundary; so
the connectivity N is

N=n+l=n+k+ea+ - +e,
N=Q0+4e)+04+e)+ - A+e)+k

Each term in the second member, excepting the last, is even, being
either zero or two; hence N and k are both even or both odd,
which was to be proved.

THEOREM 5.—The Riemann surface of an algebraic function is
of finite and odd connectivity.

The surface is a closed region with a finite number of sheets
and of branch points. In determining the connectivity, we first
mark a point or cut a small hole in the surface to give it an
initial boundary. According to Theorem 4, the connectivity is
odd, provided it is finite. We have merely to show that the sur-
face can be divided into simply connected pieces by a finite num-
ber of cross-cuts.

It may be remarked that in cutting a region into simply
connected pieces, we may put in a finite number of loop-cuts
without counting them among the cuts. For, in the process
of cutting up the region, the loop-cut is subsequently joined to a
boundary point. Now the loop-cut and the cross-cut joining it
to the boundary are equivalent to a single s1gma cross-cut;
so we need only count the cross-cut.

or
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Let the surface have m sheets and s branch points. For
convenience, let the surface be slightly deformed, if necessary,
so that no two branch points are superposed; that is, no two have
the same z coordinate. Let a,, az, . . . , as be the coordinates of
the branch points and let a be any other point. We now draw
circles Cy, . . . , Ci,Cabouta,, . . . ,asa,sufficiently small that
they are exterior to one another; and we make cuts along these
circles through all m sheets (Fig. 71, where the two-sheeted
surface with four branch points is cut up). One of the circles at
a is used as an initial boundary, and the piece which it encloses
is discarded. The remaining cuts are all loop-cuts, and they
enclose simply connected pieces. We now join C to each of the

Fia. 71.

circles Cy, . . . , Cs by lines L,, . . . , L, which nowhere inter-
sect, and we cut through the m sheets along these lines. These
cross-cuts divide the m-sheeted region exterior to the preceding
loop-cuts into m single-sheeted regions, each of which has a
single boundary and is simply connected. The surface is cut into
simply connected pieces by this finite set of cuts; hence, its
connectivity is finite.

We can get a formula for the connectivity. We made s
cross-cuts in each sheet; in all v = ms cuts. At the branch
point a; let r; sheets hang together. The neighborhood of the
branch point is simply® conne#ted; in addition, there are m — r;
plane circular pieces in C;, Hence, C; contains m — r; + 1
simply connected pieces. There are m — 1 plane circular pieces
in C. Finally, there are m pieces exterior to the circles. All
together, then, the number jof pieces is

/

M-

a =

(m—rit+1)+m=1+m

1

1
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The connectivity, from (9), is

N=ms—[Z(m —ri+ 1) +2m — 1] + 2,
or
N =Z2(r;—1) —2m + 3. (11)

The quantity 7; — 1 is called the “order of the branch point.”
Since N and 2m — 3 are odd numbers, we see that the sum of the
orders of the branch points is necessarily even.

As an example of the formula, consider the two-sheeted surface
of the function

W= AZ —a)Z —a) - - - (Z — an), (12)

where the constants a; are distinct. The points a; are branch
points, and in addition c is a branch point if » is odd. Each
branch point is of the first order, whence Z(r; — 1) is equal
to the number of branch points, n» or n + 1. Since m = 2, we
have, from (11),
N=n—-—1lorN=n

according as n is even or odd. If n = 1 or n = 2, the surface is
simply connected. If n = 3 or n = 4, the connectivity is 3; the
surface is called elliptic. If » > 4, the surface is called
hyperelliptic. ’

The Genus of the Algebraic Surface—Many properties of
algebraic surfaces and of the functions to which the surfaces
belong are dependent upon the connectivity. These properties
are usually stated in terms of the genus, which is defined as
follows: :

DErINITION.—Let 2p + 1 be the connectivity of the surface; then
p 1s called the genus of the surface. '

We recall that, since the connectivity is odd, it can always be
written in the form 2p + 1, where p is an integer.

There exist surfaces for which p is equal to any given positive
integer or zero. If n =2p + 1 or »n = 2p 4+ 2 in (12), the
connectivity is 2p + 1 and the genus is p.

By the genus of an algebraic function is meant the genus of its
Riemann surface.

If p =0, the surface is simply connected. If p > 0, it is
multiply connected. It requires 2p cross-cuts to render the
surface simply connected.

From (11), we have the following formula for p:

p=YZ@ri—1) —m+ 1L (13)
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-

If » cross-cuts result in « simply connected pieces, we have,

from (10), |
p=%X0r—a+l). (14)

Euler's Formula.—The formula connecting F, V, and E, the number of
faces, vertices, and edges, respectively, of a solid, can now be derived. We
first make a loop-cut, around each vertex. After discarding one piece to
supply the initial boundary, we have V' — 1 pieces cut out. What remains
is cut into F simply connected pieces by cross-cuts, E in number, along the
edges. Formula (14) then gives

p=WRE-V-1+F +1];
whence,
V+F=E+21 - p).

This is a generalization of Euler’s formula for the case of a solid bounded
by a simply connected surface (p = 0):

V+F=E+2.

On Severing the Surface—We now describe a method of
severing the algebraic surface such that at each stage of the
process there are never more than two boundaries. We noted in
the proof of Theorem 4 that a cut joining points of the same
boundary, also a sigma cross-cut, increases the number of
boundaries by one; while a cut joining points of different bound-
aries decreases it by one. By alternating the cuts, we get
alternately one and two boundaries. We note that, in the former
case, the opposite banks of the loop of the sigma cross-cut
belong to different boundaries.

If a cross-cut joins different boundaries and does not cut the
surface into two pieces we can deform the cut—by the simple
process of moving its ends along the boundaries—so that the
cut joins any given point.of one boundary to any given point of
the other boundary and the surface is still a single piece. Simi-
larly, we can deform any cut joining two points of the same
boundary into a cut joining two prescribed points of that bound-
ary. Or we can deform it into a sigma cross-cut springing from a
prescribed point of the boundary; to do this, we move one end of
the cut along the boundary to the prescribed point P, then move
the other end along the boundary to P, and, thence, along a bank
of the cut. Likewise, we can deform a sigma cross-cut into an
ordinary cross-cut by *\eversing the process.

Let P, an ordinary point of the surface, be selected as the
initial boundary. If the surface is not simply connected, we
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can make a cross-cut a; beginning and ending at P which does not
cut the surface into two pieces. Let b; be any cut joining points
on opposite banks of a;. The cut b; does not cut the surface in
two, the reason being that we now have a single boundary, whereas
two pieces would have two boundaries.

We can suppose b; to be so drawn that it joins points on
opposite banks of a; at P.

If p =1, the surface is now simply connected. If not, we
can draw a cross-cut a; which does not separate the surface.
This cut can be deformed so that
it begins and ends at a single one
of the boundary points at P. A
cut b, joining points on opposite
banks of a; does not separate the
surface; and we can suppose the
ends of b, are moved to P. If
p = 2, the surface is now simply
connected. If not, we continue
in this manner to get cuts as,
bs; a4, bs; . . . ; ap, by, all begin-
ningand endingat P which render
the surface simply connected.

The boundary of the severed
surface consists of 4p curves
each beginning and ending at
P; to wit, the two banks of each of the p a-cuts and the two banks
of each of the p b-cuts.

In Fig. 72, the hyperelliptic surface with six branch points
(p = 2) is cut into a simply connected piece. The two sheets
of the surface are joined along the three rectilinear branch lines
of the figure. The cuts drawn with the heavy lines are in the
upper sheet, those.drawn with broken lines are in the lower
sheet,

90. Algebraic Functions of Genus Zero. Uniformization by
Means of Rational Functions.—We first prove the following:

TaEOREM 6.—An algebraic surface of genus zero can be mapped
conformally on the whole plane.

Let P be an ordinary point of the surface, and let a circle
C, with P as center and of radius 7, be cut from the sheet in
which P lies. Here, 7, is to be sufficiently small that the
piece cut out is plane. Then, the part of the surface that

Fia. 72.
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remains—call it ¢,—is simply connected and can be mapped
conformally on a circle (Theorem 23, Sec. 86). We form a
sequence of circles with radii ry, rs, .-. . , where 7.4y < 7, and
lim r, = 0. There results a sequence of regiéns ¢;, ¢z, . . .,
cach of which is a subregion of the following. These regions
satisfy the conditions of Theorem 21, Sec. 85; hence, the limit
region ¢, which consists of the surface bounded by the single
point P can be mapped conformally either on a circle or on the
plane bounded by a single point.

Suppose ¢ can be mapped on the unit circle @, in the z-plane;
and let z = f(Z) perform the mapping. At all points of ¢ we
have |f(Z)] < 1. Since this inequality holds, in particular, in
the neighborhood of P the function f(Z) is analytic at P if
properly defined there. The function is analytic at all ordinary
points of the surface and continuous at the branch points and
at infinity. Hence, it is a constant,! which is impossible.

Then ¢ can be mapped on the whole z-plane exclusive of a
single point, which we may take to be the origin. In the neigh-
borhood of P the mapping function z = f(Z) remains finite as
before, and is analytic at P if properly defined there. The
plane neighborhood of P is mapped on the plane neighborhood
of the origin, P corresponding to the origin. Hence, ¢, together
with its boundary P, is mapped on the whole z-plane.

THEOREM 7.—Any algebraic function of genus zero can be uni-
formized by means of rational functions. Conversely, if a function
is uniformized by means of rational functions, it is an algebraic
function of genus zero.

Let 2 = f(%) map the Riemann surface of the given algebraic
function of genus zero on the whole z-plane. Consider the
inverse function Z = Z(2). Z(z) is an analytic function of z
except at the finite number of points a;in the z-plane correspond-
ing to the points Z =« in the various sheets of the Riemann
surface. At a;, Z(2) becomes/inﬁnite. Then Z(z) is analytic
except for poles and is, therefore, a rational function of z. It
is a rational function of order m, where m is the number of
sheets in the Riemann surf;ice. For, an arbitrary value Z, is
taken on m times; namely,/at the points 2, 25, . . . , Zm eorre-
sponding to the points Py, Py, . . . , P, which lie superposed
in different sheets of the gurface and have the coordinate Z,.

1 Briefly, because, if not constant, |f(Z)| takes on its maximum value at
some interior point, which is‘impossible.
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Let W = F(Z) be the algebraic function. On the Riemann
surface F(Z) is single valued and analytic (continuous at the
branch points and at infinity) except at certain points where W
becomes infinite. From the equation satisfied by W (Equation
(7)), we see that the m values of W are finite except when Py(Z) =
0 and possibly when Z = «©. W becomes infinite only at a
finite number of points on the surface. On changing the variable
to 2, W = F(Z(z)) is single valued in the z-plane and analytic
except at the points corresponding to the points on the surface
at which W becomes infinite; at these points the function has
poles. F[Z(z)]is then a rational function of z. The two rational
functions, Z = Z(z) and W = W) = F[Z(2)], uniformize the
algebraic function.

Conversely, let a function W = H(Z) be uniformized by
means of rational functions, Z = R,(2), W = Rs(z). The
relation connecting W and Z is got by eliminating z from these
latter equations. On clearing of fractions we have two poly-
nomials G1(Z, z) = 0, G:(W, 2) = 0, the eliminant of which is
a polynomial in Z and W. Or, we can apply the method of
Sec. 43. Since R;(z) and R.(z) take on each value the same
number of times in the z-plane, the reasoning of that section
can be applied word for word to show that Ri(z) and R.(2) are
connected by an algebraic relation.

It remains to show that the algebraic function-is of genus
zero. Let ¢ be the Riemann surface of H(Z). To a point
2o of the plane corresponds a single point P.(Z,, W,) of the
surface, although to P, there may correspond other values
21, 22, . . . 2, at which Ri(2) and R.(2) have the same values
as at 2o. If R)/(z0) # 0, the function Z = R;(2) maps the
neighborhood of z, on the plane neighborhood of P,. Then, to
a curve on ¢ passing through P,, there corresponds a single curve
passing through z,.

Now, suppose that ¢ is not simply connected. With P, as
the initial boundary, we make an ordinary cross-cut a; not
cutting the surface in two pieces. We suppose a; so chosen that
it avoids those points on the surface which correspond to the
finite number of points in the plane at which R,(z) = 0 and
2 = o, Now, let P start at P, and make a circuit of a;. By
virtue of the inverse of the function Z = R,(z), starting with
the branch in which 2 = 2, z traces a curve A which begins
at 2y and ends either at 2, or at one of the points 21, . . . , 2n.
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If the latter is the case, let P make a second circuit around a;
in the same sense, thus continuing the curve \ to one of the
points 2¢, . . ., 2,; and so on. In tracing N\, we arrive, even-
tually, at a point on the part of the curve previously traced; for
there is but a finite number of points in the plane corresponding
to each point of a;. Let 2’ be the first such point encountered;
and let P’ be the corresponding point on a,. If 2’ is different
from zo, we have two different curves through 2’ which correspond
to one c¢urve through P’ which, as we noted above, is impossible.
Hence 2’ = 2,; and \ is a simple closed curve in the z-plane.

Let b, be a cross-cut joining opposite banks of a; at P, and
avoiding the exceptional points mentioned above. Except at P,
b, nowhere meets a;. Let P trace the cut b, repeatedly in the
same sense, starting at P,. Then 2 traces a curve u, beginning
at zo and eventually closing at z,. Except at 2y, u nowhere meets
N. At 2,, owing to the conformal mapping of the neighborhood
of P, on the neighborhood of z,, the beginning and end of u are
on opposite banks of A. But, it is impossible to join points on
opposite banks of a closed curve in the plane by a curve which
does not meet the closed curve. The hypothesis that ¢ is multiply
connected is untenable. Hence, the surface is of genus zero.

We can now find all pairs of functions which uniformize the
algebraic function of genus zero.

THEOREM 8.—Let Z = Z(2), W = W (2) be uniformizing func-
tions of an algebraic function of genus zero such that Z = Z(2)
maps the whole z-plane in a one-to-one manner on the Riemann
surface of the function. Then, the most general uniformizing
unctions are got by substituting z = ¢(t) tn this pair of equations,
where ¢(t) 18 a single-valued function of t.

Suppose that Z = Z,(t), W = W(t) uniformize the function.
The two functions have the same domain of existence S, since
the relation W,(t) = F[Z.(t)] suppliés an analytic continuation
of each function into the domain of existence of the other.
The equations Z = Z,(t) and Z = Z(z) define z as a function of ¢,
2 = ¢(t). "Po each value of ¢ in S corresponds a single point on
the Riemann surface and to this point corresponds a single value
of 2. Further, ¢(¢f) does not exist outside S; for, otherwise,
Z\(t) = Z(2) = Z[e(t)] can be continued analytically outside
8, contrary to hypothesis. Hence, 2 is a single-valued function of
t. It is obvious that, conveasely,“if we replace z by a single-
valued function of ¢ we have a pair of uniformizing functions.
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As an example, we find readily that the functions (3) uniformize
the function W defined by (1) in the way mentioned in the
theorem. Consider the uniformizing functions Z = sin ¢,
W = cos t. On eliminating Z from the first of these equations
and the first equation of (3), we verify that z is a single-valued
function of ¢. )

91. Algebraic Functions of Genus Greater than Zero. Uni-
formization by Means of Automorphic Functions.:—If the genus
of the surface is greater than zero, the method of the preceding
section must be altered; for the uncut surface cannot be mapped
on a plane region. In this case, we shall cut the surface and
build up an infinitely sheeted region by a method akin to that
employed in Sec. 87 (Fig. 68).

Given an algebraic function W = F(Z) of genus p > 0.
We represent its Riemann surface by F. We shall render the
surface simply connected by a system of 2p cross-cuts a;, by,

., Gy, by, beginning and ending at an ordinary point P of the
surface (see Fig. 72). The severed surface, which we shall
call Fy, is a simply connected region whose single boundary is
composed of 4p arcs or sides, each of which begins and ends at P.
These sides meet at 4p vertices—all at P—and the sum of the
angles at the vertices is 2.

We provide ourselves with an infinite number of copies of F
and proceed to put them together in such a way that at each
step we have a simply connected region. We start with one copy
of Fy which we shall designate by ¢,. Let a second copy be super-
posed on ¢, and joined to it along one of the 4p sides—for
instance, one bank of a; in ¢, is joined to the opposite bank of a;
in the copy. The combined region is simply connected. Let
other copies of F, be joined along the 4p — 1 remaining sides of
¢o, a bank of a cut in ¢, being joined to the opposite bank of
the same cut in the copy. Call the region formed by ¢, and the
copies that have been adjoined along its 4p boundaries ¢;.
¢ is bounded by a finite number of sides. Along each side of ¢;
we join a new copy of F,, the junction being made between the
opposite banks of the same cut; and let ¢, represent the total
region.

In general, ¢,41 is got by joining copies of F, along all the
free sides of ¢.. In applying the process, wg shall close up
other sides as follows: Whenever in passing around the bound-

1 P. Koebe, Math. Ann., vol. 67, pp. 145-224, 1909.



234 ELEMENTARY AND FUCHSIAN FUNCTIONS [SEc. 91

ary of a combined region we encounter one of the a- or b-cuts
followed by the same cut, we shall join the two banks together
and reduce the vertex separating them to an interior point.

In Fig. 73 we show, for the surface of Fig. 72, how the regions
{it together at P itself. We start with a particular one of the
vertices of ¢y. The figure shows how the neighborhood of the
vertex is filled out to form a plane sheet. The 4p vertices of ¢0
lie in 4p different plane sheets of the later regions.

By continuing indefinitely the adjunction of copies of Fy
we build up an infinitely sheeted boundaryless region ¢.! KEach
of the regions ¢, is a finitely sheeted simply connected region
which can be mapped conformally on a circle. The region bn

/
\ \
9 9, =
is a subregion of the region ¢..i1. The sequence ¢o, ¢1, . . . is

one to which Theorem 21, Sec. 85, applies; hence, ¢ can be mapped
conformally either on a circle or on the whole plane exclusive of
a stngle point.

The function W = F(Z) is single valued on the surface F
and, hence, on the severed surface Fy, or ¢o. What can be said of
the analytic continuation of F(Z) throughout ¢? To each
point of F; corresponds a single Z and a single W. When a copy
of F, is adjoined it is so superposed that each point has the same
Z as before. Let it also bear the same value of W as before.
Then, the function W so defined is an analytic function (except
for poles and branch points) in each of the copies of F,.

It is a principle of analytic continuation that when two func-
tions are analytic in abutting regions and are equal at the points

1 The rather obvious fact that there are always free sides along which to
adjoin copies of Fy can be shown in various ways. Assume that ¢, has a
side I joining vertices P’ and P’ each of which belongs to but one of the
copies of Fy comprised in’ ¢,. Then, when copies of F, are added to form
¢n41 that copy which is joined along ! is not joined elsewhere. This copy has
4p vertices of which P’ and P’ belong to other copies. The remaining
4p — 2( > 2) vertices provide at least one side joining vertices not belonging
to any other copy in ¢n+1. Since each side of go joins vertices belonging to
but one copy, it follows by induction that ¢, has free sides;dnd the process
of constructing the surface proceeds ad infinitum.



Sec. 91] GENUS GREATER THAN ZERO 235

of the common boundary, each is the analytic continuation of
the jother. We have joined the copies of F, along curves at
every point of which W has the same value in the two copies.
Hence, the function W of one copy is the analytic continuation
of W in the adjacent copy. The function W, or F(Z), borne by
the copies F, fit together to form a function which is single
valued and analytic, except for poles and branch points, over
the whole surface ¢.

It is clear from the manner of constructing the surface that
¢ is infinitely sheeted; but the remarks just made furnish an
independent proof of that fact. If a finite number of copies fit
together to form a closed surface, we can map ¢ on the whole
plane. By the use of the mapping function, we can uniformize
F(Z) by means of rational functions after the manner of the
preceding section. It follows that F(Z) is of genus zero, contrary
to hypothesis.

The Uniformization when ¢ Can Be Mapped on a Circle.—Let
2z = f(Z) be the function mapping ¢ on the unit circle Q, in the
z-plane. Let Z = Z(2) be the inverse function. To each
point z of @, there corresponds, by the mapping, a single point
P of ¢. To P are attached a unique Z and W. If z traces any
closed path in @,, P traces a closed curve on ¢, and the functions
Z(z) and W(2) = F[Z(2)] return to their initial values.

It is conceivable that Z(z) or W(z) can be extended analytically
around a closed curve not lying entirely within @, such that, on
completing the circuit, the function has a value different from
its initial value and so is not single valued. To prove that this
is impossible, it suffices to show that the circle is a natural
boundary for each function; that is, that neither function can
be continued analytically across the circumference. Suppose
that Z(2) can be continued analytically across the circumference;
and let 2z’ be a point on the circumference at which Z(z) is ana-
lytic and -Z’(2) % 0. Then Z = Z(z) maps a sufficiently small
neighborhood s of 2’ on a plane region S of the Z-plane. Let
2 be a point of s lying in @, and let P be the corresponding point

-of ¢. The function z = f(Z) maps the region S enclosing P
on s. But this is impossible for S is a subregion of ¢, and is
mapped on a region lying entirely within ,. Also W(z) cannot
be continued analytically across the circumference; otherwise,
since Z is an algebraic function of W, Z(z) could be continued
analytically across the circumference.
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The two functions
Z=1Z@z), W=WE =F[Z(@)] (15)

are then single-valued functions of z.  We see, from the definition
of uniformizing functions, that they uniformize the function
W = F(Z). Z and W become infinite at a finite number of
points on each copy F, of the severed Riemann surface. At the
corresponding points in o, Z(z) and W(z) have poles. Since
the number of copies of F, is infinite, each of the functions has
an infinite number of poles in @Q,.

We wish to show next that Z(z) and W(z) are automorphic
functions. The surface ¢ admits an infinite set of conformal
transformations into itself. If the initial region ¢, is placed
in coincidence with any copy Fo of which ¢ is built up, the
copies of F, adjacent to ¢, will be carried into coincidence with
those adjacent to F/, and so on, the whole region ¢ being carried
into itself. The set of transformations of ¢ into itself which
we get by carrying ¢, into each of the copies contained in ¢
constitute a group. For, the succession of two transformations
or the inverse of any is equivalent to the carrying of ¢, into a
suitable one of the copies.

Let P be a point of ¢ and let P, be the point into which it is
carried by one of these rigid motions of ¢ into itself. Let 2
and 2, be the corresponding points of the z-plane. We derive
2. from z by the process of mapping Qo on ¢, ¢ on itself, and ¢
on Q. The result is that @, is mapped conformally on itself;
hence z, = T.(2), where T,(2) is a linear transformation (Sec. 12,
Theorem 24). The set of linear transformations of @, into
itself form a group isomorphic with the group of transformations
of ¢.

The points P and P, bear the same values of Zand W. Hence,
Z(2,) = Z(z) and W(z,) = W(2). In other words, Z(z) and
W (z) are automorphic with respect to the group 7.

The map of any of the copies Fy of which ¢ is composed is a
fundamental region for the group T.. For instance, let S, be
the maw of ¢ (see Fig. 74). Each of the transformations of
¢, other than the identical transformation, carries ¢, outside

.itself; and there exist transformations carrying ¢, into any
adjacent copy. Hence, in the z-plane no two points of S, are
congruent, whereas any region abutting on S, contains points
congruent to points of S,. S, is, thus, a fundamental region
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for the group. S, is bounded by 4p sides—the maps of the 4p
sides of ¢o. These sides are congruent in pairs, each pair being
the maps of the opposite banks of the same a- or b-cut.

The boundary of ¢, consists of interior points of ¢; hence, the
boundary of S, lies within Q,. If, now, we form the region
R exterior to the isometric circles of the transformations T',, the
part R, of B which lies within @, does not extend to the circum-
ference (Sec. 34, Theorem 17). It follows, then, from Theorem
14, Sec. 34, that the group 7. is a Fuchsian group of the first
kind.

When ¢ is transformed into itself by carrying ¢, into some
copy of F, other than itself, no point of ¢ remains fixed. Each
inner point of a copy F, is carried into an inner point of some
other copy. A boundary point of the copy may be carried into
another boundary point—if the copy is carried into an adjacent
copy—but, if so, it is a different boundary point. It follows that
no transformation T,(£1) has a fixed point lying within @,. In
other words, the group T. contains mo elliptic transformations.

The Uniformization when ¢ Can Be Mapped on the Finite
Plane.—Let z = g(Z) be a function mapping ¢ on the finite
plane. Let Z = Z,(z) be the inverse function. To each point
2z there corresponds, by the mapping, a single point P of ¢; and
P bears a single Z and W. If z traces any closed finite path, P
traces a closed curve on ¢; and Z,(z) and Wi(z) = F[Z:(2)]
return to their initial values. The functions

Z = Z:(z), W = Wi(2) = F[Z:(2)] (16)

are single-valued functions of z which uniformize the function
W = F(Z). Each function is analytic in the finite plane save
for an infinite number of poles.

Corresponding to a transformation of the group of transforma-
tions of ¢ into itself is a transformation z, = T.(z) which maps
the finite plane on itself. It follows that T, is a linear transfor-
mation with infinity as fixed point. We can prove, exactly as
in the preceding case, that Z,(z) and W(z) are automorphic with
respect to the group T'n.

¢o is mapped on a region S, which together with its boundary
lies 1n the finite plane. S, is a fundamental region for the group.
As before, the group contains no elliptic transformations.

We are now able to identify the group 7.. The transforms
of S, cluster about no finite point; hence, infinity is the only
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limit point of the group. All the groups with infinity as the
sole limit point were derived in Secs. 59 and 60. The groups
of the latter section, however, contain elliptic transformations
and so are ruled out. There remain the simply and the doubly
periodic groups. But the simply periodic group has no funda-
mental region lying, together with its boundary, in the finite
plane. Hence, the group 7', is a doubly periodic group.

The uniformizing functions Z:(z) and Wi(z) are elliptic
functions. KEach is a rational function (Sec. 61) of the Weier-
strassian functions P(z) and P’(z) connected with the doubly
periodic group 7.

92. The Genus of the Fundamental Region of a Group.—S,
is a map of the severed surface ¢o. If we bring the congruent
edges of S, together (Fig. 74) to form a closed surface, we have

Fig. 74. Fia. 75.

a surface whose points correspond in a one-to-one manner to the
points of the uncut Riemann surface #. The two surfaces have

the same genus, since the connectivity is invariant under con-
tinuous deformations; if a set of cuts renders one surface simply
connected, the corresponding cuts render the other simply
connected.

DEeriNiTION.—By the genus of the fundamental region of a group
1s meant the genus of the closed region formed by bringing congruent
sides of the region dogether so that congruent points coincide.

We shall derive a formula for the genus in the case in which
the fundamental region, before being closed, consists of a single
simply connected piece. Let 2n be the number of sides, arranged
in n congruent pairs, and let k be the number of cycles. When
the region is formed into a closed surface, all the vertices of the
i-th cycle coincide at a point P; on the surface. We now cut
the surface into simply connected pieces as follows. We first
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draw k loop cuts about the points Py, . . . , Pk, cutting out k
simply connected pieces. One of these cuts is taken as an
initial boundary, and the piece which it encloses is discarded.
The surface that remains outside the loop cuts can be rendered
simply connected by cutting along the curves where congruent
edges have been joined. These cuts give us the original region
save for the removal of pieces at the vertices.

Since the loop cuts are not to be counted, we have made
v = n cross-cuts. In addition to the & — 1 pieces at Py, . . . ,
Py, we have a single other piece, so o = k. We have, then,
from (14),

p=21n—k+1). 17)
If the unclosed fundamental region is not simply connected,
formula (17) does not hold. '

93. The Cases p = 1 and p > 1.—Consider, first, the case in
which the infinitely sheeted region ¢ is mapped on @,. Let R,
be the fundamental region of the group T, formed by means of
isometric circles. R, has a finite number of sides. Let Z, be the
map of Ry on ¢. Z, is a fundamental region for the group of
transformations of ¢ into itself. Each point of ¢, or a congruent
point in one of the copies of Fy, is contained in Z; and, except on
congruent sides, Z, contains no two congruent points. Congruent
sides of 2y are superposed; and, if we join them to form a closed
surface, we have an exact copy of the closed Riemann surface F.
The closed surface formed by joining the congruent sides of R,
together is a one-to-one continuous transformation of this surface
and, hence, has the same genus as the Riemann surface.

We now replace the arcs bounding R, by their chords to form a
rectilinear polygon (Fig. 75); and we consider the angles in the
two polygons. Let R, have 2n sides and & cycles.

Since there are no elliptic transformations in the group,
the sum of the angles at the vertices of each cycle is 2r. Hence,
the angles of the circular are polygon amount to A = 2rk. The
sum of the angles of the rectilinear polygon of 2n sides is
B =2r(n — 1). Since the latter is the greater, we have
B — A4 > 0. Making use of (17), we have

B—A=2(n—k—1)=4r(p — 1) >0,

whence, p > 1.
In the case in which ¢ is mapped on the finite plane, the
group T', is the doubly periodic group. A fundamental region for
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the group is the period parallelogram (Fig. 13). We note,
exactly as before, that this fundamental region has the same
genus as the Riemann surface F. The opposite sides of the period
parallelogram are congruent and there is one cycle; hence n = 2,
k = 1. We have, then, from (17), p = 1.

The surface ¢ can be mapped conformally on the finite plane if,
and only if, p = 1. It can be mapped conformally on the circle
Qo if, and only if, p > 2.

The fact that the fundamental region has on its boundary
no limit point of the group and no fixed point of an elliptic trans-
formation has the following consequence: Let 2, lie in the domain
of definition of the uniformizing functions and let P, be the
corresponding point on the Riemann surface F. A sufficiently
small neighborhood of 2z, contains no two congruent points; that
is, no two points corresponding to the same point of ¥. The
correspondence between the points of the z-plane in the neighbor-
hood of 2, and the points of the Riemann surface in the neighbor-
hood of P, is one-to-one.

We summarize our results in the first part of the following
theorem:

THEOREM 9.—An algebraic functions can be uniformized by
means of .

(a) Rational functions, if p = 0,

(b) Elliptic functions, if p = 1,

(¢) Fuchsian functions of the first kind, if p > 2,
m such a manner that in a sufficiently small neighborhood of a
point in the domain of existence of the uniformizing functions the
correspondence between the points of the plane and the points of
the Riemann surface of the algebraze function is one-to-one.

The three cases are mutually exclusive. Further, the most
general such pair of uniformizing functions, in each case, is got
Jrom any given ‘pair by subjecting the uniformizing variable to a
linear transformation. '

It is conceivable that by constructing uniformizing functions
in some way other than by the use of the sheeted surface ¢,
we should be able to uniformize an algebraic function in two
of the ways stated in the theorem. LetZ = Z(2), W = W(z) be
one pair of uniformizing functions and let S~(the whole plane,
the finite plane, or the interior of a circle) be the domain of
existence of the functions. LetZ = Z,(}), W =.W(¢) be another
pair with the domain of existence 8’. Let £, be a point in §’;
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let P(Z,, W,) be the corresponding point on the Riemann
surface F; and let 2o, 21, . . . be the corresponding points in
S. The equations Z = Z(z), Z = Z:(t) together with the condi-
tion that z = 2z, when ¢t = ¢, define a function z = ¢o(f) analytic
in the neighborhood of #,. The equations define other functions
o1(t), ¢a2(t), . . . analytic at ¢, and taking on the values z;,
2y, . . . at t. Each function can be extended analytically
throughout 8’; but, since for each value of ¢ the corresponding
values of z are distimagm-each of the functions is single valued
in 8.1 Hence z = p,(t) is a function single valued in S’. Inter-
changing the roles of S and S’, the inverse of the function is single
valued in S. .

The function z = ¢o(t) maps S’ conformally on S. But of the
three domains, the whole plane, the finite plane, and the interior
of a circle, no one can be mapped conformally on the other.
Hence S and S’ are domains of the same kind. An algebraic
function which can be uniformized in the way stated in the
theorem by one of the three kinds of functions cannot be so
uniformized by either of the other two kinds of functions.

Suppose now that S and S’ are domains of the same kind.
Then, z = ¢o(t) ‘maps the whole plane conformally on itself,
or the plane bounded by a point on the plane bounded by a point,
or the interior of a circle on the interior of a circle. In each of
these cases, z = ¢, (¢) is a linear transformation, which establishes
the final statement-of the theorem.

94. More General Fuchsian Uniformizing Functions.—In the
preceding method, there are no elliptic or parabolic cycles. We
now consider the possibility of uniformization by means of
Fuchsian functions belonging to groups of the first kind without
this restriction. We ‘treat, first, the case p > 0.

On the Riemann surface F of the algebraic function, let s
points, Py, Py, . . ., P, be selected at which the mapping
from the surface to the plane of the uniformizing variable is
not to be one-to-one. With P; we associate an integer »; > 1
and require that the mapping be one-to-»; in the neighborhood
of P;, We shall admit »; = « as a possible value.

Let the surface be rendered simply connected by a system of
2p cuts beginning and ending at an ordinary point O, the cuts
being so made that P, . . . , P, do not lie on the boundary.
Let P; be joined to the boundary at O by a cut C;. The cuts C;

1 Oscoop, ‘“‘Lehrbuch der Funktionentheorie,” 2nd ed., p. 396.
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shall have no common points except the common end point O
(Fig. 76). The region F, resulting from the 2p cross-cuts and
the s cuts C; is simply connected. Fq has 4p -+ 2s sides; namely,
the opposite banks of the 2p + s cuts, and an equal number of
vertices.

We now provide ourselves with an infinite number of copies
of Fy and proceed to superpose them and join them together in
such a manner that (a) the region at each stage is simply con-
nected; (b) in the limit region the neighborhood of O in each
sheet is a plane piece; and (c¢) »; copies of Fy hang together to
form a branch point wherever P; occurs. Take one copy—call
it ¢¢—as the initial region. We superpose copies of F, and join

Fia. 76.

along each of the sides of ¢, (opposite banks of the same cut in
¢o and the copy being brought together) to form ¢;,. We super-
pose copies of Fy and adjoin along each of the sides of ¢, to form
¢2; and so on. In this process, whenever the neighborhood
about a point O is filled out, we join the copy which fills out the
neighborhood along two adjacent sides and reduce O to an interior
point. Also, when »; — 1 copies hang together at P;, the next
copy adjoined along C; shall have both banks of its cut C;
joined to the two free banks there, thus reducing P; to an interior
branch point. If »; = o, this latter situation never arises, and
P; is never an interior point.

We can show, easily, as in the footnote of Sec. 91, that there
are free sides at every step. The process of construction thus
continues’indefinitely.

Let ¢ be the infinitely sheeted limit region of the sequence
b0, ¢1, . .. Let W = F(Z) be the algebraic function to be
uniformizedy F(Z)is a single valued function of Z on the severed
surface F,. If we let each point of each copy bear the same
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values of W and Z as were originally associated with the point,
the values of W fit together to form a function single valued
and analytic, except for poles and branch points, on ¢. For, we
so superpose the copies that each point has the same Z as in
its original position; and we join up the copies along lines at
which W has the same values in the copies, so that W in the
one copy is the analytic continuation of W in the adjacent copy.

The sequence ¢o, ¢ . satisfies the conditions of Theorem
21, Sec. 85; hence, ¢ can be mapped conformally either on @, or
on the finite z-plane. Let Z = Z(z) be a function performing
this mapping. :

Corresponding to the group of conformal transformations of
¢ into itself, got by carrying one copy of ¥, in ¢ into another or
into the same copy, is a group of conformal transformations
2, = T,(2) which carry @, into itself or the finite plane into
itself. The set 7', is a group of linear transformations. The
map of any copy Fy is. an fundamental region for the group.
Conversely, the map on ¢ of a fundamental region in @, or in
the finite plane, of the group 7', is a region =, which is a funda-
mental region for the group of transformations of ¢ into itself.
If congruent edges of =, be brought together, we have an exact
copy of the unsevered region F. The fundamental region in the
plane is of genus p > 0.

We now show that the mapping cannot be done on the finite
plane. A reference to Secs. 59 and 60 and the figures connected
therewith shows that the fundamental regions of all groups with
a single limit point are of genus zero, with the exception of the
doubly periodic group. The latter group is ruled out by the
following considerations. Corresponding to a point P; (»; finite)
of ¢ is an elliptic fixed point a; of order »; in the z-plane. For,
each point in the neighborhood of a; has »; — 1 congruent
points in the neighborhood of a;, these »; points corresponding
to »; congruent points in different copies of F which are joined
together at P;. The doubly periodic group, however, contains
no elliptic transformations. Again, if »; = «, P; is a boundary
point of ¢. If the group is doubly periodic, a period parallelo-
gram is mapped on a region not extending to the boundary of
¢; and not enclosing points in a suitably small neighborhood of
the superposed points P;. Then there are points in the z-plane
not having congruent points in the period parallelogram, which
is contrary to fact. Hence, in this case also, the group is not
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the doubly periodic group. It follows that in all cases ¢ can
be mapped on Q.

Thé mapping function Z = Z(2) and the function W = W(z)
= F[Z(2)], which together uniformize the algebraic function, are
automorphic with respect to the group 7T.. For, when z is
carried into T',(z), the corresponding point P of ¢ is carried into
a point P, at which Z and W have the same values as at P.

TueorEM 10.—Let Py, Py, . . . , P, be points on the Riemann
surface F of an algebraic function W = F(Z) of genus greater than
zero. With each point P; let an integer v; > 1 be associaled
(vi = « s admaitted). Then, the algebraic function can be uni-
formized by means of Fuchsian functions of the first kind,

Z =1Z(k), W=W@ =FlZ@), (18)
in such a manner that in a sufficiently small neighborhood of a
point a in the principal circle of the group the correspondence
between the points of the plane and the points of F is one-to-one,
except when a corresponds to P;, in which case the correspondence
18 vi-to-ome.

The most general such wuniformizing functions are got from
one pair by subjecting the uniformizing variable to a linear
transformation.

The latter part of the theorem is proved as in the preceding
theorem. Let the functions (18) exist in the principal circle Q;
and let Z = Z,(t), W = W.(¢) be uniformizing functions with the
principal circle @ and with the properties stated in the theorem.
Let t, be a point of Q; let Po(Wo, Z,) be the corresponding
point of F; and let 2, 21, . .. be the corresponding points
of Q. If P, is an ordinary point of F, the equationsZ =Z(z)
Z = Z,(t) define distinct function elements z = ¢o(2), 2 = ¢1(¢),

. analytic at #, and such that ¢i(t)) = 2. If P, = P; we
have
Z —Zoy=colz—20)%+ - - - =dot —t)i+ - -+ ,c0#0,dy 0
(with suitable changes in the first member if P; is a branch
point of F or a point at «). On solving for z, we find distinct
function elements in this case also. Any one of these functions,
say z = ¢o(t), can be extended analytically throughout @ and is a
single-valued analytic function of ¢in Q. Similarly, the inverse is
single v3lued in Q,; whence, z = ¢,(¢) maps @ conformally on Q.
We thus have a linear transformation of the uniformizing
variable.
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95. The Case p = 0.—If the genus of the surface is zero, the
initial cross-cuts are absent. From an ordinary point O, we
drawcutsCy, . . . ,C,to P, . . . , P, respectively, to form the
severed surface F, (as in Fig. 77). F, has 2s sides and vertices, s
vertices being at 9. We take an initial copy of Fp—call it p—and
adjoin copies along each of its sides to form ¢, and so on. As
before, when »; copies lie about P, we join up the sides to reduce
P; to an interior point. We join up the sides about O in any
sheet when s vertices meet there.

If s > 4, we find readily, by the method of the footnote of
Sec. 91, that we can continue to adjoin copies ad infinitum.
The limit surface ¢ of the sequence ¢o, ¢1, . . . is infinitely
many sheeted. This will also appear presently from the fact
that the inequality (21) cannot be satisfied.

If s =1, the construction is impossible. It is, likewise,
impossible if s = 2 and »; 5 »,. For, two copies of F, suffice to
fill up the region about each verted O. Hence, each added copy
is joined along the line P,OP,; and when the sides close up about
one point they necessarily close up about the other. If »; = vy,
we get for ¢ a closed surface containing »; copies of Fy, if v is
finite, and an infinitely sheeted surface, if »; is infinite.

If s = 3, we may be able to add copies ad infinitum so that ¢
is an infinitely sheeted surface; or the surface may close after a
finite number of copies have been added, and ¢ is a finite-sheeted
closed surface.

The surface ¢ can be mapped, according to circumstances,
on a circle, on the finite plane, or on the whole plane (the last
if ¢ is closed). The mapping function Z = Z(z) and the function
W = W() = F[Z(z)] are uniformizing functions. They are
automorphic with respect to the group of transformations in the
z-plane corresponding to the group of transformations of ¢ into
itself. The group in the z-plane is a Fuchsian group of the first
kind, a group with a single limit point at infinity, or a finite
group, according to the mapping. We now distinguish between
the three cases.

Suppose that ¢ is mapped on Qo; and let the fundamental
region R, be formed. R, is of genus zero. On its boundary lie
points corresponding to each of the points P; and each such
point belongs to a cycle of angle 2r/v;. Let R, have 2n sides
and k cycles. Of the latter, ¥ — s are of angle 2r. We now
compare the sum of the angles 4 of the fundamental region with
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the sum of the angles/B of the rectilinear polygon formed by
joining successive verpices of the region by straight lines (Fig.
75). We have

a=T g Tk~ ), B=2en—1),
1 s

whence,

B—A=27r[n—k—1+s—<vl+--~+Vl>]>0.
1

s

But, since p = 0, we have, from (17), n = k — 1; hence,
-1~+~"+1<s—2. (19)
V1 Vs

If the mapping is on the finite plane, we can take a rectilinear
polygon as fundamental region; for, we have found such funda-
mental regions for all possible groups with infinity as the only
limit point. Then B = A, and we have

l+...+1=3—2_ (20)
141 Vs

We have already found that in the remaining cases, namely
those for which

.

Tiixlseoy @1)
V1 Vg

all possible solutions in integers lead to finite groups (Sec. 57),
and, conversely, that for all finite groups the inequality is satisfied.

Those cases in which ¢ is closed may also be determined by Euler’s
formula. Let ¢ be deformed into the surface of a sphere. Then, the copies
with their sides and vertices may be looked upon as the faces, edges, and
vertices, respectively, of a solid. Let F be the number of faces. Each face
has 2s sides; so there are Fs edges altogether. Each face has s O-vertices;
but these meet in groups of s, giving F O-vertices in the solid. Each face
has one P;-vertex, but these fall together in sets of »;, giving F/»; of these
vertices in the| solid. Euler’s formula, F 4+ V = E 4 2, then becomes

Flr+r(+ - +0)] =P+
or

1 +-"'-+l=8—2+F2>8—2.

v v,

We state our results in the following theorem. We enumerate
the possible solutions of (208 and (21) and specify the types of
functions resulting. The proof of the last statement of the
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theorem proceeds as in the previous theorems and will not be
repeated here.

TaeorEM 11.—Let Py, . . . P; (s > 1) be points on the Rie-
mann surface F of an algebraic function of genus zero. With
each point P; let an integer v; > 1 be associated. Here v; may be
infinite; and vy = ve of s =2. Then the algebraic function
can be uniformized by means of automorphic functions in such a
manner that, in the neighborhood of a point a in the domain of
definition of the functions, the correspondence between the points
of the plane and the points of F is one-to-one, except when a cor-
responds to P;, tn which case the correspondence is v-to-one.

The uniformizing functions are:

1. Rational (polyhedral) functions, if
(a) s =2, v finite;
1 1 1
b)) s=3 —+-+>->1
Vi V2 V3
2. Simply periodic functions, if
(@) s =2, v1=
b)s=3, vi=v,=2 v;=®,
3. Elliptic functions, if
(@s=3 ++ +3 =1
. Vi 1 3] Vs
(b) S=4, V1=V2=V3=V4=2.

4. Fuchsian functions of the first kind in all other cases.

The most general such uniformizing functions are got from
one pair by subjecting the uniformizing wvariable to a linear
transformation.

The uniformizing variables (2) at the beginning of this chapter
fall under 2(a). The Riemann surface of W = v/1 — Z%is a
two-sheeted surface with branch points at +1. The points
P,, Py are at z = « in the two sheets.

96. Whittaker’s Groups.—The following groups for the uni-
formization of the hyperelliptic algebraic functions are due to
Whittaker.! They appear as subgroups of groups generated
by elliptic transformations of period two.

In Theorem 11 let the Riemann surface of genus zero be the
Z-plane; let the relative branch points be

1, €3, * * -+, €aptz, P > 1;

1 Phil. Trans., vol. 192, pp. 1-32, 1899.
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and let v; = 2 for all the points. The limit surface can be
mapped on the circle Q.
The initial surface ¢, is formed by cuts extending from a

point O to the points ey, . . . , espre (Fig. 77, for the case p = 2).
Any adjacent copy is joined to ¢, along the two banks of the
&5
€y €6
0)
€1
€5 e,
Fia. 77.

cut extending from O to one of the points e;, When ¢, is placed
upon this copy, the copy, falls on ¢, and e; remains fixed.

Let ¢y and the adjacent copy be mapped on regions S, S;
in the z-plane. Either region is a fundamental region for the

Fia. 78.

group T in fhe z-plane corresponding to the group of conformal
transformgtions of ¢ into itself got by carrying ¢, into the various
copies composing ¢. When 8 is carried by a transformation T';
into S;, S; is carried into S, and a point e; on the common
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boundary remains fixed. 7T';is thus an elliptic transformation of
period two with e, as fixed point. The transformations T,
T2 . .., Tipse, which connect congruent sides of S, and so
generate the group T, are all elliptic of period two (Fig. 78).

The automorphic function Z = Z(z)—the inverse of the map-
ping function—maps S, on the whole Z-plane and so takes on
each value once in S;. Hence, all simple automorphic functions
belonging to the group are rational functions of Z(z). Any
function which can be uniformized by means of these simple
automorphic functions, according to Theorem 7, is of genus
Zero.

Now, let ¢o’ be the surface formed by adjoining to ¢, one
copy of the severed Z-plane, the junction being made along
the two banks of Oe;. The limit surface ¢ may be looked upon
as made up of copies of this two-sheeted surface joined together
without relative branch points.

To the group of transformations of ¢ into itself got by carrying
¢’ into each of the copies composing ¢, there corresponds a
group I" in the z-plane. TI” is a subgroup of I'. A fundamental
region for I is the map S’ of ¢¢’. S’ consists of S, together
with the adjacent region S, = T:(S,). The generating trans-
formations, connecting the congruent sides of Sy, are (Fig. 78)

Ty = T1T2y Ty = TlTa, Tty Tl2p+2 = T1T2p+2-
I’ contains no elliptic transformations.
Now, ¢ is a severed two-sheeted surface with branch points

at e;, . .., €pre. This surface is the Riemann surface for
the two-valued function
w2 = A(Z o 61)(Z —_ 62) L] (Z - €2p+2).

The coordinates (Z, W) on ¢ are simple automorphic functions,
7Z = Z(z), W = W(z), which uniformize this hyperelliptic
function.
97. The Transcendental Functions.—Each analytic function
W = F(Z) o (22)
possesses a Riemann surface F spread over the Z-plane on which
the function is single valued. The surface is got by analytic
continuation from some element of the function. The details
will be found in many texts on the Theory of Functions.
The Riemann surfaces of analytic functions exhibit the greatest
variety. The number of sheets may be finite or denumerably
infinite. There may be branch points of finite or infinite order
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points may be absent. The function may fail to be
at isolated points or along curves, and sheets may
holes, or lacunary spaces, into which the function cannot
be continued analytically and which do not belong to the surface.
shall consider certain of the isolated singular points of
the/ function as belonging to F. A point in a plane sheet at
which the function becomes infinite—a pole—shall belong to
F. Also, we include a branch point of finite order at which the
function is continuous or becomes infinite. All other singular
points shall not belong to F, but lie on its boundary. F consists
of interior points.

We shall show that it is possible to make a system of cuts,
finite or infinite in number, in the surface F which will render
it simply connected.

We may suppose, without loss of generality, that all points
of F which lie at infinity are in plane sheets. This can be
accomplished by a linear transformation. For, the branch
points of F are denumerable, and their Z-coordinates do not
include all points of the Z-plane; it suffices to make a linear
transformation carrying a point which is not the Z-coordinate
of a branch point to infinity. We may suppose, also, that at
each branch point, Z = X + ¢Y, both X and Y are irrational.
For, the points whose abscissas and ordinates differ by rational
numbers from those of the branch points lie on a denumerable
set of lines parallel to the X- and Y-axes; and we have but to
make a translation carrying the origin to a point not lying on one
of these lines.

We shall now cut the surface up into square elements (Sec.
86) after which we shall put the pieces together in such a manner
that the resulting surface is simply connected. The component
square elements shall lie together with their boundaries in F. We
put aside the case in which F consists of the whole plane.

Consider, first, the points of F at infinity. Each such point
lies in an element (the exterior of a square) bounded by lines
X = +n, Y = +n, where n is a positive integer. We take for
n the minimum value such that the element belongs to F. This
gives a finite or denumerably inﬁn\lite number of elements belong-
ingto F. -

We next cut what remains of the surface by lines X = m.
Y = n, where m and n take on all integral values. Whatever
plane unit squares or superposed squares winding about a single
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branch point as are cut out shall be exempt from further cutting.
There is at most a denumerably infinite number.

We divide what remains into quarter squares by lines
X =m+ 1Y, Y =n+ 14, and take out the square elements.
We divide again into quarter squares, taking out the square
elements; and so on.

In this process, no branch point lies on the side of a square,
for on a side either X or Y is rational. The resulting finite or
denumerably infinite set of elements contains all points of F;
for the neighborhood of any point of F is either a plane piece or an
isolated branch point and is cut up when the squares are small
enough.

We propose, now, to put the squares back together in such
a way that the resulting surface is simply connected.

When two square elements abut, they have a common piece
of straight line boundary equal in length to the side of the smaller
square (if unequal). We shall call such a piece an edge. Two
square elements may have several common edges if each bears a
branch point and several sheets. Likewise, an element contain-
ing a point at infinity and an adjacent element will have two
common edges, if they have a common vertex. Since the number
of sides of each square element is finite, it follows that the number
of edges is denumerable. We can, therefore, write them in
serial order:

Ly loy Igy - - - (23)

Let ¢o be one of the square elements of F; and [., be the

first edge of (23) forming part of the boundary of ¢,. We adjoin
to ¢o the square element abutting along\the edge [,, and close up
along this edge. If there is a common edge adjacent to I,,
(a possibility if one element is the exterior of a square) we close
this edge also. Call the resulting surface ¢;. We cancel from
(23) any other common edges of the two square elements.

In general, we form ¢, from ¢,_; as follows: Let 1, be the first
edge of the sequence (23) which forms part of the boundary of
¢n—-1, after cancelling from the sequence each edge common
to two elements of ¢,—; which have not been joined along that
edge. We adjoin to ¢._; the square element abutting along [, ,
closing up the edge l.,. We shall close up further edges, if possi-
ble, in the following way: If in tracing the boundary of the new
region we encounter any edge followed by itself, we extend the



252 ELEMENTARY AND FUCHSIAN FUNCTIONS [Sec. 97

line ¢f junction by closing this edge. If an edge follows itself in
the hew boundary, we close it up, and continue the process as
long ‘as possible. The resulting surface is ¢n.

The surface ¢, is simply connected. Assume that ¢,_; is
simply connected. The line of junction made in forming ¢, is
a cross-cut (possibly a sigma cross-cut) cutting ¢, into two
simply connected pieces—¢.—; and the added element. Hence,
¢, is simply connected. Since ¢, is simply connected, the result
follows by induction; and the limit surface ¢, defined by the
sequence

o, 1, P2y * * o (24)
is simply connected.

The surface ¢, contains all the square elements of F. Since
F is connected, we can draw a curve in F from ¢, to any given
element s, meeting a finite number of elements ¢o, s1, 2, . . .
Sn, s and crossing the edges I, L, . .., l;, separating the
successive elements. After a finite number of steps, I, either

will be cancelled or will be the first uncancelled edge of (23) on
the boundary of some ¢.,. In either case, ¢my1 contains s;.
Similarly, ss, . .., ss, 8 arereached in a finite number of
steps. i

Consider, now, the possible forms of the surface ¢o. It
may happen that there is a finite number of square elements and
that the surface closes up completely. Then F is of genus zero;
and the function F(Z), having no other singularities than poles
on F, is algebraic.

It may happen that there is a finite number of square elements
but that ¢, has a boundary. The function is again algebraic
but of genus greater than zero. The boundary of ¢, constitutes
a set of cuts in F which render it simply connected. We put
these algebraic cases aside.

If F contains an infinite number of square elements, the
function is not algebraic. There are two possibilities. ¢, may
have no free edges left, in which case F(=¢,) is simply connected.
Or, ¢ may have free edges. In the latter case, the free edges
constitute a system of cuts in F which render the surface simply
connected.

The sequence (24) is one to which Theorem 21, Sec. 85, applies;
80, ¢o can be mapped either on the unit circle Q, or on the finite,
plane. If ¢, has free edges, the mapping is certainly on a circle
(Theorem 22, Sec. 85).
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If ¢o has free edges, we proceed to build up a limit surface.
Let the edges on the boundary be arranged serially

my, m1 ; Mo, m2 y vt (25)

m; and m; bemg opposmﬁ)\anks of the same edge. We take a
copy of ¢o and join to ¢, so that m; in ¢, is joined to m,’ in the
copy. We continue the junction as far as possible in each direc-
tion by closing when an edge follows itself along the boundary.
We then take another copy of ¢, and adjoin along the first edge of
(25) on the boundary of the original ¢y which has not been closed
up, extending the line of junction as before. We continue this
process until all edges of (25) are exhausted and the original ¢
is completely embedded. Call the resulting surface ¢;.

We next arrange the edges bounding ¢; serially and adjoin
copies of ¢, around the boundary in a similar manner to form
¢2; and so on. At each step, ¢, can be mapped on a circle.
"Hence, the limit surface ¢ defined by the sequence

b0, b1, P2, - - - (26)
can be mapped on the circle @, or on the finite plane.

Let ¢ (take ¢ = ¢o = F, if the Riemann surface is simply
connected) be mepped on Qo or on the finite z-plane. Let
Z = Z(z) be the inverse of the mapping function. Then the
functions

Z = Z(z), W = W) = F|Z(2)] (27)
are analytic except possibly for poles in @, or in the finite plane.
The poles of Z(z) are the points in the z-plane corresponding to
the points at infinity on ¢; the poles of W(z) correspond to the
points of ¢ at which F(Z) becomes infinite.

If the mapping is on the finite plane, at least one of the func-
tions (27) has an essential singularity at infinity. Otherwise,
both functions would be rational and F(Z) be algebraic of genus
zero.

If the mapping is on Q,, at least one of the functions has a
singularity at each point of the circumference. Suppose, on the
contrary, that both functions are analytic at a point a on the
circumference. The function Z = Z(z) maps a sufficiently small
circle K enclosing a on a region K’ in the Z-plane, where K’ is
a plane piece or is the neighborhood of a branch point of finite
order, according as the derivative Z’(a) does not or does vanish.
This function maps the part of K lying within @, or a portion
of ¢. But, W can be extended analytically throughout K’, so
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all of K’ belongs to’¢. Then, the corresponding region K lies
in Q,, contrary to hypothesis.

The surface ¢ possesses a group of conformal transformations
into itself got by carrying the initial copy ¢, into the various
copies of ¢o of which ¢ is composed. There corresponds in the
z-plane a group of conformal transformations carrying @, into
itself or the finite plane into itself, and which are, therefore,
linear transformations. This group consists solely of the
identical transformation, if there is but one copy of ¢,. The
functions (27) are invariant under the transformations of this
group.

We have established the first part of the following theorem:

THEOREM 12.—Any transcendental function

W = F(Z)
can be expressed parametrically in terms of two functions
Z = Z(2), W = W) 27

which are analytic except for poles in a domain Z, consisting
either of the tnterior of the unit circle Qo or of the finite z-plane,
such that each pair of values (Z, W) satisfying the functional
relation 1s given by one or more values of z in Z, and such that the
correspondence between the points tn a sufficiently small neighbor-
hood of a point of = and the points on the Riemann surface of the
" function is one-to-one.

The most general functions with these properties may be got
from one pair by subjecting z to a linear transformation.

If the Riemann surface of the function is not stmply connected,
the functions (27) are tnvariant under an infinite group of linear
transformations.

The second paragraph of the theorem is proved in the usual

way. ,
As to the final paragraph, it is conceivable that the sequence
(26) should break off after a finite number of steps due to the
junction of all free edges. The mapping would still be possible,
but the group would be finite. The group would contain an
elliptic transformation with a fixed point 2z, in =. At 2, the
one-to-one character of the correspondence would break down;
so this supposition is untenable.

The functions (27) are automorphic, according to the definition
of Sec. 39, if they are single valued. This is the case if = consists
of the finite plane. If, however, = consists of the interior of
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Qo, it may be possible to extend one or both functions outside
the circle and back again in such a way that new branches
appear.

For example, let F(Z)-be analytic in a semicircle and have
the boundary of the semicircle as a natural boundary. Here,
¢o is the semicircle and it is mapped on @, @ is a natural
boundary for W(z). However, Z(z), which maps @, on the
semicircle, can be extended analytically across the circumference,
and is, in fact, a two-valued function.

As in the case of algebraic functions, it is possible to get quite
different pairs of functions by altering the one-to-one character
of the correspondence. We may select certain points of the
Riemann surface at which there is to be »-to-one correspondence
(v > 1), the correspondence being one-to-one elsewhere. We
shall not work out the details.



CHAPTER X
UNIFORMIZATION. GROUPS OF SCHOTTKY TYPE

98. Regions of Planar Character.—The preceding methods of
uniformization have been arrived at by the mapping of simply
connected regions. In order to be able to uniformize by means
of automorphic functions belonging to groups whose fundamental
regions are not simply connected, we shall now consider the
mapping of multiply connected regions on plane regions.

A region is said to be of planar character' if every loop-cut
in the region separates it into two parts. This is a property
of all plane regions. It is clear that a region which is not of
planar character cannot be mapped in a one-to-one manner
on, or otherwise continuously deformed into, a plane region; if
it could, a loop-cut not cutting the original surface in two would
be carried into a loop-cut not cutting the plane region in two,
which is impossible.

Let = be a finite-sheeted region with a finite number of branch
points whose boundary consists of a finite number of closed
curves By, By, . . . , B,. Further, let = be of planar character.
We propose to show that = can be mapped conformally on a
plane region with m bounding curves.

As a first step, we cut Z into a simply connected region and
perform a preliminary mapping. We make a system of m
regular cuts Cy, . . . , C,. The cut C; joins an ordinary point
O of the region to a point of B;; and the cuts are to have no
common points other than O. The severed region =, has a
single boundary. We suppose the cuts so made (or the curves
so numbered) that in passing around the boundary in the positive
sense we encounter By, Bz, . . . , B, in order. The region Z,
is simply connected. If not, a cross-cut ¢ can be made which
does not separate =, into two parts. If ¢ is not already a sigma
cross-cut, it can be deformed into one, since it joins points on
the same boundary. If the stem of the sigma cross-cut be
erased we have a loop-cut in Z.,—and hence in Z—which does
not separate =, which is contrary to hypothesis.

1 German, schlichtartig.
256
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Figure 79 shows a region of planar character lying on a two-sheeted elliptic
surface. In this surface, a loop-cut has been drawn, and the area enclosed by
a curve B, in the upper sheet has been removed.

We provide ourselves with copies of =, and proceed to build
up an infinitely sheeted surface. We take one copy as the
initial region ¢,; we adjoin copies along the 2m banks of
C; to form ¢:; we adjoin copies along the free banks of the
cuts C; of ¢; to form ¢,; and so on. In this process, whenever
the regions fit together to fill up the plane neighborhood about O,
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we join up two successive banks meeting at O to reduce O to an
inner point of the region. The region ¢o, ¢1, . . . form a
sequence to which Theorem 21, Sec. 85, applies. In this case,
owing to the presence of the boundaries B, the mapping of
the infinitely sheeted limit surface ¢ can be made on a circle.

We shall map the surface ¢, spread over the Z-plane, on the
upper half of the ¢-plane bounded by the real axis, in such
a manner that a point of B,, on the boundary of the initial copy
¢ is carried to infinity. et Z = Z(¢) be the mapping function.
The inverse function ¢ = g(Z) is single valued on ¢ provided we
do not continue the function analytically across the boundaries
B;. To each point of ¢, there corresponds one, and only one,
point of the upper half ¢-plane. On the unsevered surface Z,
9(Z) is an infinitely many-valued function which takes on each
value in the upper half plane once, and only once. In suffi-
ciently small neighborhoods of a point Z, on X and of one of the
corresponding points Z, in the ¢-plane, the correspondence between
the points of the surface and of the plane is one-to-one.

Corresponding to the group of conformal transformations of ¢
into itself, got by carrying ¢, into any of the copies Z, of which ¢
is built up, we have a group of linear transformations in the
t-plane which carry the upper half plane into itself. Let S, be the
map of ¢, (Fig. 80). A fundamental region for the group is Sy
together with the reflection of S; in the real axis. The group is a
Fuchsian group of the second kind.
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99. Some Accessory Functions.—We propose to set up certain
functions which are single valued on ¢ and which take on equal
values along opposite banks of each C; in ¢,. The functions
will then be single valued on the surface =, got by closing up
the cuts in ¢o. In terms of the variable ¢ we are concerned with

~
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functions which take on the same values along congruent boun-
daries of S,. The functions which we employ are set up by
means of series and products whose convergence has already
been established for the Fuchsian group of the second kind in
Sec. 50.

We use, as we have previously done, the notation ¢, = T,(f),
where T, T, . . . are the transformations of the group. Let 7
and 7 be two inner points of Sy, and consider the function

t—7n t— 7n

y(t) —n . Or_: I R )
where bars indicate conjugate imaginaries. This function is
analytic in the whole ¢-plane except for poles at the points 7,
in the upper half plane and 7, in the lower half plane, and essential
singularities at the limit points of the group on the real axis.
It is different from zero except at the points r, and 7,. We shall
not be interested in its behavior in the lower half plane. At an
ordinary point of the real axis we have

[t —ral =t =7, [t —ml| =]t —ml,
and
y@®] = 1. 2
Consider the behavior of ¥(¢) when a transformation
_ _at+b Y
b = Tk(t) = ot +d: ad be = 1, (3)

of the group is made. We have ,

vy = [P b=

tk—":n tlc_"]n
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Let Tw be the inverse of T%; then, we can write 7, = 7,,,
We have (Sec. 1, Equation 7)

73

t— Tirn

T T Gt + d)(eren + d)

and
_ E—Ten 0 — Tin CTen +d cqpm +d
vt = Ht — Tirn E— Mm CTn +d cmen + d
Now, the set of quantities 4., is merely the set 7, arranged in a
different order; so we have

C:I'_n+d c"ln+d_

v =yl m g g = Ha), @)
where H, is a constant different from zero. Since the coefficients
in (3) are real, we have |cr, + d| = |er, + d| and

|Hi| = 1. (5)

Let Ty, T, . . . , Tabe the transformations connecting the sides
of Sg—arranged as in the figure. Considering the cycle at O,,

we find the relation 7', - - - T, = 1. By a repeated application
of (4), we have y(t) = H, - - - Hi(t); whence,
H1 H2 st Hm = 1. (6)

We shall make repeated use of the elementary formula con-
necting the number N of zeros and P of poles of a function f(t)
analytic except for poles in S, and continuous and not vanishing
on the boundary.

N =P = [ dlogf() = 5 llog |1(0)] + 1 arg ()

= 5 larg /O @)

where the boundary C of S, is traced in the positive sense. As
the interval b, (corresponding to B,) is traced in this sense, let
B¢ be its beginning and a® its end (Fig. 80). Let A, be the
change in arg f(¢) as ¢ moves from B to a®; and let ¥(t) be
substituted in (7). We have N — P = 0, since there is one
zero and one pole in S,. Also, d log ¢(t)]c,~ = d log ¥(t)]c,™
from (4), and the integrals along two congruent sides cancel,
being taken in opposite directions. We have then

Sl v gy =M+l t - =0, 8)

We observe that H, = ei*s; so that (6) is a consequence of (8).
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We next set up another type of function

{ — "(s)
os(t) = ]:[t-?g--@, s=1,2 ---,m—1. 9)

The point 8, is not a pole; for, since a and B¢ are congruent
points, there is a factor in the numerator which cancels { — 3,
The function is analytic in the whole plane exclusive of the limit
points of the group. It is nowhere zero.

At the ordinary points of the real axis ¢,(t) is real, all factors
being real. Each factor in (9) is then positive, with the possible
exception of one factor. If ¢ lies in the interval B;®, o;,
! — a;©® and ¢t — ;) differ in sign and the factor is negative.
We have, then,

e], <0, w®] >0ns. (10)
It follows from this property that ¢,(t) is not a constant.
Let ¢ be subjected to the transformation 7. We have

tk - a,.(s) t — o’ ® Cﬁkl ® 4+ d

—%Oﬂm%+d*KMM& an
Here, each factor in the product for the constant K;® is real.
Also, since —d/c is congruent to « and so lies in one of the
intervals congruent to b.,, we have, from (10),

—_ — (8)
670 1
Kk(s) = J— = > 0. (12>

d d
—_ = (s) =
P (22 903< C)

In the same way that (6) was established, we show that
KOK,® . . . K,® = 1. (13)
The analogous function ¢m,(f) requires a slightly different
definition. If we form the product in (9) with a(™, 8™ at the
extremities of b, (bs; in the figure) on the boundary of Sy, ¢ lies
between a‘™ and (™ except when ¢ is on the interval b, on the
boundary of Sy. The result is that the factor (t — a™)/({ — ™)
in (9) has always the opposite sign from that appearing in the
previous cases. If we define ¢,.(t) by the equation

— (m)
on®) = =1l =5
the properties (10) to (13) all hold.
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Since ¢,(t) has no singularities and no zeros in the upper
half plane, log ¢,(¢) is a single-valued analytic function in that
domain, if we restrict ourselves to one branch of the logarithm.
We have

t— a,®

IOg ‘ips(t) = IOg ]‘Ps(t)l + 7 arg ‘Pa(t) =2 log t——ﬂm’ (14)

where we take the principal value of the logarithm in each
term of the summation. We observe from Fig. 81 that the
- argument of each term in the summation is an angle lying between
0 and = inclusive, and that
the sum of these angles does
not exceed =; that is,

0 < arg ¢s(¢) < m.  (15)
The inequalities hold when ¢
is in the upper half plane.
When ¢ approaches a point of
one of the intervals congruent
to b,, one angle approaches r
and the rest approach O0;
when ¢ approaches a point of any other interval, all the angles
approach zero. Hence,

arg sos(t)]b =, arg saa(t)]b =0,n#s. (16)

B «®
Fie. 81.

(These also hold for ¢, (t) if we take arg(—1) = =).
At all congruent points of the domain under consideration,
arg ¢s(t) has the same value. From (11), we have
arg o;(t) = arg Ki@ + arg o(t) = arg o,(1), (17)
for K@ is real and positive and the assumption that arg K, =
2nm, n #% 0, leads to a contradition of (15). In particular, if ¢
moves from B® to a® along b,, arg ¢,(t) attains at a® the same
value as at B©.
Finally, the function

G.(t) = e%i10g ¢olt) = ga, [i log les(t)] —argee )], (18)

where a, is a real constant, has the following properties:
G, = e, |G, =1, n =5, 19)
G.(te) = G, w,® = log Ki, (20)

w;® being real. The function is analytic and nowhere zero in
the upper half plane.
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100. The Mapping of a Multiply Connected Region of Planar
Character on a Slit Region.'—Consider the function

G(t) = Gi()G2(t) - - - Gu(OY(@). (21)
From (2) and (19) we have
IG5, = €. (22)
From (4), (5), and (20)
Gt = G)e=ior® + - - - + anar™ + he) (23)
The function will take on the same values at congruent points on
the boundary of Seif @1, . . . , an be chosen so that the equations
awi® + - -+ amer™ + by =0,
e e (24)
alwm“) + - - + amwm(m)"‘ hm = 0,

are satisfied.

Can these equations be satisfied? We observe, first, that
they are not independent. Wehave from (13), takinglogarithms,
01+ - on® = 0.

This, together with (8), shows that the sum of the first members
of (24) vanishes whatever a;, . . . , a» may be. The equations
can be solved, provided the matrix of the coefficients is of rank
m — 1.

Suppose the matrix of the coefficients is of rank m — 2 or less.
Then the m equations

alwk“) + e +amwk(”‘) = O, k = 1, e, m, (25)
can be solved by taking at least two of the constants arbitrarily

and determining the remainder. Let the arbitrary a’s be chosen
unequal. Then the function

H(@) = Gi() - - - Gu(?) (26)
has the same values at congruent points on the boundary of S,.
Also, |H(t)] = e~™s on b,. Since not all the a’s are equal, H (¢)
is not a constant. We shall show that a function with these
properties is impossible.

Let H(t,) = 2, be a value taken on by H (¢) at an inner point ¢,
which is not taken on the boundary; and let H(f) — 2, be sub-
stituted in (7). We have P =0 and N > 1. Since H(t)
takes on the same values at congruent points of the boundary, the

1 KOEBE, P., Acta Math., vol. 41, pp. 305-344, 1918.
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integrals along the congruent sides cancel. As ¢ moves from B
to a®, z = H(t) moves on the circle |z| = e~™s and returns to
its starting point. There is no change in the argument; for

arg H(t) = a; log |ei(®)] + - - - + an log |ea(t)],
and we see from (11) that arg H(t) is increased by
alogK.® + - - - +anlogK,™ = g0, + - - - + Gpw?,

which is zero by (25). Thus 2z moves about the circle and returns
to its starting 'point without completing a revolution. Then
arg [H(t) — 2,), which is the angle between the line segment joining
2o to 2z and the positive z-axis, suffers no alteration. We have,
then, from (7), that N = 0, which is impossible.

The assumption that equations (24) are inconsistent has led
to a contradiction. It follows that the equations are consistent.

Let a1, . . ., a» be constants satisfying the equations. Then,
we have, from (23),
G(t,) =Gi), s=1, - -, m. 27)
We have, also,
arg G(t) = a1 log |ei(®)] + - - - + an log |en(t)] + arg ¥(1);
and, as { moves from B to «, the argument is increased by
alws(l) + e o + amws(m) + hs’

which is zero, from (24).
We now consider the mapping of the region S, by the function

z = G®). (28)

As t traces the boundary of S, z traces a path of the character
shown in Fig. 82. Astmoves from O, along C;~ to 8V, z traces a
curve ' from O’, the map of O,, to a point on the circle |z| = ¢~™..
As t moves from B® to a(V, z moves on the circle and returns to
its initial position without change of argument. As ¢ moves
from a® along C,t to O, z retraces the curve C,’ (as a consequence
of (27)) in the opposite direction to O’. In a similar manner as ¢
continues from O, to O3, z moves along a curve C;’, moves along
an arc of |2 = e, and retraces C;’ to O’; and so on.

Let 2z, be a point not lying on the map of the boundary in
the z-plane; and let G(f) — 2z, be substituted in Formula (7).
We have P = 1, since the function has a pole of the first order -
at . As t moves around the boundary of S,, G(¢), or 2, moves
around the curve in Fig. 82. Arg [G(t) — 2], which is the
angle between a segment joining the moving point 2 to 2, and the
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positive x-axis, obviously returns to its original value. We have
then, from (7), N — 1 = 0,or N = 1. The value 2, is taken on
once, and only once, in S,.

If 2, lies on one of the curves C, so that z, is taken on at a
point ¢, of C,~1, we deform C,~! to reduce {, to an inner point and
make the corresponding deformation in C;*. Then, 2 no longer
lies on the boundary in the z-plane and the preceding analysis
holds. Each value 2y, not lying on an arc b/, is taken on once,
and only once, in S,, if we count only one of two congruent sides
as belonging to the region. Similarly, we count but one of the
points O, . . . , O, as belonging to S,.

Frc. 82.

Now, let 2o lie on an are b,’; whence, 2, is taken on at a point ¢,
of b,. Then, z = G(t) maps the neighborhood of ¢, in the upper
half plane on the neighborhood of 2, on the interior or exterior
of by, according as z is moving counter-clockwise or clockwise
along b,’ as £ moves in a positive sense through ¢. It follows,
from this, that z cannot pass twice through 2z, in the same sense;
otherwise, a value in the neighborhood of 2z, and not lying on
b, would be taken on twice in S,, which is impossible.

If 2y is at an end of the arc b,’, the neighborhood of ¢, on the
upper side of the axis is mapped on the whole neighborhood
of 29, exclusive of the arc b,’. The arc b,’ cannot consist of the
whole circle; otherwise, the two ends would coincide and a value
in the neighborhood would be taken on twice in Sy. Finally, if
2o lies on b,’, the value 2, is taken on at no point ¢, of Sy not lying
on b,. For the function maps the neighborhood of ¢; conformally
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on the neighborhood of z,; and a nearby value is taken on twice
in the region.

It is clear that the arc b,/ cannot consist of a single point.
Otherwise, G(f) is constant on b,, and, hence, is identically
constant, which is impossible.

We now carry the function back to the surface ¢ by means
of the mapping function t = g(Z):

z =G = Gl(2)] = f(2). (29)

The function f(Z) takes on the same values at points of C,~ and
C,* on the boundary of ¢, on opposite banks of the cut C..
These banks can be joined and the function remains single
valued on the resulting surface; that is, on the original unsevered
region =. We have a one-to-one correspondence between the
points of Z and the points of the z-plane which do not lie on
the arcs b,’.

We shall speak of a set of arcs, each of which lies on a circle
with center at the origin and does not consist of the whole
circumference, as concentric slits. We have proved the first part
of the following theorem: .

TueoreEM 1.—A region of planar character which has a finite
number of sheets and of branch points and has a finite number, m,
of bounding curves can be mapped conformally on a plane region
bounded by m concentric slits.

If it be required that given points P1, Py of the region be carried
to 0 and «, respectively, in the plane, then the mapping is deter-
mined save for a transformation of the plane of the form 2’ = cz.

We now prove the latter part of the theorem. If, for r and
n in (1), we select the points of S, which correspond to P; and
P,, then the function (29) performs the mapping in the required
manner. Let 2’ = fi(Z) be any other such mapping function.
On mapping in the ¢-plane, this function is carried into a function
of t, 2 = fi[Z(t)] = G:.(t), which has a pole at 5 and a zero at 7.
Elsewhere in S, it has no poles or zeros; it takes on the same
values at congruent points of the sides of Sy; and its absolute
value is constant along each interval b,. The quotient G,(¢)/G(¢)
has neither poles nor zeros in S,. Suppose this quotient is not
a constant. Then, it has all the properties found for H(t) in
Equation (26); properties which we found to be inconsistent.
It follows that G:(¢)/G(¢) = ¢, a constant; hence, 2’ = cz. Con-
versely, it is obvious that if we apply any such transformation
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to one plane map bounded by concentric slits, the points 0 and
o which correspond to P; and P, remain fixed and the concentric
slits are carried into concentric slits.?

101. Application to the Uniformization of Algebraic Functions.?
We turn now to the uniformization of algebraic functions through
the use of the mapping theorem just established. Let F be the
Riemann surface of an algebraic function W = F(Z) of genus
p > 0. We show, first, that we can draw p, and not more than
p, loop-cuts in F without separating the surface.

In the construction of the cuts explained at the end of Sec.
89, let each of the cuts as, . . . , a, be deformed into a sigma
cross-cut beginning at P before the corresponding b-cut is made.
The b-cut joins opposite banks of
the loop of the sigma cross-cut.
The cuts b1, . . . , by, have no
common points; and, if we erase
the a-cutsentirely, we have p loop-
3 \ cuts which do not separate the

surface. The surface with the p

-7/
-~ N

,/;/ loop-cuts has 2p boundaries,

//,’/ namely, the two banks of each

ANl loop-cut. (Fig. 83 shows such

Fic. 83. loop-cuts for the surface of
Fig. 72.)

Suppose that p’ loop-cuts are made in F without separating
the surface. Let O be an initial boundary point and let 2p’
cuts be drawn from O to the banks of the loop-cuts. The
surface remains a single piece, for it has a single boundary.
Since not more than 2p cuts can be made in F without separating
the surface—loop-cuts which are subsequently joined to the
boundary not being counted—it follows that p’ < p. In

! In his article in Acta Math., vol. 41, pp. 305-344, KokBE has considered
the possibility and the uniqueness of the mapping of multiply connected
regions on a great variety of types of slit regions—regions bounded by radial
slits, parallel slits, combinations of radial and concentric slits, slits lying on
logarithmic spirals, etc. In all cases the mapping is achieved by the con-
struction of functions based on the group 7', of Fig. 80, the functions being
so formed as to behave in particular ways on the boundary of S,.

The original treatment of the problem of uniformization considered in this
chapter was based on the mapping of multiply connected regions on regions
bounded by parallel slits.

? KoeBg, P., Math. Ann., vol. 69, pp. 1-81, 1910. Oscoop, W. F,,
Annals of Math. (2), vol. 14, pp. 143f, 1913.
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particular, if p loop-cuts have been made without separating
the surface, then any additional loop-cut separates it; that is, the
surface with the p loop-cuts is of planar character.

Let Fy be the severed surface after p loop-cuts which do not
separate ' have been made. We may suppose that the cuts
are of elementary character—composed of a finite number of
analytic arcs, for instance. We take an infinite number of copies
of Fy and build an infinitely sheeted surface. Let ¢, be the
initial copy. We superpose 2p copies and join one along each
boundary of ¢,, opposite banks of the same loop cut in the two
copies being joined together. We call the resultingregion¢,. We
superpose copies and join along each of the free boundaries of
¢1 to form ¢s, and so on, ¢, being formed from ¢, by adjoining
copies of F, along the free boundaries of ¢,. We call the limit
surface ¢. ’

@ D
D

()0 ;@ - ®
— < =2

Fiac. 84.

Each region ¢, is of planar character and satisfies the other
conditions of Theorem 1; hence, it can be mapped conformally on
a plane region bounded by concentric slits. Let P;, P, be inner
points of -¢y, with coordinates Z,, Z,, and let them be carried
to zero and infinity, respectively, in the mapping. If we require,
further, that the derivative of the mapping function be unity at
P,, the function is uniquely determined. We have, then,

2 =fu(Z), fu(Z1) =0, f/(Z1) =1, fu(Z:) = », (30)
the conditions at Z, and Z, being valid in the sheets in which P,
and P, lie. The successive maps are of the type shown in Fig. 84
(for p = 2). The maps of ¢, ¢1, and ¢, are shown in the figure.

102. A Convergence Theorem.—The direct proof of the

convergence of the sequence f,(Z) is difficult. We shall make
use of a general convergence theorem. This important theorem
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could have been used to simplify a number of our earlier conver-
gence proofs.! '

THEOREM 2.—Given a finitely or infinitely sheeted region ¢
spread over the z-plane, each of whose inner points lies in a plane
sheet or is a branch point of finite order; and a sequence of regions
o1, P2, . . . such that ¢, is a subregion of ¢ni1 and ¢ ts the limit
region of the sequence. Let

f1@), fi(2), fs(2), - - - @31)

be a sequence of functions such that f.(z) is analytic in ¢. (con-
tinuous at the branch points and at infinity) and such that in a
suitable neighborhood of each inner point p of ¢ the functions of the
sequence which exist there are bounded:

[f2(2)] < My, (32)

where M , vs independent of n.
Then theré exists a subsequence of (31)

fi(®), fay(@), - - ) Mugr > m, (33)

which converges and whose limit function is analytic in the whole
interior of ¢. Further, the sequence converges uniformly in any
finitely sheeted region which, together with its boundary, consists of
inner points of ¢.
Let
D1, P2, Py + - ¢ (34)

be an infinite sequence of inner points of ¢ which are everywhere
dense in ¢. Such a sequence can be formed, for example,
from all points whose z-coordinates have rational real and imag-
inary parts. All rational points in the plane are denumerable;
so, likewise, are all the rational points in a region with a finite
or a denumerably infinite number of plane sheets. Thus, the
rational points of ¢ are denumerable and can be arranged in a
sequence.

Consider the values of the functions (31) at p;. This point
lies in one of the regions ¢, and in all succeeding regions of the
sequence. Then the quantities

fm(pl);fm-i-l(pl)) T (35)

1For a general treatment of theorems of this type see the recent volume
of P. Montel, Legons sur les familles normales de fonctions analytiques,
Paris, 1927.
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exist, and, from (32) are bounded. They have then at least one
cluster point A;; and we can choose a subsequence of (35)

fmn(pl))fmm(pl)rfmls(pl)’ oy, Mikqa > ma,k (36)

which converges to the value A;. We have now found a sub-

sequence of (31)
fm11(z):fm12(z)yfm1a(z); e 37

which converges at p1. Any subsequence of (37) will, likewise,
converge to the value A; at p.

Considering, next, the sequence (37) and the point p,, we can
repeat the preceding reasoning and get a subsequence of (37)

fM21(z);fm22(z)yfmzs(z); Co oy, M2k > Mma,k, (38)

whose members exist at p; and converge there.
We proceed in this manner ad infinttum. From the sequence

fme'l(z)’ fmsz(z): fmsa(z); Cor oy Mgkt > My ks (39)
whose members exist and which converge at each of the points
P1, P2, P3y + - + » Ps, we form a subsequence

fms_i_l'l(z)}fms_‘_l,g(z)) Co ) Meglk1 > Magrky (40)

whose members exist and which converges at p,..
We now take for f, (2) in (33) the function f.,(2); that is,

we take for (33) the sequence
fmu(z)yfmgg(z))fmgg(z)) e (41)

formed by taking the first function of (37), the second of (38)

- ., the s-th of (39), etc. Here, owing to the manner of
construction, we have myi1,641 > mix. Consider any point p,
of (34). All functions of (41), from the s-th function on, exist at
p. and form a subsequence of (39). Hence, the sequence (41)
converges at ps.

The sequence (41) which we have just constructed converges
at all points of the set (34), these points being everywhere dense
in ¢. We next show that it converges at all inner points of ¢
and that the limit function is analytic. Let p be a finite inner
point of ¢ other than a branch point. All the functions (41),
from a certain point on, are defined at p and satisfy the inequality
(32) in a plane region S, enclosing p. We omit from considera-
tion the finite number of functions of the sequence which are
not defined in S,. Let C,, C; be circles with p as center and
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lying in S, the radii being r;, ro where.r; < r,. We shall show
that the sequence (41) converges uniformly in C;, which will
establish, at the same time, the convergence and the analytic
character of the limit function.
Let 21, 2z, be any two points within or on the boundary of
C,. We have
Do) = o [ PO% p) =

T c,t — 21

_®— 2 fﬂ(t)dt
Tue) = fule) = 255 L =

1 r fu()dt
2riJo,t — 2z
and

Here, since
t—al>r—r=28 |t—2z>¢ [fult)] <M,

we have

— 2| -M..2
o) — fulen| < Bl M2 ) )

where ¢ is independent of z;, 25, and n.

Given ¢ > 0. Let p,, - - -, ps,, be points of (34) in C,
so chosen that each point in C, is within a distance ¢/3g of one
of the chosen points. This can be accomplished by ruling C,
into squares of side ¢/6g and taking one point in each square.
Since the sequence (41) converges at p,,, there exists an =’

such that, for the functions of the sequence,

]f"'i+v.i+v(p3k) = fua(ps)|l < ;’ mii > ' (43)

Let n’ be the greatest of the numbers 7,’; then, (43) holds for
all the points p,, provided m; > n’. Let z be any point within

or on the boundary of Cy; and let p,, be one of the m chosen

points such that |z — p,,| < ¢/3g. Then, we have from (42)

and (43), when m,; > n’

[fmips,i0,(8) — Sui@] < | Fmiy, 50,2 — I i, @a)| +
[fmi+,,,,-+,,(psk) - f'n,‘,‘(p%) l + [fmii(psk) - fmii(z)l

€ € , €
<g+3‘+3=€- (44)

This inequality, which holds for all points z of C; and for all
positive values of », establishes the uniform convergence of the
sequence in C;.
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If p is a finite branch point of order =, the point at infinity
in a single sheet, or an infinite branch point, we first map the
neighborhood of p on a single-sheeted finite region by means
of the functions 2 — p = {»,2 = 1/t,orz = 1/t». The preceding
reasoning then applies.

The final statement of the theorem follows from the fact that
a finitely sheeted region S lying, together with its boundary,
in ¢ can be covered by a finite number of regions, such as Cj,
in each of which the inequality of the type (44) holds. We
have but to take m; > N, where N is the greatest of the numbers
n’ for the various regions, and (44) holds throughout S.

103. The Sequence of Mapping Functions.—We now consider
the mapping functions (30):

fO(Z))fl(Z))f2(Z); ttt (45)

Owing to the pole at P, we shall exclude P, from each region
and from ¢, considering it as a boundary point. Then, the set
of functions (45) and the regions ¢o, ¢1, - - - — ¢, satisfy all
the conditions of Theorem 2, with the possible exception of the
inequality (32). We show, next, that this condition is satisfied
also.

Let P be an-inner point of ¢; and let ¢, be the first of the
regions ¢, containing P. Then, the function 2z, = f.(Z) maps
¢m on a slit region S,,, P being mapped on an inner point p of
Sm. Let Z be a region which, together with its boundary,
consists of inner points of S,, and which encloses p and the
origin. Now, any subsequent mapping function maps ¢. on
a plane finite region; and, if we change the variable to 2m,

Zn = fn(Z) = ‘Pn»M(ZM); n > m, (46)

we have a function which maps S, on a plane finite region. The
regions S, and = are a pair of regions to which Theorem 9,
Sec. 76, applies; and, since ¢,,x(0) = 0, ¢'».m(0) = 1, we have
[onm(z)] < L in Z. On returning from the z,-plane to the
surface ¢, we have

/22D <L, n>m, (47)
in a region X, enclosing P, =; being the region on ¢ which was
mapped on Z in the z,-plane. An inequality of the type (32)
thus holds in the neighborhood of any inner point of ¢.

It follows that there exists a subsequence of (45)

fﬂ»l(Z))fnz(Z)) C ey Mg > M, (48)
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which converges throughout ¢ and whose limit function f(Z)
is analytic in ¢. In any finitely sheeted subregion of ¢ which
does not reach to the boundary, the convergence is uniform.

What can be said of the limit function f(Z)? It is not con-
stant; for, its derivative at P;, being the limit of the derivative
of fn,(Z) at Py, is 1. It vanishes at P, and at no other point
of ¢. For, consider any other point P. Draw a circle with P,
as center and in the plane sheet in which P; lies of radius r
sufficiently small as not to contain P. Then, for each mapping
function we have, from Theorem 5, Sec. 74, |fa,(P)| > r/4.
Hence, in the limit, [f(P)| > r/4 > 0.

The function has a pole of the first order at P,. Let @ be a
circle with P, as center in the plane sheet in which P, lies and
of radius sufficiently small as not to include P;. The function
1/f.(Z) is analytic in and on the boundary of @ and does not
vanish except at P,, where it has a zero of the first order. The
sequence 1/f,, (Z) converges uniformly in . The limit function
1/f(Z) vanishes at P,, and according to Hurwitz’ theorem
(Theorem 12, Sec. 79), it has a zero of the first order there.
That is, f(Z) has a pole of the first order at P,.

Finally, f(Z) takes on no value twice in ¢. Suppose the
value a to be taken on at the two points P/, P”; and let ¢m
enclose both points. We map ¢,, on the slit region S,, by means
of the function z,, = f.(Z), P/, P" being carried to p’, p’’. Let
S»’ be the region S,, with a region about infinity excluded, the
part removed being such that p’, p’’ are interior to S,’. Then,
the sequence ¢n, m(2m) — a (Equation (46)) converges uniformly
in 8,’. We deform the boundary of S, slightly, if necessary, so
that the limit function ¢,,(z,) — « does not vanish on the bound-
ary. Then, applying Hurwitz’ theorem, ¢n.(2,») — « has the
same number of zeros in S,’ as ¢u;,m(2m) — @, for k sufficiently
large. But, this latter function either has one zero or none in
S»’; hence, ¢n(2,) takes on the value « not more than once in
S./. This contradicts the hypothesis that ¢,(z»)—the function
f(Z) with the variable changed—takes on the value « at p’ and

143

It follows from the preceding paragraph that the function
‘ 2 = f(Z) (49)
maps the infinitely sheeted region ¢ on a plane region V in the
z-plane. If we restore P, to the status of an interior point—
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the point which is carried to infinity—the boundary of V lies
in a finite region.

The function (49) maps ¢o on a region V, having zero and
infinity as interior points and bounded by 2p curves (Fig. 85).
The copies of F, which adjoin ¢, are mapped on regions adjoining
Vo, each having 2p boundaries. The infinite number of copies
of Fy which form ¢ are mapped on an infinite number of regions
which fit together to make up V.

The surface ¢ possesses an infinite group of conformal trans-
formations into itself; namely, the transformations got by
carrying ¢, into each of the copies Fo of which ¢ is constructed.
When ¢ is so transformed, the corresponding points in the
z-plane undergo conformal and, hence, analytic transformations
2z’ = T.(2), which carry V into itself. V, is a fundamental
region for the group T,.. We shall represent by V, the trans-
form of Vo by T.. Then, the regions V,, the maps of the copies
F,, fit together to form the region V.

The inverse of (49), Z = Z(z), and the function W = F[Z(2)]
= W (z) are unaltered when z is subjected to the transformation
T,.. TFor, the points on ¢ which correspond to z and 7,(2) are
similarly situated points on two copies of Fy and bear the same
values of Z and W.

104. The Linearity of T,.—Hitherto, we have always inferred
the linearity of a function from the fact that it maps the whole
plane on itself, or the plane bounded by a single point on a plane
bounded by a point, or a circle on a circle. Here, the matter is
not so simple; and we shall be obliged to make a preliminary
study of the regions V..

We show first that the series

2Ty (0 (50)

converges. Let C be a circle with center at the origin and
lying in V,. Let r be its radius. Consider the map C, of C by
the function T,.(z). It follows from Theorem 5, Corollary, Sec.
74, that C, contains, on its interior, a circle of radius 14r|7,/(0)|.
Hence, for the area A, of C,, we have

T 2|t 2
A, > T | T, (0)]2

But the regions C, lie in a finite region and are non-overlapping;
hence, A, is finite. It follows that (50) converges.
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Consider the boundaries of the regions V,—the infinite
number of closed curves in Fig. 85. Let Iy, Iy, . . . be the
lengths of these curves, arranged in some convenient order.
We shall prove that

2l (51)
converges. Let C’ be a circle with center at the origin and
enclosing all the bounding curves of V,; and let V' be that
part of V, lying in C’. V' can be embedded in a larger region
all of whose maps by 7T.(z)

—_————

/// \\\C’ are plane and finite; for ex-

/ @ N ample, the region V with the

// : /. \\ points congruent to infinity

/ - C \ removed. It followsfrom the

! // N \\ deformation theorem (The-

I' ro \ | orem 8, Sec. 76) that there

\ \ // ) exists a constant M inde-

\ Seo - / ¢ pendent of n such that

\ Vo /’ (taking z; = 2, 2, = 0)

N @ ! |7 (2)] < M|T./(0)],

\\\ _7 where 2z is any point within or

S~——— on the boundary of V.
S Let I’ be the length of

one of the bounding curves of V,, and let [, be the length of
its transform by means of T',.

We have
L= [IT @l < MIT ),
and
1> < MIT,(0)]2
whence

C 2L (52)
converges as a consequence of (50). Now, (52) contains the
lengths of all curves congruent to I’. V), is bounded by p non-
congruent curves. The series (51) is the sum of p convergent
series of the type (52), and, hence, converges.

We shall base the proof of the linearity of T, on the following
theorem :!

TuEOREM 3.—Given a finite region S whose boundary T' consists
of a finite number of regular curves. Let f(2) be a function analytic
in S with the exception of a set of points =, and continuous on T.

1P. Koebe, Math. Ann., vol. 69, p. 29, 1910.
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Let it be possible to enclose the points of Z in a finite number of
regular closed curves lying in S, such that the sum of the squares of
the lengths of the curves and also the sum of the squares of the
oscillations of f(2) on the curves is less than a preassigned positive
quantity, however small. Then f(z) is analytic throughout the whole
interior of S, if properly defined at the points of Z.

By the oscillation of f(2) on a curve is meant the maximum
value of |f(z:) — f(25)| where 2, and 2, are points on the curve.

Let z be an interior point of S at which f(2) is, by hypothesis,
analytic. Then there is no point of = within a certain distance
dof z. Given € > 0. Let the points of 2 be enclosed in curves

Cy, Cz, ..., Cn lying in S and not containing 2, of lengths
A, - . ., Am, on which f(2) has the oscillations A;, . . . , An,
such that

M4 - A< mde, A2+ - - - 4+ A2 < wde. (53)

We suppose the curves taken small enough—which is clearly
possible—that C, contains no part of I' and contains no point
within a distance d/2 of 2. We have, from Cauchy’s formula,

) = o= [f0d 1 2 [0t (54)
1

2m1 Jot — 2 2m1 t——z

the integral being taken in the positive sense around the bound-
ary. The first member of (54) and the first term of the second
member are independent of the e chosen; so, also, then is the
remainder of the second member.

Let £ be a point on C;. We have

ALY ey § RS (O

Cxt — t —

The first integral of the second member vamshes, since z is outside
Ci; and we have, since |f(t) — f(£)] < Ak, and |t — 2| > d/2,

f()dt

Cit — 2

d

the final inequality being got from the algebraic inequality
24AB < A% + B2 Then, we have, applying (53),

IZWzEf {(?dzt b

2
2'Akj(: \dt] = 2Ak)\k Ay + )\k
&

ZINE 4 24,2
C 2rd
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Since the first member of this inequality is less than e, where
e may be chosen arbitrarily small, and at the same time is inde-
pendent of ¢, it must be zero.

We have, then, from (54)

27r7:pt—2

The second member of (55) is analytic throughout the whole
interior of S. It furnishes a formula for the analytic continu-
ation of f(z) throughout the interior of S; and the theorem is
established.

We now consider T,(z2). This function is analytic in V
except at a single point p which is carried to infinity by the
transformation; at this point, the function has a pole of the first
order. Let S be the region lying within C’, previously con-
structed, and exterior to a circle C’’ drawn about p in the region
V. in which p lies. Let T be the set of all points of the plane
which are not interior points of V. Then 7T,(z) is analytic
within and on the boundary of S except at the points of Z.

If we remove a finite number of curves [, of Fig. 85 (we use
1, indifferently for the curve and for its length) we can enclose
the points of Z in a finite number of the curves that remain.
T,.(2) maps 1, on another curve I, of the set. Hence, the
oscillation of T,.(2) on [, is equal to the maximum distance
between two points lying on l,s, which is less than the length
of 7. Let e > 0 be given. Then, by removing a sufficiently
great, but finite, number ¢ of terms at the beginning of the
sequence lj, Iz, . . ., we can accomplish the following: (1)
remove all curves containing p; (2) remove a sufficient number
that those that remain satisfy the condition

ﬁ:lk‘“‘ < €
k=9

(This is possible owing to the convergence of (51)); and (3)
remove a sufficient number that the transforms by T, of those
that remain satisfy the condition

lk’2 < e
2,



Sec. 104] THE LINEARITY OF T, 277

Now, let I, by . . . , I, be a finite number of the remaining

curves which enclose the points of =. It follows, from the two
inequalities just established, that
2+ - - +1I,2<e¢
Ap2 4 - - A< 2EH -+ < e
The conditions of Theorem 3 are, thus, satisfied. Hence,
T.(2) is analytic throughout the whole interior of S.

The funection T.(2) is analytic in the whole z-plane except at
the point p, where it has a pole of the first order. It follows
that it is a linear function.

The group 7T, is a group of linear transformations. The
uniformizing functions Z(z) and W(z) are automorphic. Each
has a finite number of poles in the fundamental region Vy;
namely, at the points of ¥V, which correspond to the points of
¢o where Z = o or W = .

The group is a group of Schottky type (Sec. 25). We have
proved the first part of the following theorem:

THEOREM 4.—An algebraic function of genus p > 0 can be
uniformized by means of automorphic functions belonging to a group
of Schottky type in such a manner that in a sufficiently small
neighborhood of any point a in the domain of definition of the
uniformizing functions the correspondence between the points of the
plane and the points of the Riemann surface vs one-to-one.

Any other such uniformizing functions can be got by subjecting
the uniformizing variable to a linear transformation.

Suppose we have a second pair of uniformizing functions
Z = Zi(t), W = Wy(t) belonging to a group of Schottky type.
Let zoliein V, let Z, = Z(z,) and let o, t;, . . . be the values of ¢
for which Z,(t;) = Z,. From the two equations Z = Z(z) and
7Z = Z,(t) we can solve for tas a function of 2, t = ¢o(2),t = ¢1(2),

., wheret; = ¢i(20). Any one of these functions,ast = ¢, (2),
can be extended analytically and is single valued throughout the
whole of V. Similarly, its inverse is single valued throughout
V', the domain of existence of the function Z,(¢). Thent = ¢o(z)
maps V on V',

By considering the new Schottky group we find readily that
=l/2converges, where I/ isthe mapin V' of I;in V. Thelinearity of
¢o(2) is then established exactly as we proved the linearity of T',(z).

The limit points of the group—the boundary points of V—form
a discrete set. A closed set of points is called “discrete” if, in
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any neighborhood of any point of the set, a curve can be drawn
which encloses the point and passes through no point of the set.
Such a curve lying in a given neighborhood of a boundary
point of V can be chosen from among the curves I,.

We observe that if p = 1, the set of limit points of the group
reduces to two points.

105. An Extension.—We can get other automorphic uniform-
izing functions in a simple manner by altering the one-to-one
character of the mapping at certain points of the surface. In the
severed surface Fylet usinsert a f.nite number of systems L,, . . .

TO0——0
)

o020 O

Fra. 6. Fia. 87.

L., of cuts of one of the following types: Either L; shall consist
of a pair of cuts from a point O; to two points P;, P/, or L, shall
consist of three cuts from O; to P;, P/, P;’, the systems lying
within Fy and not meeting one another (Fig 86). In the former
case, we associate with P;, P/ two integers »;, »//, where »/ = v;;
and, in the latter, we associate with P, P/, P;’ three integers
vi, v{, v’ where

il st

Let Fy’ designate the resultlng surface.

Taking an initial copy of F,’, we add copies of F,’ around
its sides and proceed to build up a limit surface ¢ in the usual
manner. In the usual way, we close up the surface about P;, etc.,
when v; copies meet there. We then map ¢ on a region V of the
z-plane as in the preceding section. V has a group of analytic
transformations 2’ = T,(z) into itself.

That this group in the z-plane consists of linear transformations
is established without essentially altering the preceding proof.
The convergence of

=Lt 4 =LY% (56)
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where the second summation includes all maps of the cuts L;, is
established in the same way as the convergence of (51). Now, by
the addition of copies along a cut L; in any copy, the boundary
closes up after the addition of a finite number of copies, as we
found in Sec. 95. We can add copies until the summation (56)
extended over the maps of the remaining boundaries is arbitrarily
small. We can then establish the linearity of 7, as in the
preceding section.

The map of the initial copy F,’, which is a fundamental
region for the group 7', has the character shown in Fig. 87. The
group is a combination group whose component groups are the
previous group of Schottky type and the m finite groups cor-
responding to the m systems of cuts Ly, . . . , Ln,. Infact, the
Schottky group is itself a combination group formed from p
cyclic groups.

There arises the general question of the uniformization of
algebraic functions by means of functions automorphic with
respect to combination groups. Let the Riemann surface be
severed by a preassigned finite number of separate systems of
cuts into a region of planar character, and let copies be adjoined to
form the limit surface ¢. ¢ can be mapped on a plane region V,
which has a group of analytic transformations 2’ = T,(z) into
itself. This group results from combining the groups arising
from each system of cuts. But, in general, the transformations
are not linear. There remains the question whether the mapping
of ¢ can be done in such a way that the transformations are
linear. Such is, in fact, the case. When it is topologically
possible to construct the surface ¢, the mapping can be done in
such a way that the transformations of the group are linear and
the uniformizing functions are then automorphic. For the
treatment of this problem, whose length prevents its inclusion
here, the reader is referred to the papers of Koebe listed in the
Bibliography.!

106. The Mapping of a Multiply Connected Region of Planar
Character on a Region Bounded by Complete Circles.—We shall
close the chapter with a further theorem on the conformal
mapping of multiply connected regions.

TareoreEM 5.—A4A region of planar character which has a finite
number of sheets and of branch points and has a finite number, m,

1 In particular, “Uber die Uniformisierung der algebraischen Kurven III,”
Math. Ann., vol. 72, pp. 437-516, 1912.
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of bounding curves can be mapped conformally on a plane region
bounded by m complete circles.

The latter region is uniquely determined except for a Ilinear

transformation of the plane.
. We first map the given region on a region ¢, bounded by
concentric slits with center at the origin in the Z-plane and then
map ¢, on a region of the desired character. We assume that
m > 1, the theorem having been proved for m = 1.

We first build up an infinitely sheeted limit surface containing
¢o. Let b/ be a slit bounding ¢,. Let ¢, be inverted in b,
and let the inverse be superposed on ¢, and joined along the
slit b/, opposite banks being brought together. Let ¢, be the
surface resulting from the like addition of sheets along all
the slits of ¢,.

¢1 is bounded by concentric slits lying in the adjoined sheets.
Let b’ be one of these slits lying in a sheet F;. Let F; be inverted
in b,”” and the inverse be joined to F; along the slit b,’’. Let ¢2
be the surface resulting from the like addition of sheets along
all the slits bounding ¢,. We continue this process of inversion
and junction ad infinitum,; and we consider the limit surface of

the sequence
bo, b1, P2, * + - — .

Each region ¢, can be mapped on a slit region in the z-plane.
Let 2, = fu(Z) map ¢, so that 0 and « in ¢, go into 0 and =,
respectively, and f.'(0) = 1 in the first sheet ¢o. The condition
(32) is fulfilled; for, we can derive the formula (47) without
alteration in the reasoning. We have, from Theorem 2, that
we can select from f.(Z) a convergent sequence

I (2), fu(2), - - - — f(Z).
We find, readily, by the usual application of Hurwitz’ theorem,

that
z = f(Z)

maps ¢ on a plane region V in the z-plane.

An inversion in any slit carries ¢ into itself. ¢ has a group
of transformations into itself, alternately inversely and directly
conformal, got by carrying ¢, by sequences of inversions into
the various sheets which were put together to form ¢. There
corresponds in the z-plane a group of inversely and directly
conformal transformations of V into itself. These transforma-
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tions carry V,, the map of ¢, into the maps V, of the various
sheets of ¢.

The regions V, composing V are, alternately, directly con-
formal and inversely conformal maps of V,. The former arise
from a set of analytic transformations z, = T.(2). We can
show, repeating word for word the reasoning used in the deriva-
tion of (50), that Z|T,’(0)|? converges.

Let Iy, Iy, . . . be the curves bounding the various regions
V.. These curves are the maps of the slits on ¢. Each sepa-
rates a directly conformal and an inversely conformal map of
Vo. They are, thus, all congruent to the boundaries of V, by
the subgroup T.. We can then show, exactly as the convergence
of (51) was derived from (50), that the series

22 57
converges.
We now consider the transformation carrying V, into an
adjacent region V; abutting along the curve I;, The transforma-
tion may be written

Z =UW), t=3

where U is an analytic function of ¢ and z is the conjugate imagi-
nary of 2. We shall indicate by bars the reflections of regions,
lines, etc., in the real axis. Then, U maps V in the ¢-plane on
V in the z’-plane. The function is analytic in V except at a
point p which is carried to infinity. Let S be a region lying
within a regular curve so drawn in V, as to enclose all other
regions V, and from which a small circle about p has been
removed (the piece removed lying entirely in the region V,, in
which p lies). Let = be the set of all points of the plane not
interior to V. Then U(t) is analytic within and on the boundary
of S except at the points of =.
Given ¢ > 0. We can remove from the sequence Iy, I, . . .
a finite number of curves so that of those that remain (1) no
curve I encloses p; (2) the condition I < e is satisfied; and
(3) the condition ZI/” < e is satisfied, where [’ is the curve
into which U carries I,. We can now choose a finite number of
these curves Zkl, ey 7’% enclosing the points of =. We have,
then, B B
b2+ - - - + 4,2 < €,

A FAI<U < e
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The conditions of Theorem 3 are satisfied and U(¢) is analytic
in 8, if properly defined at the points of Z.

The function U(¢) is analytic in the whole {-plane except for
a pole of the first order at p. It is, therefore, a linear function,

z,__aé—l—b.
Tez+d

Consider, now, the curve I; whose points are unaltered by the
inversely conformal transformation U(Z) Let @ be a circle
through three points a, b, ¢ of I;, An inversion in  followed by
U is a linear transformation. This transformation leaves a, b, ¢
unaltered, and so is the identical transformation. The two
transformations are inverse transformations; hence, U is equiva-
lent to an inversion in . The fixed points are then on the
circle Q. Each bounding curve [; is, thus, a circle, which was
to be proved.

The latter part of the theorem is an immediate consequence
of the following theorem:

TuEOREM 6.—If a plane region bounded by a finite number of
complete circles be mapped conformally on a second such region,
the mapping function s linear.

Let V,, bounded by the circles I, . . . , I, be mapped on V'
bounded by the circles /', . . ., lw'. The mapping is con-
tinuous on the boundary and we shall so designate the circles
that I;’ corresponds to /;.

We may suppose—making preliminary linear transformations
if necessary—that both V, and V" have both the origin and the
point at infinity as interior points. The mapping function

Z = f(2)

is analytic in V, except for a pole of the first order at the point p
which is carried to infinity.

Let V;, V/ be the regions got by inverting V,, V, in the
circles I;, 1/, respectively. Then (Theorem 19, Sec. 83) f(z) can
be continued analytically across I; and throughout V; and maps
Vi:on V/. We extend thus across each circle bounding V,. The
region got by these inversions is bounded by circles and is mapped
on a region bounded by circles. We can extend the function
analytically across the new circles; and so on ad infinitum. The
limit region V in the z-plane is mapped by the function on the
limit region V’ in the 2’-plane.
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The region V is invariant under the group of linear trans-
formations 7', got by making even numbers of the preceding
inversions in the circles of the z-plane. We find here, in the usual
way, that Z|T,.’(0)|? converges and thence that =l;% converges,
where I;, I;, . . . are the circumferences of the infinite number of
circles that arise in connection with the repeated inversions.

In a similar manner, for the corresponding circles of the
2’-plane, the series =I;’* converges.

Let S be the interior of a regular curve in V, which encloses
the bounding circles but does not containp. Then, f(z)is analytic
in S except for the points = of the plane which do not belong
to V. These points can be enclosed in a finite number of circles
le,, - - -, U, such that

b+ - +1,2< ¢ lk1'2 + -+ l.’;nlz < e

It follows, from Theorem 3, that f(z) is analytic throughout S,
if properly defined at the points of .

The function f(z) is thus analytic except for a pole of the first
order at p. It is, therefore, a linear function, which was to be
proved.



CHAPTER XI
DIFFERENTIAL EQUATIONS

107. Connection with Groups of Linear Transformations.—
Given a linear homogeneous differential. equation of the second
order

& 4 Pa) 4 Qi = o, &
and two linearly independent particular solutions,
7 =mw), 7= mnw). 2
Then, the general solution is
n = An + Bu, 3)

where A and B are constants. The connection with the linear
transformation arises in the following manner: Let z = 7:/92
be the quotient of the two solutions, and let 2’ = 5.’/ be
the quotient of two other solutions

7’ = an + bng, ny’ = cn + dng; 4)
then ; b

, _am + by az .

T A dn e+ d )
If the second solutions are linearly independent, that is, if
their ratio is not constant, we have ad — bc = 0.

If the coefficients P(w) and @(w) are analytic at a point w,,
all solutions of the equation are analytic at wo. There is, then,
one, and only one, solution 5(w) such that 5 and dy/dw have
preassigned values at w,.! A particularly simple pair of linearly
independent solutions are those for which

dﬂl(wﬂ) = 1 .

nl(wo) = O, *_'de___ d"72(w0) — O (6)

=1
"72<w0) ) dw
Then, (3) is a solution which has the value B and whose deriva-
tive has the value A at wo.
1 Proofs of these well-known properties will be found in WHITTAKER and
WarsoN’s ‘““Modern Analysis,”’ chap. X, or E. L. Ince’s ‘‘Ordinary

Differential Equations,” Part II.
284



Sec. 107] GROUPS OF LINEAR TRANSFORMATIONS 285

If the coefficients are analytic in a region S of the w-plane, all
solutions are analytic in S, provided S is simply connected. If,
however, S is not simply connected, a solution may fail to be
single valued in S. On extending the solution analytically
around a closed curve in S which encloses a point not belonging to
S, we may return to the starting point with a different value for
the solution.

We fix our attention on a pair of linearly independent solutions
(2) in the neighborhood of a point w, at which P(w) and Q(w)
are analytic. Let these solutions be continued analytically
from w, around a closed curve C which encounters no singularity
of P(w) or Q(w) and which is such that these coefficients, when
continued analytically along C, return to their original values
in the neighborhood of w,. The functions »;(w) and 72(w) remain
solutions of (1) as we continue analytically; and, since the coeffi-
cients are unaltered in passing around C, the new values of the
solutions—ecall them 75,’(w) and 75,/ (w)—are solutions of (1) with
the original coefficients. Hence, 7:'(w) and 75.’(w) are linear
combinations of #;(w) and 5s(w) of the form (4). The solution
may, of course, remain unaltered; this is certainly the case if C
can be shrunk to a point without encountering a singularity of
either coefficient. The ratio of the solutions z = #,(w)/72(w), is
subjected to the linear transformation (5), which may, in particu-
lar, be the identical transformation. We note that ad — bec = 0;
for 5,/(w) and 7%.'(w) are analytic continuations of linearly
independent functions and are, therefore, linearly independent.

THEOREM 1.—The set of linear transformations of the ratio z =
11 (w) /na(w), resulting from extending the solutions analytically from
wy around all possible closed curves C, such that P(w) and Q(w) return
to their initial values in the neighborhood of w,, constitute a group.
Let C;, C; be two contours of the type considered, and let
2; = Ti(2), z; = Tj(2) be the transformations of z resulting
from passing around these contours. Let C be the contour got
by tracing first C; and then C; and let 2’ = U(z) be the resulting
transformation. On making the circuit C;, 2z is carried into
2;; on continuing around Cj, z; is carried into 2’. Now, by this
second circuit, z is carried into 2;; hence, 2; is carried into T';(z;).
So 2/ = Ti{T;()], or U = T;T;. The succession of any two
transformations of the set is a transformation of the set; and
the second group property is satisfied (Sec. 13). Again, let
2’ = V(z) be the transformation which z undergoes when C; is
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traced in the reverse direction. By this, 2, is carried back to
z; that is, T,[V(2)] =2, or V = T-. The inverse of any
transformation of the set belongs to the set; and the first group
property is satisfied.

The group may consist solely of the identical transformation.
For example, if the coefficients are entire functions, the solutions
are unchanged on continuing around any closed contour. Other-
wise, the group may consist of a {inite or an infinite number of
transformations. It may or may not be discontinuous. For
example, j;z L_z-vﬂ g%v = 0 has the solutions 7,(w) = wn,
ne(w) = 1. If the ratio z = w™ be continued around a curve C
which passes k times around the origin in the positive sense, we
have 2/ = emlesw+2md = e2%kmmiz  If 4y s rational but not an
integer, we get an elliptic cyclic group; if irrational, we get a
continuous group.

If we take a different pair of independent solutions, we get
another group. If z; is the ratio of the second pair, we have
from (5), z; = G(2), where G is linear. On passing around a curve
C let 2,/ = S(z), 2 = T(2). Then z; is carried into G[T(2)],
that is, GZTG7(21);s0 S = GTG~!. The group of transformations
S is the transform of the group 7, as explained in Sec. 15.

We get no new groups if we use a different initial point w,.
The linear relations between the various values of z;, the quotient
of two solutions at w,, persist when we extend the functions
analytically along a curve from w; to wo. The group to which
2 is subjected is precisely one of the groups arising from a pair
of solutions at wj.

When 7:1(w), n2(w) are extended analytically around the curves C they
undergo a set of transformations of the form (4). These transformations
form a group, according to the definition of Sec. 13. This group is called
by Poincaré the group of the differential equation.! This concept applies
equally well to the linear homogeneous equation of any order

P p—1,
Pr PP g P @) 3 4 Py =0,
Here, we have to do with p linearly independent solutions which are sub-
jected to a group of transformations each of which is of the form
w =aum+ - Fapmy k=12 -:,p
Each differential equation gives rise to a unique group, if we do not count as
distinct two groups, of which one is the transform of the other.

1 Poincarg, H., “Sur les groupes des équations linéaires,” Acta Math.,
vol. 4, pp. 201-311.
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108. The Inverse of the Quotient of Two Solutions.—When
w makes the circuit C and the quotient z = n(w)/ne(w) is
subjected to a linear transformation, we have the following
result: Although z has been subjected to a linear transformation,
w has its original value. That is, the inverse function w = w(z)
is unaltered by the linear transformation. The function w(2)
has, thus, the first important property of the automorphic
function, that of invariance under a group of linear transforma-
tions. In general, however, w(z) is not a single-valued function.
The requirement that w(z) be single valued can be put in the
following geometric form: Starting with the ratio z(w) in the
neighborhood of a point w,, we extend the function in all possible
ways and form its Riemann surface ® spread over the w-plane,
making two sheets coincide in the usual manner, when they bear
identical functions. The Riemann surface of the inverse
function w(z) is a surface spread over the z-plane whose points
correspond in a one-to-one manner with the points of ®. This
second surface must be plane. That is, 2(w) shall not take on
the same value at two distinct points of &.

TureorEM 2.—If the coefficients of (1) are analytic at a point w,
then the ratio z = ni(w)/n2(w) of two linearly independent solutions
maps the neighborhood of w, on a plane region.

Consider, first, the two solutions which satisfy (6). We have

nmw) = w — wo + as(w — wo)® + - - -,
na(w) =1+ ba(w — wo)* + - - - ;
2 =w — wo + ax(w — wo)* +
(@3 — bo)(w —wo)* + - - - 5 (7)

and, inverting the last series,
W— Wy =2 — a4+ - - - (8)

Then, w(z) is a single-valued function of z in the neighborhood
of the point, which establishes the theorem for the two solutions
chosen. The ratio of any other pair of solutions (4) is a linear
function (5) of z which maps the plane region in the z-plane on
a plane region in the 2’-plane, which proves the theorem for
any other pair.

TuaroreM 3.—Let the coefficients of (1) be analytic in the neighbor-
hood of w = a except at a itself. When the ratio of two linearly
independent solutions z = ni(w)/n:(w) s continued analytically
around a closed curve C enclosing a but no other singularity of the
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coefficients, let z be altered by the transformation T. Then, in
order that the inverse function w(z) be single-valued in the neighbor-
hood of a, it is necessary that T be an elliptic transformation of
angle 2w /p, where p is an integer, or a parabolic transformation.

Suppose, first, that (5) has two fixed points and that its
multiplier is K. It is clear that if the inverse function is single-
valued for one pair of independent solutions, it is single-valued
for any other pair. By taking a suitable pair of solutions we
can have the transformation in the form

? =Kz, K #=1. 9)

For this purpose, we have merely to replace 5; and 52 by an: + 879
and vy + 872, where G = (az + 8)/(vz 4+ §) is a transformation
carrying the fixed points to zero and infinity. We shall suppose
that the transformation has the form (9) when we pass counter-
clockwise around C.

Let S be the region enclosed by C (Fig. 88); let S’ be this

region exclusive of the point a; and let S’ be the region bounded

by C and a line [ extending from a to a

C point of C. The function z(w) is

nowhere 0 or « in §’. For, the Rie-

mann surface & of z(w) has a branch

point at a; and if 2z =0 or 2 = « at

any point, we see from (9) that when we

make a circuit of ¢ we have again z =

O or z = ». Then z(w) takes on the

same value at distinet points of &,

Fie. 88. which is impossible. Then, log z,

where we take any branch of the logarithm, is single valued in
the simply connected region S”’.

Let ¢ be the change in log z as we passfrom a point P
of I around a curve in S/, moving counter-clockwise around
a, to the point P again. Here, ¢ is one of the logarithms of K
and is independent of the position of P. In fact, ¢is the change
in any branch of log z when we make one counter-clockwise circuit
about a in S’. '

We now consider the function!

2mi )
— logz z—q—.

rw) = et =z (10)

t KogBE, P., Math. Ann., vol. 67, p. 157.
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This function takes on the same values along the opposite banks
of I; and, hence, is a single-valued function of w in §".  Further,
r(w) takes on no value twice in §’. We have from (10)

IOg T

2 .
2(w) = e2ri ¢ = 72ri. (11)

If 7(we) = 7(w;), where w, and w, are distinct points of §’,
then log 7(w2) = log 7(w:) + 2nwi, where n is an integer; and
2(ws) = emz(w;) = K"z(w;). But this is impossible, for the
value K"z(w,;) is taken on at w, in one of the sheets of ®, and we
have a violation of the requirement that z takes on no value
twice on ®. It follows that (10) maps S’ on a plane region 2
in the 7-plane.

The function (10) maps C on a closed curve C’ in the r-plane
As z moves once counter-clockwise around C, log z increases
by ¢ and arg 7 increases by 2r; that is, 7, in tracing C’, moves
once counter-clockwise around the origin. The region = lies on
the left as we make this circuit, and, hence, lies in C’. The
function 7(w) is analytic in the neighborhood of a and is bounded,
since 7 is restricted to lie in the interior of C’; hence, 7(w) is
analytic at a if properly defined there.

Let 7o be any point lying in C’. As w passes counterclockwise
around C, 7 passes around C’ and arg(r — 79) increases by
exactly 2x. It follows that 7(w) takes on the value 7, exactly
once in 8. S is mapped in a one-to-one manner on the interior
of C’. Now, 7(w) takes on the value 0 nowhere in §’; hence, 7(w)
has a zero of the first order at a. We have, then,

Tw) =ci(w —a) +cc(w—a)2+ - - -, c1 %0, (12)
and
w=a+i;—+cz’r2+... (13)
From (10),
w=a+ %lz%"/q + c/ztmi/a ... (14)

This is a single-valued function of z only if 27i/¢ = p, an integer.
Then,
K = e1 = ¢?mi/p, (15)

Hence, if T has two fixed points, it is an elliptic transformation
of the type stated in the theorem. If it has only one fixed point,
it is, of course, a parabolic transformation. In the former case,
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we note that ® has a branch point at ¢ where p leaves hang
together. Equation (14) has the form

w =a+i—z"+cz’z2f’+ <. (16)
1

The relation between w and z in the case of the parabolic
transformation can be found in a similar manner. We can choose
a pair of solutions whose ratio undergoes the transformation

Z=z+0b b0, (17)

when w makes a circuit of C. We then consider the funection

T(w) =e?t . (18)

This has all the properties of the function defined in (10) and

maps S in a one-to-one manner on the interior of a closed curve

C’ enclosing the origin in the r-plane. The relations (12) and
(13) then follow. The former may be written

2w

r=eb’ =c(w—a)+clw—a)+ ---,c0#0. (19)

What can be said of the coefficients of the differential equation

at a? We first make a simplification of the equation. If we put

—_ —%fw P(w)dw
o (20)

17=§‘e )

we find readily that the equation is reduced to the form

M+ Qe =0, (21)
where
Q) = Q) — 3P0 Tpay: (22)

The solutions of (1) are got by multiplying the solutions of (21)
by the factor e TP The quotient of a pair of solutions is
unaltered by the multiplication.

We now prove the following theorem:

TuEOREM 4.—Under the conditions of Theorem 3 the function
Q1(w) has a pole of the second order at a.

If we differentiate the quotient of two linearly independent
solutions z = {;(w)/¢2(w) three times with respect to w and
substitute in the expression for the Schwarzian derivative
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D(2)., using the fact that {; and {. satisfy (21) to simplify the
result, we find

20w dws ~ 3\ dw?
4(dz/dw)?

dz d*z 3<d2z
= Q1(w). (23)

%D(z)w -

Let primes denote derivatives with respect to w. Eliminating @, from
0"+ @i =0, & 4+ Qi =0,
and integrating, we have
1 — fife” =0, £ — Hife’ = A, a constant.

Here, A 5 0, since the solutions are independent. Then

’ A "o— 2A§-2
o £
wr 285 | 6A5"  28Q1 | 6ALT
2 ¢a3 T Tt = ¢o? + $at

On inserting these values into D(z),, we get (23).

Suppose, first, that T is elliptic. We take a pair of solutions
whose ratio z = {1/{, undergoes the transformation (9), where
K has the value (15). We have from (12), using (10),

?=c(w—a)+c(w—a?+ - ,c #0,

whence,

2 = (w —_ a)l/P[cl + 62(w —_ a) + ... ]1/P = (w —_ a)l/P(pl(w).
(24)

We use ¢1(w), ¢2(w), ete., to represent functions analytic at a.

Here, ¢,(a) % 0. We now differentiate (24) and use (23) to

find the behavior of @;(w). We shall use the second expression

in Equation (9), Sec. 44, for D(z),. We have

& (- oy [Zl)<p1(w) +w— a)“f%fvi’] = (0 — (),
where ¢q(a) # 0.

log 92 = G, - 1) log (1w — @) + ¢a(w),
1_
Y4

l dz
dz Ogdw w —

a? 1 dz
dz2 %8 dw = (w — a)2
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Whence,
1 1 2
1—- ~~1
1 _1 /4 lp
2D(Z)w = 9 (14’—_7)2 + §05(w) —_ 4 w—a ;
1 — 1

Q.(w) thus has a pole of the second order.
If T is parabolic, we have, from, (19)

o .
t log (w — a) + log [c; + co(w — a) + -+ - + ]

=
= log (w — a) +e7(w).
2ride _ 1 n der(w) _ es(w)
b dw w—a dw ~ w—a
kg;z=-4%(w—a)+¢dm.

On differentiating and substituting as before (or, we note that
log dz/dw above reduces to the form just found if we set p = «;
and so we set p = o in (25)), we have

4
Q) = gty T g + er0): (26)
Here, also @:(w) has a pole of the second order.

TaEOREM 5.—If 2(w) s unaltered when extended analytically
around the curve C of Theorem 3 and if w(z) is single-valued, then
Q1 (w) 1s analytic at a.

The function z(w) is analytic in §’, with the possible exception
of one point at which it is infinite. Hence, the function has, at
most, an isolated singularity at a. It cannot have an essential
singularity, for then z(w) takes on values more than once
near a, contrary to hypothesis. So z(w) approaches a definite
finite or infinite value at a. We can suppose, making a linear
transformation on z if necessary, that z(w) approaches the value
zero at a; then, if defined to be zero, there the function is analytic.
This zero is of the first order, since, otherwise, w(z) is not single-
valued; and we have

z=c(w—a)+cw—a)+ ---,c#0.
On substituting this value in (23), we see that @,(w) is analytic
at a.
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The Point af Infinity.—The character of the solutions at
infinity is studied by making the usual transformation w = 1/¢.
Making this change in the independent variable, the differential
equation takes the form

2 2 P
s <t' - t>%’ +in=o 27)
In order that the inverse of the quotient of two solutions be
single-valued at infinity, this differential equation must satisfy
the conditions of the previous theorems at ¢ = 0.

109. Regular Singular Points of Differential Equations.—If
the coefficients of (1) are analytic at a finite point «, a is called
an ““ordinary point”’ of the differential equation; otherwise, a
is a ““singular point.” If a is a singular point and if (w — a)P(w)
and (w — a)?Q(w) are analytic at a, then o is called a “regular
singular point.” That is, P(w), or Q(w), or both, have poles
at a, but P(w) cannot have a pole of higher order than the first,
nor @(w) a pole of higher order than the second. The point at
infinity is called an ‘“ordinary point”’ or a ‘‘regular singular
point” if { = 0 is an ordinary point or a regular singular point
of the differential equation (27).

If the inverse of the quotient of two solutions is single-valued
and if the differential equation be written in the form (21),
then, all isolated singular points of the differential equation in
the neighborhood of which @,;(w) is single-valued, are regular.
In (1) the singular points may or may not be regular. But the
equation can be transformed, without altering the quotients of
solutions, into one with regular singular points. = If the singular
points of (1) happen to be regular, we find readily that the
singular points of (21) are regular.

We can find a pair of linearly independent solutions in the
form of series valid in the neighborhood of a regular singular
point in a fairly simple manner. The equation has the form

2
Po y P00 dn (wQ(_w);)}ﬂ o, (28)
where p(w) and ¢(w) are analytic at a:
p(w) = po+ pr(w — a) + pa(w —a)? + - - -
qw) = g + g(w —a) + @2(w —a)* + - - -
If we assume a solution of the form

7= (w—a)l +ec(w—a)+cw-—a*+ - ] (30

(29)
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differentiate it and substitute into the differential equation,
which may be written

@ = @47+ @ = Olps + pilw — @) + - - - |7
+lpt+taw—a)+ .- - p=0 (31)

we have a result of the following form:
(w — a)*{ f(@) + [f(a + De1 + apr + ¢1)(w — a)

+ [fla + 2)cz + o2(c)](w — a)2 + - - -
+ [fla + n)en + eules, - - -, Cat)](w — a)”

+ . }= ) 32)
where
fla) = a(a — 1) + poa + qo,
and ¢.(c1, . . . ,c.—1)isarational integral expressionincy, . . . ,

¢n—1, which need not be written out. .
Equation (42) will be a formal solution if

fl@) = a®>+ (po — Da + ¢o = 0, (33)
fla + ey + apr + ¢ = 0,
fla + n)ea + onles, -+ -, camr) = 0, (34)

Equation (33) is known as the “indicial equation.” It is satis-
fied by two values o/, &’ which may in particular cases be equal.
These roots are called the “exponents’” of the differential
equation at the singular point.

Taking o = o/, the first equation is satisfied. We can then
determine c;, ¢z, . . . in order, unless some f(a’ + n) chances to
be zero; that is, unless o’ + n is equal to the second root «’’.
This will certainly not occur if we take for o’ the root whose real
part has the greater value, and this we shall do. We get, in this
way, the formal solution
mw) =w —a)*[l +c(w—a) +clw —a):+ - -1 (35)
It can be proved that the series in brackets converges uniformly
in the neighborhood of @ and that the function n;(w) is a solution
of the differential equation.!

Proceeding in a similar manner with the second root '/, and sup-
posing o'’ + n # o for all positive integers n, we get a solution

nw)=w —a)[l +c’'(w—a)+c'(w—a)+ ---] (36)
We, thus, have two independent solutions except when the roots

of the indicial equation are equal or differ by an integer. In the
1 See WHITTAKER and WatsoN, ‘“Modern Analysis,” 2nd ed., p. 193.
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former case, the two solutions are identical; in the latter the
method of forming the series breaks down, except when
en(c1, - - - , cn—1) happens to vanish when f(a” 4+ n) = 0.

In any case, if we know one solution, the differential equation
can be solved by quadratures, so we have no difficulty in finding a
second solution in these exceptional cases. Writing

7 = ms, (37)
we find the following differential equation for ¢:
d771

(w— )25 4 [2(«» = a2 4 (w- a>p<w>]—~« 0. (38)

Dividing by (w — a)2d¢/dw a,nd integrating,

d
log 0 = ¢ — 2logn — polog w —a) — pw —a) = - - -,

d_i —_ C,"ll—z(w — a)—p,,e—pl(w—a) -

dw
On substituting for », its value from (35), we have

Z—i} =cw—a) %[l 4+ c(w—a)+ - - ]2
X[I—=pw—a)+ -1

Let o' = o’ + o; then, from (33), &’ + & = 1 — p,, whence,
—po — 22’ = —1 — ¢. Then,
d
Eh—i = (w — @)1 + ki(w — a) + ka(w — @) + - - - ]. (39)
On integrating this and multiplying by 7, we ha.ve the general
solution of (28).

Suppose the roots of the indicial equation are equal. Then,
we have

f=c" 4+ cllog(w—a)+k(w—a)+ -~ -1
Taking ¢’ =0, ¢/ =1 and multiplying by 5, we have the
second solution in the form
n3(w) = ni(w) log (w — a) + (w — a)*[ki(w — a) +
k'(w — a)? 4 - - -] (40)

Suppose the roots of the indicial equation differ by an integer.
Then ¢ is a positive integer, and we have
§'=c"+c'[ 1 + - -+ klog(w—a)+

—o(w — a)°

koyr(w —a) + - - - ]
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Choosing the constants as before and multiplying by 5;, we have
a second solution of the form
na(w) = komi(w) log (w — a) +

=] thw-a+ -] @

This solution will be devoid of a logarithmic term if &, = 0.

Conversely, it is easily shown that if the solutions of a differ-
ential equation are of the types here considered, the equation
has a regular singular point at a. The differential equation
having the linearly independent solutions 7:(w), #2(w) is the
following:

n n n
171” 771/ N | = 0.
772” 772/ n2

On substituting for 5, and 5. the expressions (35) and (36) and
simplifying, we get an equation of the form (28). We get a like
form if we use 7, and 73, or 7, and 74.

Furthermore, it is not possible to get other solutions of the
form here derived with altered values of &/, «’’. Thus, if the
equation has the solutions (35) and (36), it is not possible to
choose the constants in the general solution n = A»; + Bns so
that

1= (=@l 4+ Lhw—a)+ -],
where m is different from o’ and «’’; and similar remarks apply
to the other types of solutions. Consequently, if we have found
in any way a pair of solutions of the kind given here, we know
the values of the exponents.

110. The Quotient of Two Solutions at a Regular Singular
Point.—The behavior of two solutions at a regular singular
point depends upon the roots of the indicial equation (33). If
o (=a’ — a'’) is not zero or an integer, we have the two solutions
(35) and (36), whose ratio is

2=g;=(w—a)"[1+h1(w—a)+ KN A
From this, we have

zl/"=(w——a)[1+’§(w—a)+ ce ];

w_a=z1/¢_h1z2/a+...
g
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Then w is a single-valued function of z in the neighborhood of
the singular point only if 1/ is an integer. We have, then,
o = 1/p, where p is an integer, which is by hypothesis not 1; and
p=T=@-allth@=a)+ ] @)
2

We see, from (42), that when w makes a positive circuit about

a, z is subjected to the elliptic transformation 2’ = e27i/rz.
If the roots of the indicial equation are equal (¢ = 0), we have

z=$=log(w—a)+k1(w—a)+k2"(w——a)2+ - - - (43)
1

7= = (w— @)=t = (w—a)[l +E(w—a)+ - - - ).
From this, we can express w as a power series in 7 which is
single valued in 2. When w makes a circuit of a, 2, from (43),
undergoes a parabolic transformation 2’ = z + 2.

If o is a positive integer, we have

1
2z = Zf = kslog (w — a) + (w;—d)"[-i'i'hl’(w—a)'*‘ C. ]
(44)

It is easily seen that w is not a single-valued function of z if
ks # 0.

We have

z 1 1
— e .
¢ = (w — a)e(“’"‘)”[ ks ]

The second member has an essential singularity at a, and so takes on the
same value at different points w,, w. near a. Then,
2(w2) _ 2(wy)
ke ke
where n is some integer. But from (44), letting w make circuits about a,
2(w) takes on all values of the form z(w;) + 2nkemi at wy;. We have, then,
two values of w for the same value of 2z, which was to be proved.

+ 2nmi,  2(w2) = z(wy) + 2nkemt,

If k, = 0, and if we consider the ratio
e=l=@-ol-cth'@—a+ -],
we can show, exactly as in the case treated at the beginning of
this section, that this series gives w as a single-valued function
of z if, and only if, ¢, which must be a positive integer, has
the value 1. Then,
t=w—-—a)-14+%"w—a)+ -] (45)

In this case, z is unchanged when w makes a circuit of a.
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In this last case, the singularity is not significant. By a suitable trans-
formation of the differential equation, it will disappear. The condition that
the difference of the roots of (33) be 1 is that

[(po — 1) — 4ol = 1; whence, g0 = ¥4ps* — }$po. (a)

We now find the condition k; = 0. The value %, in (39), as we see from the
equation which precedes it, is

ki = —p1 — 2¢,
where, trom the first equation of (34), ¢ is determined from

f(a' + 1)01 + a'pl + Q= 0.
Now,

fle' +1) = f(a') + f'(&) + 25f"(a') = 22" + po.
On using these values, the equation &k, = 0 leads to
a1 = Jspop1. ()

If, now, we eliminate the middle term of (28), the coeflicient of the last
term becomes, according to (22),

Qi(w) = [’ **a)‘z + - + sol(w)] 1[(w u,)z + wz(w)]
il P+ 2 ) ],

Equations (a) and (b) are precisely the conditions that secure the cancelling
of the terms with poles at a; and Q.(w) is analytic at a.

We may state the preceding results in terms of conformal
mapping as follows:

THEOREM 6.—The necessary and suffictent condition that the
ratio of two independent solutions of the differential equation (28)
map the neighborhood of the regular singular point on a plane
region s that the roots of the indicial equation (33) be subject to
one of the following conditions:

(@) &/ — " = %, where p s an tnteger greater than 1;

®) o =o';

(¢) o' — &’ = 1, together with the condition q; = 14p.p;.

When w makes a single circuit about the singular point, the
quotient of the solutions is subject to (a) an elliptic transformation;
(b) a parabolic transformation; (c) the identical transformation.

We have considered in each case a particular pair of solutions.
The theorem holds, however, in general; for, the ratio of any
pair is merely a linear transformation of the ratio of the particular
pair used.
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111. Equations with Rational Coefficients.—We shall consider,
first, the differential equation

& 4 P2+ Quun = 0 M

whose coefficients are rational functions of w and all of whose
singular points are regular. In order that « be not an irregular

point, certain conditions are imposed on the coefficients. From
(27), P and @ must be of the form

P = cit + cot? + ...=%+5),2§+
46)
Q=c’t2+c’t3+...=c2,,+£3_l_|_... (
: : w?  wd

That is, P must have a zero of the first order, at least, and Q
a zero of the second order, at least, at infinity.
Let a,, . . ., a, be the finite singular points, and let the

exponents thereat be ai/, ai’’; o, @”; . .. ; o/, a’’. Let
P1, P2, - - - , Pn be the residues of P(w) at these points. Since
the sum of the residues of P(w) is zero, we have

pr+p2t - +pa—c =0

But, we have, from (33),
af +a =1— p;
and from (27), representing the exponents at © by a.’, a,”,
oy ta, =1—2—c¢) =c¢ — 1.
From these equations, we have the following relations between the
exponents:

al o+ - Fad o e F e =n—1. (47)

If « is not a singular point, Equation (47) still holds if we take e, = 1,
a,’” = 0. These are the exponents at an ordinary point, as we see from
(33) on setting po = ¢o = 0.

The products of P(w) and Q(w) by (w — a1) + - - (w — an)
and (w — a1)? -+ - - (w — a.)? respectively, have no finite singu-
larities and so are polynomials. Hence, the coefficients have the
form

_ P,._l(w)
PO == - w=ay
Qun_s(w) (48)
Q(w) . 2n—2

Tw—a)? - w—a)
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where P,_i(w) is a polynomial of degree n — 1, at most, and
Q2.—2(w) is a polynomial of degree 2n — 2, at most, these degrees
being determined by the requirements (46) at infinity.

If we express P(w) in terms of the principal parts at its poles, we
have

Pw) =P 4 ... 4 M

_ r 1 __ r__ 1
_lzelma” Izl el )

w — a; w — Qn

We get an analogous expression for @(w) by considering the prin-
cipal parts of (w — a1) - - + (w — a.)@(w). At a; we have, if
n > 1,
w=a) - (w— a.)Qw)
= (w — C e (w — U
=@ s P e |

- qo(a;, — 112)771'_7' < (a1 — an)
w — a

+ pa(w).

Here, qo, the constant term in the indicial equation for a, is

equal to ai’a;’’. We have like principal parts at as, . « . , an;
whence,
_ 1 011'041”((11 - az) o (al _an)
Q(w) - (w — al) P (w — an)[ w — a —W—
an’an”(an - al) e (an - anf-il)

+ -0 F r——

) 4 QM(w)] (50)

Here, the conditions at infinity (46) require that Q._.(w) be a
polynomial of degree n — 2 at most:
Qus(w) = w2+ - - +kw +1
= aa Wt + - L (51)
We shall introduce two types of transformations of the differ-
ential equation which will not alter exponent differences. If we
change the dependent variable as follows:

f= (= a)tn = (1 — at)hm, (52)

(w = 1/t), the solutions of the new equation are got from those of
the old by multiplying by (w — a;)%. On making this multiplica-
tion in the solutions of the form (35), (36), (40), or (41), we
see that «)/, a’ are both increased by l;.. At a;(j # ), there
is no alteration of the exponents, since the factor is analytic
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and different from zero there. At infinity, each exponent is\
decreased by l;. By making n such transformations, we have the
exponents

al, + Zl; aln + ll; ct ey an, + ln, an“ + ln;
a, — Zly .’ — 2l (53)

We can choose the constants [; so as to give one of the expo-
nents at each finite point a prescribed value. If one of each
pair be made zero, we observe that all the terms in the brackets
in (50) disappear with the exception of the polynomial Q. »(w).
Also, by this method we can eliminate the exceptional case (c)
of Theorem 6. By makinga’ = 1,a” = 0, we have pg = ¢o = q1
= 0, and there is no singularity.

Secondly, if we make a linear transformation of the inde-
pendent variable
, Aw + B
w _T(w)zbw—}-D’
the singular points of P(w) and Q(w) are transformed by 7.
Let a; be carried into a,’, both points being finite. Then,

—Dw' + B _ —Da/+B w — al

W= = "o =4 Cai — 4 ~ (Cw —4)(Cai — 4)
and

AD — BC =1, (54)

w—a; =W —a)[lo+ L —a’)+ - - -] l#0.

On substituting in the solutions of the form (35), etc., we see
that we have solutions with the same exponents as before. If
either the original or the transformed singularity is at infinity, we
can show in like manner that there is no change in the exponents.

Let us suppose that finite regular points a, . . . , a, have
been preassigned and that the exponents thereat and at infinity
have been given such that in the neighborhood of each singularity
the function w = w(z), inverse to the quotient of two solutions
2z = {1/¢9, is single-valued. There remain at our disposal n — 2
of the coefficients of the polynomial Q._.(w) in (50). There
arise the questions whether the polynomial can be chosen so
that w(z) is single-valued throughout and so that w(z) is an
elementary or Fuchsian function. We shall prove the following
theorem:

TaEOREM 7.—Let the regular singular points and the exponent
differences satisfying the requirements of Theorem 6 be given.
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Then, there is essentially but one differential equation such that
the inverse of the ratio of two solutions is an elementary or Fuchsian
function; that is, if the equation be reduced to the form (21), Q:(w)
18 uniquely determined.

Let curves be drawn from a point O to the singular points
to form a severed plane Fo. In order that w(z) be single-valued, it
is necessary that z = {;/¢2 = z(w) take on no value twice in
F,; that is, F, is mapped by this function on a plane region
So. If z(w) be extended analytically across any boundary of
F, and then extended analytically throughout the severed plane,
we must have again a plane map S; not overlapping S,. On
making a circuit p; times around a;, where o; = 1/p; is the
exponent difference at a;, z(w) returns to its original value.
The p; maps of the severed plane must meet to fill up the neigh-
borhood of a point of the z-plane.

The topological problem here is that already treated in con-
nection with Theorem 11 of Sec. 95. If we put copies of F,
together to form a limit surface ¢, closing up each time about a;
when p; copies have been put together (never closing when the
exponent difference is zero), then, z(w) shall map ¢ on a plane
region.

Let z; = z;(w) be the mapping function used in connection
with Theorem 11 to map ¢ on a plane region. We have, elimi-
nating w, z = T(z1), a function which maps the z,-domain of
Theorem 11 on a plane region. If the mapping of Theorem 11
was on the whole plane or the finite plane, it follows, from
Theorem 3, Sec. 1, that T is linear. Again, if w(z) is a Fuchsian
function, the function z(w) maps ¢ on a circle. So T'(z;) maps
Qo in the z-plane on a circle, and, hence, is linear.

Now the inverse of z;(w), w = ¢(21), is a simple automorphic
function and appears as the inverse of the quotient of two
solutions of a differential equation (Theorem 15, Sec. 44)

2,
gu% + F(w)y = 0.

Let (21) be the given equation. Then from (23), together with
the fundamental linearity property of the Schwarzian derivative
(Equation 11, Sec. 44), we have

Qv(w) = éD(z)w - %D[T(zl)]w - %D(zl)w — F(w).

Q1 (w) is thus uniquely determined.
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Whether the automorphic function arising from a pair of
solutions is polyhedral, periodic, or Fuchsian depends upon the
number of singularities and the exponent differences (setting
v; = 1/0;) as stated in Theorem 11, Sec. 95.

112. The Equation with Two Singular Points.—We first make
a linear transformation carrying the singular points to the origin
and to infinity. Let o/, o’ be the exponents at the origin.
Then, from (49) and (48), where Q.. »(w) is a constant, the
equation is

1 — o — o' d"l oo’

d?y
dwr T w dw " w2 T
This equation can be solved in terms of elementary functions.

If o/ # o', we have the two solutions

0. (55)

mw) = w',  np(w) = w",
with the ratio
= mw) _ we' e = g,
n2(w)
If o = 1/p, we have
z=wl/?; w = zr,

the latter function being simply automorphic with respect to
the elliptic cyclic group 2’ = e2mi/pz,

If &/ = o', we find the solutions

mw) = w*, n2(w) = w* log w.
Taking the ratio of these,
= :’ﬁgg; =logw; w=e.
The function e? is simply automorphic with respect to the simply
periodic group 2’ = z 4+ 2nmre.

113. The Hypergeometric Equation.—Given a differential
equation with three regular singular points. We first make a
linear transformation carrying the three points to 0, 1, . Let
the exponent differences be A, u, », respectively. Then, by
transformations of the form (52), we can give the exponents at
zero the values ay’ = A\, @y’ = 0 and at 1 the values a;/ = u,
a;” = 0. Then, Q(w) in (50) reduces to the form

’ 124
Qoo Ao

Q(w) = ww — 1)

But a,) — @’ = v, and, from (47), aw’ + o'’ =1 —\ —u;

whence,
aglag” = 14[(L — N = p)* —»?%;
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and the differential equation has the form
d? 1—Xx,1—y4uld 1 —N— u)?—p?
L [7~+ “]”+(, Aol S Yo 56)

dw? w — 1 |dw 4dw(w — 1)

This is simply the well-known hypergeometric differential equation.!
dz d
w(l —w)d—u:27+[c—(a+b+c)w]d—w"—abn =0, (57)

wherea = (1 — N —p +»),b =241 — X —pu —»),¢c =1 — . Other
familiar equations can be reduced to this form; for example, Legendre’s
equation

d? d
1 _w2>d—u:72 —2w—dlw +nn + 1)y =0,

which has the regular singular points 1, —1, o with the exponents 0, 0;
0, 0; » + 1, —n, respectively.

In order that the inverse of the quotient of two solutions
of (56) be a single-valued function each of the quantities \, u, »
must be (Theorem 6) either zero or the reciprocal of an integer-
The coefficients of the equation are then real. We may assume
that case (¢) of Theorem 6 does not occur (for we could then
reduce the number of singularities to two) and that X\, u, » are
not negative. These conditions determine the equation uniquely.
If the equation be put in the form (21), @,(w) is uniquely deter-
mined. There being thus, essentially, but one differential
equation with the three singularities and the prescribed exponent
differences, it must necessarily be the equation for which the
inverse of the quotient of two solutions, z = {1/{; = 2(w),
is an elementary or Fuchsian function.

Consider the map of the upper half w-plane by any branch
of z(w). On the real axis between 0 and 1, since the coefficients
are real, we can select a pair of linearly independent real solutions.
Their ratio z; is real and maps the segment 01 on a segment
of the real axis. Since z is a linear function of z,, it follows that
each branch of z(w) maps 01 on the arc of a circle. Similarly,
each branch maps the segment between 1 and 4+ on a circular
arc and the segment between — and 0 on a circular are.

1 The problem considered in this and the following section was treated
in a famous paper by Scuwarz, ‘“Ueber diejenigen Faelle, in welchen die
Gaussische hypergeometrische Reihe eine algebraische Funktion ihres
vierten Elementes darstellt.” Jour. fir Math., vol. 75, pp. 292-335; also
Ges. Math. Abhandlungen, Bd. 2, pp. 211-259.
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In the neighborhood of the origin, there exists a pair of solu-
tions whose ratio (Equation (42)) is

2o =wMNl +hw+ - - -1

This maps the neighborhood of the origin in the upper half plane
on the interior of an angle of magnitude Ar. Then 2, which is a
linear function of 2y, maps this on an angle of magnitude Ar. So,
the two circles on which the parts of the real axis to the right
and left of the origin are mapped meet at the angle Ar. Similar
remarks apply at 1 and at «, with the result that any branch of
z(w) in the upper half plane maps the half plane on a czrcular arc
triangle with angles M, um, vr.

If the branch of z(w) just used be extended analytically
across one of the segments, as 01, into and throughout the lower
half w-plane, the lower half plane is mapped on a circular arc
triangle which is the inverse of the previous triangle in one of its
sides (Theorem 19, Sec. 83). Continuing this process, the
various branches of z(w) map the two half planes on a finite or
infinite system of non-overlapping circular arc triangles fitting
together without lacuns, each with angles Nr, um, »r, and such
that the inverse of any triangle in one of its sides gives another
triangle of the system.

It is customary to shade those triangles which are maps of
the upper half plane. Then, the triangles are alternately shaded
and unshaded. By an inversion in a side of any triangle, the
system of triangles is carried into itself, each shaded triangle
being carried into an unshaded triangle.

114. The Riemann-Schwarz Triangle Functions.—The inverse
w = w(z) of the quotient of the two solutions is automorphic with
respect to the group of linear transformations got by carrying any
shaded triangle into any other shaded triangle by a sequence of
inversions in sides. A shaded and an unshaded triangle together
form a fundamental region for the group. Any simple auto-
morphic function belonging to the group is called a ‘triangle
function.”

The function w(z) maps a shaded and an unshaded triangle
on the whole w-plane. Hence, w(z) takes on each value once in
the fundamental region. It follows that any triangle function is
a rational function of w(z).

1 RIEMANN, B., Vorlesungen iiber die hyperg. Reihe, in his ‘“ Werke, Nach-
trige;” Scuwarz, H. A, loc. cit.
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The function w(z), which maps a triangle of the system
on a half plane bounded by the real axis, is real on the boundary
of each triangle and is not real within the triangle. At points
inverse with respect to the side of any triangle, w(2) has conjugate
imaginary values.

As appears from Theorem 11, Sec. 95, w(z) is a polyhedral,
periodic, or Fuchsian function according as A + u + » is greater
than, equal to, or less than 1. The distinction between these
three types can be made, however, by a direct study of the
triangle. Let the two sides which issue from a vertex meet again
at a point P. If alinear transformation carrying P to  be made,
the two sides are carried into straight lines. The character of the
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third side in each of the three cases is shown in Fig. 89. A is
at « and the two sides are parallel if the original two sides were
tangent. :

Case I. N+ u + v = 1.—The sum of the angles is = and the

third side is a straight line. There are four possible sets of
values:

(@) 15,14, 14; () 14, 24, 245 (o) 14,24, Le; (d) 13, 13, 0.
In (a), we have an equilateral triangle; in (b), an isosceles right
triangle; in (c¢), a 30-60-degree right triangle. In each case, by
continued reflections in sides, the whole finite plane is covered
by an infinite number of triangles. In (d), two sides are parallel
and the third is a common perpendicular. The repeated reflec-
tions of this half strip cover the finite plane with an infinite
number of copies.

The groups that appear here are those studied in Sec. 60.
Each of these groups contains a periodic subgroup. The
triangle function w(z) can be identified, except for possible linear
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transformations, with the functions (a) P’(2); (b) B()?; (¢)
PB’(2)?; (d) cos 2, of Sec. 61.

Case II. N + u + » > 1.—The sum of the angles is greater
than = and the third side is a circle concave toward A. A lies
within this circle; otherwise, the triangles would overlap when
an inversion in BC is made. Through A draw a chord SS’ of
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the circle of the third side which is bisected at A (SS’ is perpen-
dicular to the radius through A). The circle @ with 4 as center
and AS as radius is intersected by each side of the triangle at
points which lie at opposite ends of a diameter.

Now, let the plane be projected stereographically on a sphere
with @ as equator. The points of @ remain fixed. The sides
of the triangle are carried into three circular arcs on the sphere,
each of which passes through opposite ends of a diameter. That
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is, the sides of the corresponding triangle A’B’C’ on the sphere
are arcs of great circles.

Inversions in the sides of ABC correspond to reflections in
the diametral planes containing the sides of A’B’C’. The new
triangles are bounded by ares of great circles; and all succeeding
inversions in the plane correspond to reflections in diametral
planes. The sphere is covered by a finite number of triangles;
and the group is finite.

The groups are those of the regular solids treated in Chap. VI.
The triangle functions are the polyhedral functions. The set
of triangles where N, u, v have the values 14, 14, 14 is shown
in Fig. 38, p. 136.

Case III. N+ p+ v < 1.—The sum of the angles of the
triangle is less than =, and the third side is convex toward A.
From A we can draw a tangent AT to the circle of the third
side. A circle @ with center A and passing through the point
of tangency 7T is orthogonal to all three sides. By an inversion
in any side of -the triangle, @’ is carried into itself. The new
triangles will have their sides orthogonal to @’; and for all
succeeding inversions €’ is a fixed circle. The group is Fuchsian.

There are infinitely many values of X\, u, » such that their sum

is less than 1. Figure 90 shows the system of triangles for the

values 135, 14, 14.

The elliptic modular functions J(r) and N(r) are triangle
functions. In the former, N, x, » have the values 14, 14, 0; in
the latter 0, 0, 0. The fundamental regions of Figs. 46 and 48
consist of two triangles. The imaginary axis in each figure
separates the fundamental region into its two component
triangles.

115. Equations with Algebraic Coefficients.—Let the differ-
ential equation be

d*y dn _

where W and w are connected by a polynomial relation ®(W, w) =
0, and P and @ are rational functions. We have found that
every simple automorphic function is expressible as the inverse
of the ratio of two solutions of an equation of this form (Theorem
15, Sec. 44).

The functions p and @ are single valued on the Riemann
surface of the algebraic function W = W(w). Their singularities
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are isolated. In order that the inverse of the quotient of two
solutions be single valued at a singularity occurring at an ordinary
point on the surface, the requirement of Theorem 4 must be
met. At a finite branch point @ of order m, the point at infinity
in a plane sheet, or an infinite branch point of order m, we make
the change of variable w = a + ™, w = 1/t, or w = 1/t». We
then apply our previous theorems to the transformed differential
equation at £ = 0.

We shall not go into details, which are lengthy, in this case.
With given regular singular points and given suitable exponents,
it will be found here, as in the case of rational coefficients, that
there are usually certain undefined constants appearing in the
coefficients. That is, the singularities and exponents do not
determine the coefficients uniquely, except in the simplest cases.
A theorem analogous to Theorem 7, and proved in an identical
manner, can be established to show that it is always possible
to choose these constants, in essentially but one way, so that
the inverse of the quotient of two solutions is a polyhedral,
elliptic, or Fuchsian function. The kind of function depends
upon the number of singularities, the exponent differences, and
the genus of the surface, as stated in Theorems 9 to 11 of Chap.
IX.

The use of differential equations leads to the same auto-
morphic functions as those given by the method of conformal
mapping. We have, however, in the differential equation, in
case the free constants can be actually determined, an analytical
instrument of great value in the investigation of the properties
of the automorphic functions.
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SUBJECT INDEX

A

Accessible boundary points, 189-
195, 197, 199
a-cuts, 229, 233, 266
Algebraic functions, 221, 225, 229-
249, 252, 266, 278, 308
of genus greater than zero,
233-244, 247-249, 252, 266,
277, 278
of genus one, 239, 240, 278
of genus zero, 229-233, 245-
247, 252
relations between automorphic
functions, 94-98, 149, 160,
163, 231
Analytic curve, 201
Angles at vertices of ordinary cycle,
62, 89, 93, 112, 130
Anharmonic ratio. (See
ratio.)
ratios, group of, 34, 49, 78, 159
Area of R, 75
theorems, 167-169
Automorphic function,
of, 83
functions, simple, 86-88
algebraic relations, 94-98
behavior at vertices and para-
bolic points, 88-91
and differential equations, 98—
101
for finite group, 102, 131, 136
for modular group, 155
sub-group, 162
for periodic and allied groups,
144-146
poles and zeros, 91-94
uniformization by means of,
233-247, 266-279

Cross

definition

B

b-cuts, 229, 233, 266
Boundary:
behavior of mapping function on,
187-203
circular arc, 202
continuation of mapping functicn
across, 201-203
elements, 195-198
of R, 47-49
Branch points, 165, 181, 213, 226,
227, 229, 249, 250, 290, 309

C

Chain of points, 176, 179
Circle, 8-15. (See also Inversion,
Conformal mapping, Fixed
circles, Isometric circle, Unit
circle, Etc.)
Circular arc boundaries, 202
triangle, 305
Combination, method of, 56-59, 279
Combined regions, mapping of,
203-205
Concentric slits, 265, 266
Conformal mapping, 164-219
of circle on circle, 32
of circle on plane finite region,
169-175
of combined regions, 203-205
of finite plane on finite plane, 3
and groups of lingar transfor-
mations, 216-219
of half plane on circular arc
triangle, 305
by J(r), 157
of limit regions, 205-213
of multiply connected region of
planar character on slit
region, 262-265

327



328

Conformal mapping of multiply
connected region of planar
character on region bounded
by complete circles, 279-283

of neighborhood of parabolic
point, 90

of neighborhood of regular singu-
lar point, 298

of plane on plane, 3

of plane on plane region, 2

of plane simply connected region
on circle, 179-187

of region bounded by complete
circles on second such region,
282

of region and subregion, 166

of semicircle on circle, 188

of simply connected finite-sheeted
regions, 213-216

of surface of genus zero on plane,
229

of two-sheeted circular region on
circle, 181

Congruent configurations, 37

Conjugate imaginary, 8

Connectivity:

of algebraic surfaces,
of regions, 221-229

Constant automorphic function, 94

Continuation of mapping function
across the boundary, 201-203

Convergence:

of iterative process, 183, 184

in mapping limit region, 207-
211

of series for g,, 151, 152

of series and products connected
with the group, 115, 116

of subsequence of mapping func-
tions, 271-273

of subsequence of a set of func-
tions, 267-271

of theta series, 104-108

Cosine, 85, 144, 220, 233, 307

Cotangent, series for, 154

Cross (anharmonic) ratio, 4, 7, 34,
49, 78, 159

Cross-cut, 222

Cube, 124-127, 136-138

225-229

AUTOMORPHIC FUNCTIONS

Curves defining boundary element
196-198
Cycles, ordinary, 59-62, 72, 73, 89,
130 .
parabolic, 62-64, 72
Cyeclic groups, 51-56, 66. (See also
Elliptic, Parabolic, Hyperbolic,
and Loxodromic cyclic groups.)

D

Deformation of lengths:
by inversion in sphere, 118
by linear transformation, 24,
25
theorem:
for circle, 171-175
general, 175-177, 274
A, 150, 151, 155
Derivative of automorphic function,
98, 104, 131
Schwarzian, 98, 291, 302
Determinant of linear
mation, 2
Diameter of curve, 198
Differential equations, 98-101, 284~
309
with algebraic coefficients, 308,

transfor-

309

connection with groups, 284-286

hypergeometric equation, 303-
308

quotient of two solutions, 287—
293, 296-298

with rational coefficients, 299-308
regular singular points, 293-298
with three singular points, 303-
308
triangle functions, 305-308
with two singular points, 303
Dihedral group, 129
Discontinuous groups, 35
Discrete set of points, 277
Domain of existence of function,
83
Doubly periodic functions.
Elliptic functions.)
groups, 35, 38, 139-146, 148-151,
238, 243

(See



SUBJECT INDEX

E

e1, ez, €3, 150, 157-162
Edge separating square elements, 251
Element, square, 213, 250
Elementary groups, 66, 117-147
allied to periodic, 140-143
determination of all finite, 129-
136
finite, 117-138
with one limit point,
of regular solids, 123-129
simply and doubly periodie, 139,
140
with two limit points, 146, 147
Elliptic cyclic groups, 55, 109, 129,
133, 217
functions, 83, 144-146, 148-150,
158,159,238, 240, 247,307, 309
modular functions, 148-163
algebraic relations, 159, 160, 163
definition, 148,
J(r), 1561-157
A7), 157-159, 160-162
surface, 227, 257
transformations, 19, 20, 23, 28,
88, 121, 288, 298
Equation, indicial, 294, 298
Equations, differential. (See Differ-
ential equations.)
Euler’s formula, 128, 228 246
Existence, domain of, 83
Exponents at regular singular point,
294, 298-301, 303
Extended groups, 136-138

F

Families, normal, 268
Finite groups, 34, 37, 38, 49, 55, 66,
78, 102, 117-138, 245, 246, 303,
308
determination of all finite groups,
129-136
fixed points of, 132, 133
of regular solids, 123-129
Finite-sheeted simply connected
regions, 213-216
Fixed circles of linear transforma-
tion, 19-22, 28-32, 66, 67

139-146

329

Fixed points at infinity, 75-82, 105,
139-147
of linear transformation, 6-8,
24, 67, 88, 109, 130-135, 141
Four group, 129, 133
Fuchsian functions, 87
and differential equations, 302,
303, 306, 309
uniformization by means of,
240, 241-244, 247
(See also "Automorphic func-
tions, simple, Elliptic modular
functions.)
groups 66, 67-82
cycles, 72, 73
of the first kind, 68, 73-75, 108,
114, 237, 308
of first and second kinds, 73-75
fixed points at infinity, 75-82
fundamental region, 69-71, 73—
75, 77
generating transformations, 71,
72
limit points, 67-69
of the second kind, 68, 73-75,
106-109, 116, 258
the transformations, 67
Function. (See Algebraic, Auto-
morphic, Elliptie, Elliptic modu-
lar, Periodic, Polyhedral, Ration-
al, Triangle, Etc., function.)
groups, 64-66, 86, 109
Fundamental region of a group, 37—
39, 65, 75, 77, 92, 94, 237, 240,
243
boundary of R, 47, 48
the cycles, 59-64
definition of region R, 44
genus of, 238
region R,, 69
regions congruent to R, 44-46
the sides, 47
the vertices, 48
(See also figures illustrating funda-
mental regions, pp. 38, 49, 54,
55, 58, 61, 73, 74, 78, 80, 82,
115, 136, 142, 143, 148, 153,
161, 217, 238, 248, 258, 274,
278, 307.)
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G

g2 gs, 149, 151-157, 160
Generating transformations, 34, 39,
50, 51, 65, 71, 72
relations between, 62
Genus:
of algebraic function, 227
definition, 227
of fundamental region, 238
(See also Algebraic functions.)
Geometric interpretation of linear
transformation, 13, 14, 26-28
Group of differential equation, 286
Groups of linear transformations,
33-66
cycles, 59-64
cyclic groups, 51-56
function groups, 64-66
fundamental region, 37-39
generating transformations, 50, 51
isometric circles, 39-41
limit points, 41-44
the method of combination, 56-59
properly discontinuous, 35, 36
region R, 44-50
transforming a group, 36, 37
(See also Fuchsian, XKleinian,
Schottky, Etec., groups.)

H

Homographic transformation, 1
Hurwitz’ theorem, 185
Hyperbolic cyclic groups, 52-54, 147
function, 83
transformations, 18, 19, 23, 28
Hyperelliptic functions, 247-249
surface, 227, 229
Hypergeometric equation, 303-308

I

_ Icosahedral group, 129

Improperly discontinuous groups, 36

Indicial equation, 294

Infinitesimal transformations, 35

Infinity, point at, 2, 7, 75-77, 165,
293, 299, 309

Integral, Poisson’s, 177-179

AUTOMORPHIC FUNCTIONS

Inverse of linear transformation, 2,
5, 25, 33
points:
with respect to circle, 10-12, 19,
20, 29
with respect to sphere, 117, 119
of quotient of solutions of differ-
ential equation, 287-293
Inversion in circle, 10-15, 26, 28, 29,
45, 104, 137, 202, 280, 282, 305—
308
in sphere, 117-119
Isometric circles, 23-30
deformation of lengths and areas,
25
and fixed circles, 28-30
geometric interpretation of linear
transformation, 26, 27
of group, 39-42, 67
prescribed circles, 57
of product, 40, 53
and theta series, 104, 114
types of transformations, 27, 28
Isomorphic groups, 36, 218, 236
Iterative process, 179-186

J

J(r), 151-157, 159, 160, 163, 308
Jordan curve, 189
curves, regions bounded by, 198-
202

K

K. (See Multiplier.)

Kleinian function, 87
groups, 66

Koebe’s lemma, 188

L

(), 157-163, 308
Legendre’s differential equation, 304
Limit points of group, 41-44, 46, 47,
51, 58, 62-64, 67-69, 70, 85,
108, 277
regions, 205-213, 216, 218, 268-271
application in uniformization,
230, 234, 235, 237, 242, 245,
248, 252, 253, 257, 278, 280,
302
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Linear transformation, 1-32
carrying three points into three
points, 7
carrying unit circle into self, 31
carries circle into circle, 9
carries inverse points into inverse
points, 11
and circle, 8-15, 32, 282
corresponding to rotation of the
sphere, 122
elliptice, 19, 23, 28
equivalent to even .number of
inversions, 14
fixed circles of, 19-22, 28-32
fixed points of, 6-8
geometric interpretations of, 13,
14, 26, 27
hyperbolic, 18, 23, 28
inverse of, 2, 5
isometric circle of, 23-30
loxodromic, 20, 23, 28
multiplier of, 15-18
parabolic, 21-23, 28
sufficient conditions for, 2, 3, 32,
273-277, 282
Linearly independent solutions, 284
Loop-cut, 222, 225, 256, 266
Loxodromic cyclic groups, 52-54,

147
transformations, 20, 21, 23, 28
M
Mapping. (See Conformal map-
ping.)
Method of combination, 56-59,
279

Modular functions. (See Elliptic
modular functions.)
group, 35, 79-81, 151-157
subgroups of, 81, 82, 159
Multiplier of linear transformation,
15-18, 24, 37, 140, 141

N
Normal families of functions, 268

(0]

Octahedral group, 127, 129
One limit point, groups with, 139-146
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Order of fixed point, 130
Ordinary cycles, 59-62, 72, 73, 89,
130

point:
of differential equation, 293
of group, 42 )
Oscillation of function on curve, 275

P

p. (See Genus.)
B(z), 83, 86, 88, 144-146,
150, 158-162, 307
Parabolic cycles, 62-64, 72 -
cyclic groups, 55
point, 63, 64
behavior at:
J(r), 153-155
A(r), 160-162
Schwarzian derivative, 99
simple automorphic function,
87
theta function, 110-114
transformations, 21-23, 28, 130,
139, 288, 298
Parallel slits, 266
Parametric equations, 220, 254
Perfect set, 43, 68
Periodic functions. (See
periodic  functions,
functions.)
groups, 34, 35, 37, 38, 139-146,
148-151, 238, 306
allied, 140146, 306
Period of linear transformation, 20
parallelogram, 38, 139-146, 148-
151, 240
strip, 37, 38, 139-144
Picard, group of, 35, 36
Planar character, regions of, 256
Poincaré theta series. (See Theta
series.)
Point at infinity. (See Infinity.)
Poisson’s integral, 177-179
Poles:
of J(7), 155
of \(r), 162
of simple automorphic function,
91-94
of theta functions, 110, 112-115

148-

Simply
Elliptic
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Polyhedral functions, 136, 247, 303,
306, 308, 309

Prime end, 195

Primitive periods, 150, 151

Prinecipal circle, 67

Products connected with group,
115, 116, 258-261

Projection, stereographic, 119, 120,
307

Properly discontinuous groups, 35

Q

Qo, 30
a group allied to, 35, 78, 79
Quotient of solutions of differential
equation, 284, 287-293
at regular singular point, 296-298

R

R, the region, defined, 44.
Fundamental region.)
Ro. (See Fundamental region.)
Radial slits, 266
Rational functions, 3, 96, 97, 100,
102, 131, 144-146, 229-233,
240, 247, 299, 305
Reality:
of J(r), 156, 157
of A(r), 162
of triangle function, 306
Reflection:
in line, 11, 13, 26, 28, 194, 306
in plane, 119, 136-138, 308
Regions bounded by complete
circles, 279-283
by Jordan curves, 198-202
congruent to R, 44-46
connectivity of, 221-229
of planar character, 256
R and R, (See Fundamental
region.)
simply connected. (See Simply
connected regions.)
Regular singular points of differ-
ential equations, 293-298
solids, groups of, 123, 124, 127-
129, 133, 138, 308

(See

AUTOMORPHIC FUNCTIONS

Relations, algebraic. (See Alge-
braic relations.)
Removable singularities, 274-276

Riemann surface, 96, 97, 165, 221,
225-229, 249, 266, 287
Riemann-Schwarz triangle func-
tions. (See Triangle functions.)
Rotation, 13, 28, 31
Rotations, groups of, 34, 37, 38
of sphere, 120-123
and translations, groups of, 140-
146

S

Schottky groups, 59
type, groups of, 59, 277
Schwarzian derivative, 98, 291, 302
Schwarz’s lemma, 165, 182, 206
Series connected with group, 115,
116
theta. (See Theta series.)
Severing a surface, 228, 229
Side, pole or zero on, 91
Sides of R, 47, 48, 51, 65, 71, 72, 238,
239
Sigma, cross-cut, 222
Simple  automorphic  functions.
(See Automorphic functions.)
Simply connected regions, 70, 179,
222
finite-sheeted, 213-216
(See also Algebraic functions of
genus zero.)
Simply periodic functions, 34, 144,
247
groups, 34, 37, 38, 139-146
Sine, 34, 83, 88, 220, 233
Singular point of differential equa-
tion, 293
Slit regions, 262-265

Solids,  regular. (See  Regular
solids.)
Sphere:

inversion in, 117-119
rotations of, 120-123
Square element, 213, 250
Stereographic projection, 119, 120,
307
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Stretchings, 13, 24
group of, 38
Subgroups:
Ty, 76
of modular group, 81, 82, 159
Subregion, 166
Symbolic notation, 4-6

T

Tetrahedral group, 129
Theta functions, properties of, 108—
115
series, 102-116
behavior at parabolic point, 111
convergence, 104-108
for Fuchsian group of second
kind, 106-108
Theta-fuchsian series and functions,
104
Theta-kleinian series and functions,
104
Transcendental functions, 249-255
Transformations, linear. (See
Linear transformations.)
of differential equations, 290, 300,
301
Transforming a group, 36, 107
Transforms:
of R, 44-46;
Of Ro, 70
Translations, 13, 139
Triangle functions, 138, 305-308.
(See also J (1), N(7).)
Two limit points, groups with, 146,
147

U

Uniformization, 220-283
of algebraic functions of genus
one, 237-244, 278
of algebraic functions of genus
greater than zero, 233-244,
247-249, 266-279
of algebraic functions of genus
zero, 229-233, 245-247

333

Uniformization by automorphic
functions, 233-249, 266—
279

by automorphic functions belong-
ing to Schottky groups, 277-
279

the concept, 220

by elementary and Fuchsian
functions, 229-255

by elliptic functions, 240, 247

by Fuchsian functions of first
kind, 240, 244, 247-249

by rational functions, 229-233,
240, 247

by simply periodic functions, 247

of transcendental functions, 249-

255
Unit cirele, 30-32

\%

Vertex, behavior at:
automorphic function, 88, 89
J(z), 155, 156
polyhedral funetion, 131
theta function, 109, 110
pole or zero at, 91
Vertices of cycle, angles at, 62, 89,
93, 112, 130
of R, 48, 59-62, 72, 73

A

Weierstrassian function. (See
B).)
Whittaker’s groups, 247-249

product, 116

Z
Zero, genus. (See Algebraic func-
tions.)

Zeros:

of J(r), 156

of A\(r), 162

of simple automorphic functions,

91-94

of theta functions, 110, 112-115



