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PREFACE.

THE object of the following treatise is to exhibit, in a concise
form, the elementary properties of the expressions known by
the name of Laplace’s Functions, or Spherical Harmonics,
. and of some other expressions of a similar nature. I do not,
of - course, profess to have produced a complete treatise on
these functions, but merely to have given such an introduc-
tory sketch as may facilitate the study of the numerous
works and memoirs in which they are employed. As
Spherical Harmonics derive their chief interest and utility
from their physical applications, I have endeavoured from
the outset to keep these applications in view.

I must express my acknow/ledgmeuts to the Rev. C. H.
Prior, Fellow of Pembroke College, for his kind revision of
the proof-sheets as they passed through the press.

N. M. FERRERS.

GONVILLE AND Carvs COLLEGE,
August, 1877.



Digitized by Microsoft ®



ART.

o=

o oW

o

CONTENTS.

CHAPTER L

INTRODUCTORY. DEFINITION OF SPHERICAL IIARMONICS.

CHAPTER 1L

ZONAL HARMONICS.

PAGE
Differential Equation of Zonal Harmonies . . . . . 4
General solution of this equation R . . . . . 5
Proof that P, is the eoeflicient of 2* in a eertain serics . . 6
Other expressions for P; 5 o . 5 5 . . 11
Investigation of expression for P; in terms of u, by Lug,rnuge s

Theorem o o 3 d . . . . . : 12
The roots of the equation P, = 0 are all real J
Rodrigues’ theorem . 3 . . . . . . . ib.
Proof that [ llp‘ P, ig=(na0 f llp.e dy = ?ii R
Expression of P, in aseending powers of u . . . . ! 19

Values of the first ten zonal harmonics

[84
w

i
St

1
Values off um Py dp
)

Espression of 4 in a series of zonal harmonics . . 5 1 26



viii CONTENTS.

ART. PAGE

18. IExpression of P;in aseries of cosines of multiples of 4 29

19. Value of f " P; cos mdsin 846 i

0
20. Expression of cos mf in a series of zonal harmonics . 5 o 33
21, Development of sin § in an infinite series of zonal harmonics 35
ap; . . .
22, Value of 71,1‘ in a series of zonal harmonics 5 5 . 37
1
24, Value of f P,Pudn 38
M
25, 26. Expression of Zonal Harmonics by Definite Integrals . 39
27. Geometrical investigation of the equality of these definite
integrals o o c . o 41
28. Expression of P; in terms of cos # and sin § 42
CHAPTER III.

APPLICATION OF ZONAL HARMONICS TO TIIE THEORY OF ATTRAC-
TION. REPRESENTATION OF DISCONTINUOUS FUNCTIONS BY
SERIES OF ZONAL HARMONICS.

1. DPotential of an uniform circular wire . 44
2. Potential of a surface of revolution 46
3. Solid angle subtended by a circle at any point 47
4, DPotential of an uniform cireular lamina 49
5. Potential of a sphere whose density varies as R~5 51
6, 9. Relation between density and potential for a spherical surface 54

10. Potential of a spherical shell of finite thickness . 58

12. Expression of certain discontinuous fanctions by an infinite

series of zonal harmonies . . . . 61
14. Expression of a function of u, infinite for a particular value of

#, and zero for all otlier values . . 65
15. Expression of any discontinuons function by an infinite series

of zonal harmonies . : - - 5 66



CONTENTS. X

CHAPTER 1IV.

SPHERICAL HARMONICS IN GENERAL, TESSERAL AND SECTORIAL

ART.

e =

HARMONICS, ZONAL HARMONICS WITH THEIR AXES IN ANY
POSITION. POTENTIAL OF A SOLID NEARLY SPHERICAL IN
FORM.

PAGE
Spherical Harmonices in general 3 . . . 5 69
Relation between the potentials of a spherlcal shell at an inter-
nal and an external point . 5 ib.
Relation between the density and the potentml of a sphencal
shell . . . 5 o 5 5 . . 70
The spherical harmonic of the degree 1 will involve 2i+ 1 arbi-
trary constants . o 3 o 5 5 o . c 72
Derivation of successive harmonics from the zonal harmonic by
differentiation . . o 5 . . . . . b
Tesseral and sectorial harmonics : : . . . 5 74
Expression of tesseral and sectorial harmonics in a completely
developed form . . . J 3 . o 5 o 75
Circles represented by tesseral and sectorial barmonics . o 77
New view of tesseral harmonies . o . . . o c 78
Proof that f f Y Y.dudp=0 . 4 . . o . . 80
If a function of x 2nd ¢ can be devcloped in a series of surface
harmonics, such development is possible in only one way . 82

Proof that f T ydg = 2 Y(1)Py()

n

1o 4 .
a,nd/ f"nnum:ii% Y1) 83

Investigation of the value of [ }’ YiZdudyp . ) . . 84

Zonal harmonic with its axis in any position. Laplace’s co-
efficients . o . . . . . 3 . 3 87

Expression of a rational function by a finite series of spherieal
harmonies ;- P . . - . . . . . 90



X CONTENTS.

ART. : PAGE

16. Illustrations of this transformation . a a 5 5 5 91

17. Expression of any function of u and ¢ . o o 5 5 93

18. Examples of this process . 5 o 0 J o o . 9

19. Potential of homogeneous solid nearly spherical in form . 5 97

20. DPotential of a solid composed of homogeneous spherical strata . 99
CHAPTER V.

SPHERICAL HARMONICS OF THE SECOND KIND.

1. Definition of these harmonies . 3 o o 3 . . 101
2 and 3. Expressions in a converging series . c c . . 102
4. Expression for the differential coefficient of Q; 5 3 , 105
5. Tesseral Harmonics of the second kind . o c . . 106

CHAPTER VI.

ELLIPSOIDAL AND SPHEROIDATL, HARMONICS.

1. Introduction of Ellipsoidal Harmonies o . . . . 108
2. Definition of Elliptic Co-ordinates . c . . g . ib.
3. Transformation of the fundamental equation . . . . 109
4. Further transformation 5 o c . . . . . 110
5. Introduction of the quantities E, II . 5 . . . . 113
6, 7. Number of values of E of the degree n g o o . ib.
8. Number of values of the degree n+5 . c . . . . 117
9, 10, 11. Expression of EHII' in terms of x,7,z . . . . b
12. Potential for an external point . 3 ° > : . . 121
13. Law of density . o b . . . .o 123
14. Fundamental Property of E Elhpsoulal Harmonics o o . 126

15. Transformation of f j eV, ¥,dS to elliptic co-ordinates . o . 128



CONTENTS.

ART,

16. Modification of equations when the ellipsoid is one of revolution
about the greatest axis . c 3 0 o o o o

17. Interpretation of auxiliary quantities introduced a 5 o

18. Unsymmetrical distribution 0 . . . . . .

19. Analogy with Spherical Harmonics . o . . . 0

20. Modification of equations when the ellipsoid is one of revolution
about the least axis o o 0 o o o o

21. Unsymmetrical distribution o 5 5 5 o 0 o

22. Special examples. Density varying as Pi(u) . . 5

23. External potential varying inversely as distance from focus o

24, 25. Consequences of this distribution of potential o .

26. Ellipsoid with three unequal axes 3 3 o o 5 o

27. Potential varying as the distance from a principal plane .

28. DPotential varying as the product of the distances from two prin-
cipal planes . 5 s c S 3 5 . . o

29. Potential varying as the square on the distance from a principal
plane . . o o o o 5 o o o .

30. Application to the casc of the Earth considered as an ellipsoid .

31, 32, Expression of any rational integral function of z, y, 2 in a

33.

series of Ellipsoidal Harmonics . . o o .

On the expression of functions in general by Ellipsoidal Har-
monics

ExaMrLEs

PAGB

130
133
134
135

136
139

ib.
142
143
145
146

ib.

147
150

155



ERRATA.

p171me4fo'r 1,7' ad ——

p. 113 line 8, for V read B,
p. 136 line 11, for ¢ read w.
p. 142 line 6, for point read axis.

2
2i+1°



. CHAPTER 1. .
INTRODUCTORY.. DEFINITION OF SPHERICAL HARMONICS.

1. Ir V be the potential of an attracting mass, at any
point z, y, 2z, not forming a part of the mass itself, it is
known that 7 must satisfy the differential equation

v, 4V 4V
d2+d_!+d22=0 .................... (1),

or, as we shall write it for shortness, V*¥V =0,

The general solution of this equation cannot be obtained
in finite terms. We can, however, determine an expression
which we shall call ¥, an homogeneous function of z, y, z
of the degree ¢, ¢ being any positive integer, which will
satisfy the equation; and we may prove that to every such
solution V, there corresponds another, of the degree — (¢ + 1),

v
expressed by ,'Ti,fi , where #* =z + y* + 2*

TFor the equation (1) when transformed to polar co-ordi-
nates by writing @ =1 sin  cos ¢, y =1 sin § sin ¢, z =1 cos 0,
becomes

d"(rV) 1 dy/. ,dV 1 av
“d* Tsndde (51 HW) t e de* =0.(2).

And since V satisfies this equation, and is an homo-
geneous function of the degree ¢, V, must satisfy the equa-
tion

: 1 d av, 1 d'T,
. oL 1 d
AR sin 6 dd 8 ) Rt do* o

F. H, 1

(sm 8 —
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since this is the form which equation (2) assumes when ¥V
is an homogeneous function of the degree <.

Now, put V; —r"“ U,, and this becomes
(,‘+1),’.2H1 U+ d ( Qﬂ'ls DH(‘ZE) + _'_1 . _@2 (r2i+l Ui)=

sin 6 db dv/ " sin®*0de
or
e 1 d au, 1 &7,
G+ Uity aa(sm 0 'd?i) + g g =0 @
Now, since U is a homogeneous function of the degree

~@+1),

d(rU) dU, !
T dr =U+tr dr
=—1U;
LUy __ 4T,
7l
='i(i+1)~_‘;
or 'rdzilU‘—z(z+1)U

therefore equation (2) becomes
ars sin @ d6 ( . W) sin® 6 d¢p*

shewing that U, is an admissible value of ¥, as satisfying
equation (2).

=0,

It appears therefore that every form of U can be ob-
tained from V,, by dividing by #*", and conversely, that
every form of V, can be obtained from U, by multiplying
by »*™. Such an expression as V, we shall call a Solid
Spherical Harmomc of the degree 2. The result obtained
by dividing ¥, by +*, which will be a function of two inde-
pendent variables 6 and ¢ only, we shall call a Surface
Spherical Harmonic of the same degree. A very important
form of spherical harmonies is that which is mdependent
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of . The solid harmonics of this form will involve two of
the variables,  and %, only in the form a’+ 4" or will be
functions of #*+ y* and z. Harmonics independent of ¢ are
called Zonal Harmonics, and are distinguished, like spherical
harmonics in general, into Solid and Surface Harmonics.
The investigation of their properties will be the subject of
the following chapter.

The name of Spherical Harmonics was first applied to
these ‘functions by Sir W. Thomson and Professor Tait, in
their Treatise on Natural Philosophy. The name “Laplace’s
Coefficients” was employed by Whewell, on account of
Laplace having discussed their properties, and employed
them largely in the Mecanique Céleste. Pratt, in his
Treatise on the Figure of the Earth, limits the name of
Laplace’s Coefficients to Zonal Harmonics, and designates
all other spherical harmonics by the name of Laplace’s
Functions. The Zonal Harmonic in the case which we shall
consider in the following chapter, ie., in which the system
is symmetrical about the line from which 6 is measured,
was really, however, first introduced by Legendre, although
the properties of spherical harmonics in general were first
discussed by Laplace; and Mr Todhunter, in his Treatise,
on this account calls them by the name of “Legendre’s
Coefficients,” applying the name of “Laplace’s Cocflicients”
to the form which the Zonal Harmonic assumes when in
place of cos 8, we write cos 6 cos 8 + sin @sin 8’ cos (¢ — ¢’).
The name “Kugelfunctionen” is employed by Heine,
in his standard treatise on these functions, to designate
Spherical Harmonies in general.
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ZONAL HARMONICS.

1. 'We shall in this chapter regard a Zonal Solid Har-
monic, of the degree ¢, as a homogencous function of
(«® +9°3% and z, of the degree ¢, which satisfies the equation

a’v . dv 4V _
&ty T T

Now, if this be transformed to polar co-ordinates, by
writing 7 sin € cos ¢ for #, 7 sin 4 sin d) for 9> I cos 0 for z, we
observe in the first place, that o’ + y* =" sin’ 4. Hence
V will be independent of ¢, or will be a function of r
and @ only. 'The differential equation between r and @
which it must therefore satisty will be

7)1 d ar
e +§i—w2@(“9d@>

Now V, being a function of » of the degree 2, may be
expressed in the Torm 1P, where P, is a function of € only.

i)

Hence this equation becomes’

iy, wd s BN - onc
00 40 (Sm 6 d@‘) +3G+1) P=0, e (),
or, putting cos 8 =y,
ale-m Tleigen =00

In accordance with our definition of spherical surface
harmonics, P, will be the zonal surface harmonic of the
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degree v. When it is necessary to particularise the variable
involved in it, we shall write it P, (u).

The line from which @ is measured, or in other words
for which p=1, is called the Axis of the system of Zonal
Harmonics; and the point in which the positive direction
of the axis meets a sphere whose centre is the origin of
co-ordinates, and radius unity, is called the Pole of the
system. .

Any constant multiple of a zonal harmonic (solid or
surface) is itself a zonal harmonic of the same order.

2. The zonal harmonic of the degree 7, of which the
line p =1 1is the axis, is a perfectly determinate function of
u, having nothing arbitrary but this constant. For the
expression 7P, may be expressed as a rational integral
homogeneous function of » and z, and therefore P, will be
a rational integral function of cos 8, that is of u, of the
degree 7, and wlll involve none but positive integral powers
of e

But P, is a particular integral of the equation

d da.f(u)
- T i 16 =0....®),

and the most general form of f(wx) must involve two ar-
bitrary constants. Suppose then that the most general

form of f(u) is represented by P, f vdp.  We then have

=) BEE 1) O fodt (1 ) P

fl.
i {0= L= o G e
+20-@ s g fa- .o}

Hence, adding these two equations together, and ob-
serving that, since I’ satisfies the equation (3), the coefficient
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of |vdu will be identically equal to 0, we obtain, for the de-

termination of v, the equation

p n
rla-molrea-m giv=o
)

' dP,
whence P, (1-x% gﬁ+ 2 {(1 — ) a,#‘ — ;:,RJH;: 0,

or

dv (24D _2,5) _
—t’—'{‘(Z—J‘-W T— du=0,
the integral of which is

log v+ log P? (1 — p°) =log C, = a constant ;

T
S e
= I
Hence f?ld#—O'!' lem,
and we obtain, for the most general form of £ (u),
_ du
f(lu')—o‘Pl'-*-OlPiJ’m'

Now, P, being a rational integral function of u of 2

dimensions, it may be seen that f (1—(zf)—}” will assume the
. = i

form of the sum of 7+ 2 logarithms and ¢ fractions, and

therefore cannot be expressed as a rational integral function

of u. Expressions of the form P, (—l—%f)—lm are called Kugel-
n 4

Sunctionen der zweiter Art by Heine, who has investigated

their properties at great length. They have, as will hereafter

be seen, interesting applications to the attraction of a sphe-

roid on an external point. We shall discuss their properties

more fully hereafter.

3. We have thus shewn that the most general solution
of equation (2) of the form of a rational integral function of w
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involves but one arbitrary constant, and that as a factor.
We shall henceforth denote by P;, or P (u), that particular
form of the integral which assumes the “alue unity when “
is put equal to umty

We shall next prove the following lmportant proposition.

If h be less than unity, and if (1 — 2uh +h?)™* be expanded
in a series proceeding by ascending powers of h, the coefficient
of b will be P,.

Or, (1—2uh+h)#=P,+Ph+...+Ph'+
‘We shall prove this by shewing that, if H be written for
(1 ~2uh + h’)’é I will satisfy the differential equation
d[l
Z {(1 ) j\+h o @H) =0,

For, since H=(1-2uh+13%,

1 =
- H,=1—-2,u.h+h';
L dan
I du K
14 -
r ’——d—=11 -

(oo} -

1r
=— QI+ 3 (1 — ) I
I ( /1,) d/~"
=—2ull®+3 (1 —u*) LI
1 4
And U“ VSl h,
dl[ . b dH
dh W)=+ =1 (112 15 d,;>

=H*{1—2ub +1* + h (u—h)}
=I1°(1—ph);
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S B
dr

=3 (1 — uh) II® (u — b) — pH*.
1d wGH) &
Hence Ec—{;{(l—"b)ﬂ;}_‘-(w(}tﬂ)

= — S+ 3 {(1 = p®) h+ (2 — pk) (u = R)}II®
=—Sull®+3 (u (1 + 1) — 2u'k} H®

=—8u (II® - (1 — 2uh + 1*) 1%}

=0, since 1 —2uh + 2*=H,

d WAH) L&
d?{a_p),dﬁ}mdhﬁ(w)_o.

\

Therefore

This may also be shewn as follows.

If «, 7, z be the co-ordinates of any point, 2° the distance
of a fixed point, situated on the axis of 2, from the origin,
and R be the distance between these points, we know that,

B =o' +y'+ (&'~ 2)’,
il
and that I ve (ﬁ> =0.
Now, transform these expressions to polar co-ordinates,
by writing
x=rsin@cosp, y=rsinfsing, z=rcosb,

and we get
R =19 — 2r cos 0+ 2",

and the differential equation becomes

LAY ST AT 1> -
T (R) smddd " &0<1f =
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or, putting cos 0 = p,
d (r d o d _1_)} LI
’”a.—r=(z—z)+d7{(l _’U’)_?i[/,(li >
Now, putting r =2z%, we see that

Vs 1
—3 —h —'uﬂh’f‘l—jl'_

Z
1_H
or R_zl,
e
o p=h,
a4z /r h &
and ri ( )—z—,d]?(zblf)

.. the above equation becomes
h d . H\)
22 (D) + 5 {(1 md#( =0,
d (hII) d dH}
or h dh? d#{ ) L 0.
4. Having established.this ploposmon we may proceed

as follows:
If p, be the coefficient of % in the expansion of [,
HH=1+ph+pli+..+phi+...
R =h+ p AP +pl+ ..+ pht
L J;._, (rH)=1.2ph+2.3pl + ...+ + D) ph'+...
Also, the coefficient of A° in the expansion of
dald d dp,)
, _—
daja-mils Lla-m.

ITence equating to zero the coefficient of 2,

Fla-m Pl p-o
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Also p, is a rational integral function of u.
And, when u=1, II= (1 — 2k + I3}
=1+h+0+...+h+...
Or when p=1, p,=1.
Therefore p, is what we have already denoted by Iy
We have thus shewn that, if & be less than 1,
(1—2uh+ 0 3=P + Ph+...+ Pl +
If h be greater than 1, this series becomes divergent.

But we may write

1 1\
(b= 2uh +1)7% ,—(1—2%+-hz)
1 P, P
=Z<P"+'h_+“_'+7,‘+“')’
. 1.
since 3 1s less than 1,
P Pl P,
h h+ +l'“+

Hence P, is also the coefficient of A-C¢+D in the expan-

sion of (1 —2uk+ 1)} in ascending powers of }lb when & is

greater than 1. We may express this in a notation which is
strictly continuous, by saying that

P¢ = P—(H—l)-

This might have been anticipated, from the fact that the
fundamental differential equation for P; is unaltered if
—(t+1) be written in place of 7; for ‘the only way in
which ¢ appears in that equation is in the coefficient of P,
which is 2 (¢ +1). Writing — (¢ + 1) in place of 7, this be-
comes — (t+1) {— (¢ + 1).+ 1} or (¢+1)%, and is ‘therefore
unaltered.
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-

5. We shall next prove that
H‘l di 1
~ (& ..1d7 ( )
where r’=m’+y + 2%
1 2, 2, n-h

Let T=@rai=r0),
and let & be any quantity less than 7.

Then  {e+3'+(z =k} =f (= - k), .
and, developing by Taylor’s Theorem, the coefficient of £’ is

£ 1 a1
(=Dyg. or (0 ...i&?(?)'

Also {4y + (2= B = (r* — 2z + )

1 E kY
=r (i)
since z = pr,

in the expansion of which, the coeflicient of &' is
P,
Faieh
Equating these results, we get

2=V ()

The value of P, might be calculated, either by expanding
(1 — 2uh +12)7% by the Binomial Theorem, or by effeeting the

i+l 1
N d )
differentiations in the expression (—1) 1.2.3. z(l,,( 5

and in the result putting ;: p. Both these methods how-

ever would be somewhat laborious; we proceed therefore to
investigate more convenient expressions.
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6. The first process shews,'by the aid of Lagrange’s
Theorem, that
1

2 1\
21.1.2.3.. zd,u.‘("' )
Let y denote a quantity such that

1\8
-G )
I being less than 1. :

R:‘

Then :
= .
dy _ h _ 1 -
N T ! )* (1= 2uh + B
h A =
] 1\ 2p 1 .
Also (y—ﬁ) -—1~—~h~+p,
2y 2u
R s /e oy B L8
A h >’

2-—
Ly=pt+h <yi2 1)
Hence, by Lagrange’s Theorem,
RSN YO,
y—p+hT 1_2@( g )t

_.71,‘ d™ ot —1) -
e ( 9

therefore, differentiating with respect to x4 and observing
that

Y _ (1= 2uh+ YE,
S d =1\ 1 & -1y
(:'I.-—Q,ufh‘l'}l}l ]"-=1 +7bd}l“(——#z )‘I"ﬁa}'}}(‘ 9 )+---

}IL ) »d" (;1.2 - 1)‘+
VA, [0k, G 2B o e
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1 A
=25 .90 ; zdp (“ 1y ,
7 From this form of P, it may be readlly shewn that

the values of u, which satisfy the equation P,= 0, are all real,
and all lie between —1 and 1.

Hence P,=

For the equation
(#*— 1) =0 has ¢ roots =1, and 7 roots=—1,
(%L (W — 1)‘=fQ has ¢+ —1 roots = 1, ({ — 1) roots =—1, and
one root =0,

3 ,
Jd—i(pf—l)‘=0 has (i—..‘l) roots =1, one root between 1

and 0, one between 0 and =—1, and (?—2) roots=-1,
and so on. Hence it follows that

d//« (p,’ —1)'=0 has % roots between 1 and 0, and :Z)‘ roots be-

tween 0 and — 1, if ¢ be even,

and 1~roots between 0 and

;1 roots between 1 and 0, 7'—-_2

1, and one root =0, if 2 be odd.

Tt is hardly necessary to observe that the positive roots of
each of these equations are severally equal in absolute mag-
nitude to the negative roots.

8. 'We may take this opportunity of introducing an im-
portant theorem, due to Kodrigues, properly belonmng to
the Differential Calculus but which is of great use in this
subject.

The theorem in question is as follows:

If m le any integer less than i,

AP B BN
dx™ el = . g+m

Z:‘+m

) (@*=1)" T:+m (& = 1)%
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It may be proved in the following manner.
If (2~ 1)* be differentiated ¢ —m times, then, since the
equation
(@*—1)Y=0

has 7 roots each equal to 1, and ¢ roots each equal =—1, it
follows that the equation
i—-m
m (x—1)=0

d‘bi‘m

has ¢~ (¢ —m) roots (i.e. m) roots each =1, and m roots

each = — 1, in other words that (z* —1)™ is a factor of
:ici-m (-'L',— 1)‘.

We proceed to calculate the other factor.

For this purpose consider the expression
(m + ax) (.’E+ az) e (m + ai) (x+Bx) (w + Bz) e (x +Bt)'

Conceive this differentiated (I) z—m times, (I) 7+ m
times. The two expressions thus obtained will consist of an
equal number of terms, and to any term in (I) will corre-
spond one term in (II), such that their product will be
(x+a) (+a)...(@+a)(@+B) (z+B,) ... @+ B),ie. the
term 1n (II) is the product of all the factors omitted from
the corresponding term in (I) and of those factors only.
Two such terms may be said to be complementary to each

other.

Now, conceive a term in (IT) the product of p factors of
the form z+a, say @ +a, 2 +d" ...z +a?, and of ¢ factors
of the form z +8,say ¢+ B, 2+8,,...2+B, We must
have p+g¢=1—m.

The complementary term in (I) will involve
p factors e+ 8, 2+ B" ... x + L7,

q factors z+a, z+a, ...z +ay
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Now, every term in (I) is of 4 +m dimensions. We have
accounted for p + ¢ (or © —m) factors in the particular term
we are considering. There remain therefore 2m factors to
be accounted for. None of the letters

afs 1o w4 625 18y B, By
Bl BT e el
can appear there. Hence the remaining factor must involve
ma’s and m [3's,—say,
I R S A

185 35k -k
There will be another term in (II) containing
(+8) (z+B") ... (x+87) (z+a)(@+a,) .. (z+4a,)
The corresponding term in (I) will be, as shewn above,
(z+d)(@+a) ... @+d”) (@+B) @+8,) ... (z+8,)
(x+.@) (@+2) ... (@+.23) (z+ B) (x+,8) ... (@ +.0).
Hence, the sum of these two terms of (I) divided by the
sum of the complementary two terms of (II) is
(x+,2) @+ ,2) ... (@+,2) @+ ,8) (x+,8) ... (z+,5).

Now, let each of the a’s be equal to 1, and each of the 8
equal to — 1, then this becomes (2* —1)". The same factor
enters into every such pair of the terms of (I). Hence

I m
_((H)j = (2"—1)"™
i-m (2 i (2 i
Or d d(;i'"‘ﬁ =(-1)" %%m‘l)’ to a numerical

factor prés.

The factor may easily be calculated, by considering that
i-m/ 2 i
the coefficient of ‘z*™ in d——;,(;_,,AJ) 1s 2¢(2e—1)...(¢+m+1),
™ (z° — 1)4 .
T det 18

202v—-1)...C+m+1) {+m)... ¢ —m+1).

and that the coefficient of '™ in
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Hence the factor is

1 1.2...06—m) :
(¢+m) (z'+m——1)...(i—-m+1)’0r1 (z+m)'

9. This theorem affords a direct proof that O —— (,u. -1);

C being any constant, is a Value of f(w) which Qa,tlsﬁes the
equation

d N A B
a;[(1—#)fdf}+z(z+1)f(,k)_o.

d d i
) du dit W= 1)1= (w-1) dui (W= 1)‘
-1 Z

=z‘(i+1)j—#ﬁ(;ﬁ—l)‘

For (u*

from above,

ZZZ [W—D % {jﬂ (4 — 1)‘}:I=i(i+1) {j’; (;»‘-’—1)‘},

or

C% [(1—;»’) d%{j; (w* = 1)ﬂ +i(i+1) {E(i (- 1)f}=

Hence, the cm en dlfferentla,l equation is satisfied by put-
ting = —1)%
JW) =0 s

Introducmg the condition that P, is that value of f (u)
which is equal to 1, when w=1, we get

i d’

L= 2.1.2.. 2.t A

(u* = 1)

10. We shall now establish two very important proper-
ties of the function P,; and apply them to obtain the develop-
meunt of [ in a series.
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The properties in question are as follows:

If i and m be unequal positive integers,

1
f PP du=0.

And f Bdu =57
The following is a proof of the first property.,
We have
d % I _
la- #)d}+e@+na-a

d‘i{(l ,u.’) }+m(m+1)P,,,—O

Multiplying the first of these equations by 2, the second
by P, subtracting and integrating, we get

dr,
‘2\ ot | ‘2 m
+ﬁa+n—mm+ndhm@=o
Hence, transforming the first two integrals by integration
by parts, and remarking that
t@+1)=m(m+1)=0C—m) T+ m+1),

we get

o) (-

+ (= m) (i+m+1)[1’iP,,,dp.=0,

or

(I —-p) (Pm(flp P d—P—)+’%—m)(z+m+l IPP du=0,
since the second term vanishes identically.

F. H, 2
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Hence, taking the integral between the limits — 1 and
+ 1, we remark that the factor 1 — u® vanishes at both limits,
and therefore, except when © —m, or i +m+1=0,

f ;P‘ Podu=0.

We may remark also that we have in general
p.dF_p dP.
flpp d=lfl ) e it
. G —m) Grm+1)’
a result which will be useful hereafter.
11. We will now consider the cases in which
1—m, or t+m+1=0.

We see that ¢+ m + 1 cannot be equal to 0, if ¢ and m are

both positive integers. Hence we need only discuss the

case in which m =1 We may remark, however, that since
1

P,=P._,,,, the determination of the value of f P dp willalso
1

1
give the value of f PP, du.
-1

1
The value of f PFdu may be calculated as follows:
-1

(1 =2+ ) =P+ Ph+...+ Pl +...;
(U =2uk+ 22 = (Py+ Ph+ ... + Pl +...)°
=P+ PP+ ...+ PR+ ... :
+ 2P Ph+ 2P PI*+ ...+ 2P, P} +...

Integrate both sides with respect to x; then since

f (1~ 2uh 4+ 12 dp = — - log (1~ 2k 4 15,

we get, taking this integral between the limits —1 and +1,
e 1~+—7‘=f P’dp+k2f1 Pidu+t ... +lz"”fl Pldu+ ...
ho21—h e G ot T

all the other terms vanishing, by the theorem just proved.
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Sl—h 2141

5 5

Hence2(1+3+ +2+1+ >

Now log +k-—2(h+l+ +hh +. )

1 1
= f Prdy + I f Pldp + ... + h"f Prdu + ..
-1 -1 -1

Hence, equating coefficients of A%

1 R 2
f_ Pédp=gr -

12. From the equation f P.P,du=0, combined with

the fact that, when u=1, P, —1 and that P, is a rational
integral function of g, of the devree 1, I’, may be expressed
in a series by the following method.

We may observe in the first place that, if m be any
1
integer less than 1, f uw"Pdu = 0.
1

For as P,, P, ... may all be expressed as rational in-

tegral functlons of p, of the degrees m, m —1 ... respectively,
it follows that #™ will be a linear function of P, and zonal
harmonics of lower orders, "™ of L, and zonal harmonics of

m—y

lower orders, and so on. Hence f 1" Prlp will be the sum of
a series of multiples of quantities of the form f L. Pdy,

m being less than ¢, and therefore f ' u"Pdu=0, if m be any
integer less than <. -
Again, since
Q—2uh+ 1) =P+ Ph+ ...+ P, i + ...
it follows, writing — % for h, that

(1 +2ph+ R =P~ Ph+ ...+ (-1} Pk +
2—2
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And writing — p for w in the first equation,
(1+2uh+ 3 4=P/+ P/h + ... + P'W +
P/, P/...P/ ... denoting the values which P, P,... P,
respectlvely assume, when — p is written for u. Hence
P/=P, or — P, according as ¢ is even or odd. That is,

R. involves only odd, or only even, powers of ¢, according
as ¢ is odd or even*,

Assume then
-P ‘Ai/"’ +4, -2#‘ 2t
Our obJect is to determine 4,, 4, , ....

Then, multiplying successively by £ u™ ... and inte-
grating from —1 to + 1, we obtain the following system of

equations:
A, 4, il _
,21,—1+?’z—3+ +Zz—"s—1+"°_0’
A, Ay 51 A, _
gi—stg st -ty gt =0
'A:‘ Ai—? 'Az'—z.r
i1 tai—gs—gt v _ge_g T =0

........................

And lastly, since I, =1, when p=1,
A+ A+t A+ =15

the last terms of the first members of theqe several equa-
tions being

Ao “Ao Ao if 2
i W oy T 4,, if i be even,
A, A4 A

A, 4, 4 P
i g9 A,, if 7 be odd.

13. The mode of solving the class of systems of equa-
tions to which this system belongs will be best seen by
considering a particular example.

* This is also evident, from the fact that P; is a constant multiple of
& .o
g -1
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Suppose then that we have
z Yy z

a+a+b+a+c+a= ’
z K

=0
a+,8+b+/8 c+B ’
x Y z i

a+w+b+w+c+w o’
From this system of equations we deduce the following,
0 being any quantity whatever,
® Y L * _1 (60— a) (0—P) (a+w) (b + o) (c+w)
a1 0 5107 010" o (0=w) (0—A) (@+6) (b+6) (c+0)"
For this expression is of — 1 dimension in @, b, ¢, «, 53, v,
0, »; it vanishes when f=ga, or =20, and for no other

2 . 1
finite value of 6, and it becomes = =0 when € =

We hence obtain

(—a) (0 —P) (a4 ) (b+ o) (c+w)
o+@ 05+ 50) =6 eelwe) G Gre)

and therefore, putting 6 = —aq,
1(a+a)(a+B) (a+0)(d+o)(ct+w)

e @l (-o@-p '
with similar values for y and 2.

And, if ® be infinitely great, in which case the last
equation assumes the form x +y+2z=1, we have

_(a+a)(a+B)
(@ =10)(a—c)’
with similar values for y and 2.
14. Now consider the general system
T, Gy | x,

= — . =0
a, +a, cz‘._2+a+ +a,._2‘+a‘+ d

= SRR | I}

a,+a,_, O, + %y a; o, L+ %y
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Z;

(It,_z
————— ...+ e =0
a;+a,_, + ;g gy gt Qy, + ’
Z; Lig Li_os =}_ .
a+w+a—+w+ +——._2‘+w+--- P

the number of equatlons and therefore of letters of the

forms z and a, bemor 5 1f 2 be odd, = + 1if 7 be even; and
the number of letters of the form a being —2—1 if 7 be odd,

and 3 — 1 if i be even.
We obtain, as before,
z; Lo
ai+0+a +9+ a ,_2,+0+°“
1 (0=2) (0=5)... (0= 1) oo (0,40) (04 0)oon 0y 0) ..
(C!)—Cl )(0) ai—?) (w a:—za) (a +9)(az—2+9) (a1—21+ 9)
and, multiplying by e,_,, + 6, and then putting § =—aq,_,,,
1 (aa—w +a ) (ai—zl s al—?) (ai-gv + ai——w)' hig
0 (=) (@— ) e (@ — Gpp) s
(040) (@, 0) 1y +0)...
(az‘—-Qc - a’i) (a’i—y - ai—z) se (ai—w - a1 or ao) )
15. To apply this to the case of zonal harmonics, we see,

by comparing the equations for = with the equations for 4,
that we must suppose & = o ; and

3-20

a,=1 a_ ,=1—2,..a_,=1—2s...
g,=1—1,a ,=t—3,..4,,=1—2s—1...
Hence
_(2—25=1) (21 —25—9)...[2 (i — 25) —1]...
"‘2'_(—23){ (23—2)}...{(1,'——23—1) or (1—2s)}
—(- ) —25—1) (26 —25—3)...{2 ({—2¢) —1]...
23(23—0) 2x2.4..(1—25—1)or (i—25)"

A
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Or, generally, if ¢ be odd,
4 (20-1) (26 —3)...(: + 2)
ST -1
(2v~3) (2t —5)...2
2.4.6-3)x2 °

.................................

And, if 7 be even,
_@i=1)@-3)..6+1)

2. 4.0
4 =_(‘21§—. (2¢ = 5)...(1—1)
-2 2. 4..—2)x2
4 _("L—5)(H1,—1 ..(z—=3)
= 2.4...(t—4)x2. 4 ’
1—3)...1
4, (-1t =D 6=

We give the values of the several zonal harmonics, from
PNtk mcluswe, calculated by this formula,

2=l
P =p,
P=gi-g,
B =1
2 3
I’S=g;&’—2#
S5u® —3u




P
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7.5 , 5.3, 3.1
=34t gkt
_ 35u'— 3047 +3
e i
9.7 , 7 s o lees
ot T o ot T g
63u° — 706+ 15
— 8 »
11.9.7 , 9.7.5 +»7753 . 5.3.1
=5 40" 2.4axztToxa.4® T24%
_ 231p°—315pt + 10547 — 5
16 0
_13.11.9 , 11.9. 7 9.7.5 , 7.5.3
T 946 P Toaxet Tax2 4P "o g
_ 42947 — 6934° +317;¢—‘33y,
= 16
_15.13.11.9 , 13.11.9.7 +1 .9.7.5
2.4.6.8 " o.a6x2" o axz.a”
‘ _9.7.5.3 , 7.5.8.
2x2.4.6* T340,
64350 — 120124 + 6930 — 12604° +35
= 128
17 15.13.11 , 15.13.11.9 , 13.11.9. 7
54.6.8 PT 224 6x2 P T2.4x2.4"
_11.9.7.5 4 9.7.5.
ax2.4.6" T2 4, 6
1215354 — 2574047 + 18018° — 46204° + 315
- 128
19.17.15.13.11 ,, 17.15.13.11.9 §+15,§ 11. j
2.4.6.8.10 P24 0.8x2” 9 4 6x2.47

DO =
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_13.11.9.7.5 (G 11.9.7.53, 9.7.5.3.1
2.4x2.4.6" 72%x2.4.6.8" T2.4.6.8.10

. 461894~ 109395u°+ 900904°— 30030x"+ 3465’ — 63
" 256 ~ i
Tt will be observed that, when these fractions are reduced
to their lowest terms, the denominators are in all casecs
powers of 2, the other factors being cancelled by correspond-
ing factors in the numerator. The power of 2, in the
denominator of P, is that which enters as a factor into the
continued product 1.2...2.

. 1
16. We have seen that f u" P dp=0,if m be any
-1
integer less than 7.
It will easily be seen that if m + ¢ be an odd number, the

values of f u™ P,.du are the same, whether g be put=1 or

—1; but if m +7 be an even number, the values of f,u’” P, .du
corresponding to these limits are equal and opposite. Hence,
(m + ¢ being even)

1 1

f_ly.'"P‘.d,u= zfo,wp,. o

1
and then f/t’”]ﬁ.dp:(), fm=1-27—4......

0

1
We may proceed to investigate the value of f " Py du,
0

if m have any other value. For this purpose, resuming the
notation of the equations of Art. 13, we see that, putting
O0=m+1, and w = x, we have

- & _ Te — T

ai+m—!—1+a‘_2+m+1+ """ +a‘_2‘+7n+l
_ (m+l—a)m+l—a)..(m+1l=0,)...
(+m+1)(a_+m+1).. (¢ ,+m+1)...°
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and therefore, putting z,=4d,..., a,=¢..., q,=1—1...,
A, A

we get

lm i-2 Ai—w

foﬂ P"dp‘=z’+m+1+z’ z+m+1+ +z—‘)s+m+1
. (m—i+2)(m—i+4)...(m—1)

T i+l (mA—1).. (m+4)( m+2)
(m—7+2)(m—7+4)...m
m+i+1)(m+i—1)...(m+3) (m+1)
Iu the particular case in which m =1, we get

o 2.4...(—-1 .
fo PR = T @i= D) ( (i+)4) wxg ¢odd)
_ 2.4..1
T+ Ri=1)...C+3) i+1])
17. 'We mayapply these formula to develope any positive

integral power of w in a series of zonal harmonics, as we
proceed to shew.

if 7 be odd,

and = if ¢ be even.

and

(¢even).

Suppose that m is a positive integer, and that u™ is de-
veloped in such a series, the coefficient of P, being C;, so
that

pt=2CF;

then, multiplying both sides of this equation by P, and inte-
grating between the limits —1 and 1, all the terms on the

right-hand side will disappear except f C, I*, dp, which will

2
become equal to % T1 O

r1
Hence 0=‘Z;1J pum P du,
-1

which is equal to 0, if m + ¢ be odd. Hence no terms appear
unless m + 2 be even. In this case we have

0,.=~’+1f @ P, du
-1

1
= (20 + 1)f w" Py dp.
3 Q




ZONAL HARMONICS. 2k

Hence the formula just investigated gives
= (o (m—7+2)(m—7+4)...(m—1)
= R D e T =) LA D)
if 7 be odd, and

(m—1+2)(m—7+4)...m
+1)(m+i—1)...(m+3) (m+1)

Ci= Qi+ 1)y

if 7 be even.
Therefore if m be odd,
2.4.6...(m~1)

st @m+1) (2m—1) ... (m+4) (m+2) Pt
+7W4%—("1LT2)P"+E?FQR'
If m be even,
S e ) 2m+1) (‘.Zn‘:):i) 6(777:&4- 3) (m+1) Btk
H gD a1

Hence, putting for m successively 0, 1,2 ... 10, we get

p=1r,
. 3
#=3P1=1’1)
N 1, 2.1
p=dsyhtg =g itgl,
2 3
w=Terg Lt P,
°o 3
el
J s}
e 2.4 4 1
w5 sl gty L
8. 4. 1
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2.4

—11ll 9 7P+1 7P+ P

=@P5+9P5+ ’Pv

7
S 131321%.)&71D Iy 9671“’5%7})#%1)0
231P+,.,_P+ P+7P
15 2:4.0 4.6

R I — D
15.13. 1L, 9P’+1113 11, 9P5+711 glatg °r,
= ‘)9P+ P+ P+ P,

. 2.4.6.8 4.6.8
w=1 s a9 et B 1 9P

1
+91§—11 JP+5 oLty Lo
128 64
=6a35 2t a5 143P+ P+ Lo

2.4.6.8 4.6.8
9 __ =
ek 19.17.15.13.11P0+1"17 15.13.11%7

6.

pl
+1lgzs- 111 743 - 111D+3 1P

128 192 56 3
=32155 Lo +2431P7+(EI5+H3P3+T1‘P1’

2.4.6.8.10 4.6.8.10
10 __ J—
w=2 5997 .15.13. 11Dt 39 171515110

6.8.10 8.10 10 1

+1317.15.13.111*’+91"5.‘13.1—1P“L"’ﬁ;.'ﬁ]‘nﬁﬁﬂ
256 128 39

= se189 gy Dot gy Dot 143P+14_3P+ P
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18. Any zonal harmonic I, may be expressed in a finite
series of cosines of multiples of &, these multiples being
16, (¢ —2)6.... Thus

a- 2,“”"*' By E =P+ Ph+...+ P+
therefore, writing cos 6 for u, and observing that
1—2cosbh+h*=(1— heV=1 o) (1— ]le_v_‘w),
we obtain
(l—he\/—_w) (1 — ke —19) Y =P+ Ph+..+Ph+..
or

V=1e g 2 V=120
(1+ he +2 4‘]“:‘ +.

3.2 -1, g,
+ —2 4 .(./.in_) W/ )
X (1+%he‘\/‘_1.9+‘12—-'2h26‘\/:129+
. 1.3...(22-1
Tt f.‘.zzi“) e )

=P +DPh+...+Pk+...
whence, equating coefficients of h‘,

1.3...(20-1) (2 -3)
P,= T2cosz€+ — ——( = “)) ‘)QCOS(Z—b ) 0
+‘1) - 0) 8 ?-003(1—4‘)9+

L (2—4)2. 4
9 2

the last term being {L—?—;—(}%l-)} if ¢ be even, and

i _.%_': ]1)) 1.3. ((Z ;-cos g, if 7 be odd.

19. Let us next proceed to investigate the value of

f" P, cos mf sin 6 d6.
0
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This might be done, by direct integration, from the above
expression. Or we may proceed as follows.

~ The above value of P, when multiplied by cos m8 sin 8
(that is by % {sin (m+1) @ —sin (m — 1) 8}) will consist of a

series of sines of angles of the form {¢ — 2n + (m £ 1)} 8, that
is of even or odd multiples of €, as ¢+ m is odd or even.
Therefore, when integrated between the limits 0 and 7 it
will vanish, if 2+m be odd. We may therefore limit our-
selves to the case in which ¢+ m is even.

Again, since cos mf can be expressed in aseries of powers
of cos ¢, and the highest power involved in such an expression
is cos "‘9 it follows that the highest zonal harmonic in the

development of cos m@ will be P, Hence f P, cos mf sin 0 df
0
will be =0, if m be less than 7.

Now, writing
P,=C,cos10+ C,_,cos (1 —2) 6 +...
we see that P, cos mfsin 6 d0 will consist of a series of sines
of angles of the forms (m+¢+1)6, (m+7—1)6...down to

(m—z—— 1) 6, there being no term involving mé, since the
coefficient of such a term must be zero. Hence

f"P, cos mf sin 6 d6,
0

will consist of a series of fractions whose denominators in-
volve the factors m+¢+1,m+¢—1... m —¢—1 respectiv ely
Therefore when reduced to a common denommator the result
will involve in its denominator the factor

(m+i+1) (m+7-1)...(m+1)(m—1)...(m—z-1)
if m be even, and

(m+i+1)(m+i—1)... (m+2) (m—2) ... (m—c—1)
if m be odd.

For the numerator we may observe that since

f:Pi cosm @ sin 646
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‘vanishes if m be less than ¢, it must involve the factors

m—(t—2), m—(@—4)...m+ (7—2), and that it does not
change sign with m. Hence it will involve the factor

m—@E-2)}m—-(—-4}... m—=2)m*(m+2) ... m+¢-2)
if m be even, and
m=E=2)}{m-@G—-4)}...(m=1)(m+1)...(m+¢-2)
if m be odd.

To determine the factor independent of m, we may pro-
ceed as follows:

P,=C,cost0+ C_,cos((—2)0+...;

<. Beosmf=3 C, {cos (m +1) 0+ cos (m — i) 6}

+%C‘_2{cos(m+i—2)9+cos (m—1+2)0}+...;

. Peosm@sin 0= 3 C,{sin (m +5+1) 6 —sin (m +i~1) §
+sin (m—7+1)0 —sin (m—7—-1) 6}
45 Oy fsin (m+7—1) 0 —sin (m + -~ 3)0
+sin(m—7+3)0—sin (m—7+1) 0} +...;
f"P‘cos m@ sin 0 df
1]

_g, _1 - 1 " 1 1 -
T2 lmti+l m+i—1" m—7+1 m—i—1
C., 1 1 1 1
= ';‘{m_—ﬂ-l‘ﬁw_—:ﬁ;n—_z@s‘;n:i;l}+-'-

_of_ 1—1 7. 7—1
T w1} m—(—1)

7-1 ©t—3
+ Ol )
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Now, when m is very large as compared with 7, this be-
comes

since C;+ C_,+...=1, as may be seen by putting 8= 0.

Hence f P, cos mBsin 8 df tends to the limit — -2", as'm

is indefinitely increased.

The value of the factor involving m has been shewn
above to be

{m—(z——-}{m—(i—4«)}...(nz~2)m2(m+2)...(m+z'—2)
m—=E+1)jm—-@G-1}...(m—1)(m+1)..0n+7+ 1)
if m be even, and

= (1= 2)} pn = (=)} oo (n =) (m+1) .. (m+7=2)
{m=(G+1)} m—G=1)}.c. (m—2) n+2) ... (m+i+1)
if m be odd.

Each of these factors contains in its numerator two factors
less than in its denominator. It approaches, therefore, when

m is indefinitely increased, to the value ol Hence

f"I’,.cosmﬁsin 0do
0

Sim= (=2} = (=)} ... (n=2)m (0 +9).... [m+ (5= 2}
{m—(z+1)} im—@E—=1)}...m—1)(n+1)...{m+ (Z+1)}
if m and ¢ be even, and
I fm—(@—-2)}{m—(E=4)]...(m=1)(m+1)... {m+(:-2)]
T m =+ D) m—(E=1)}...(m—2)(m+2) ... [+ (C+1)}
if m and ¢ be odd.

In each of these expressions ¢ may be any integer such

that m —< is even, ¢ being not greater than m. Hence they
will always be negative, ewcept when © s equal to m.
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20. We may apply these expressions to develop cosmé
in a series of zonal harmonics.,

Assume
cosmf=B,P,+B, P, .+..+BPFP+..
Multiply by P:sin 8, and integrate between the limits 0

and 7, and we get

Loim=(E—=2)}{m—(—4)}... {m+(z'—2)}= 2
-+ m G-} ..+ (+ 1)} 20+1

Hence

e @1y =D} m= (= 4)} ... fm + (- 2)}
(8 ){m— 4+ 1)) n—(E=1)} ... {m+ (@ + 1)}

Hence, putting m successively =0, 1, 2, ... 10,

cos00=P;
cos6=D;
20-—5— 2 __p_lp
R S W I W Sl el
4 i
=§P2_§Po;
2.4 1
COS39——7_1—1.5A'7Z73—3>1T5P1
8 g
T
2.4%.6 4
== — o [ _
cosdl=—9 5 155700 sl
1 )
RREW AL
64 16 i
=55 Dimor e 1300
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2.4.6.8 4.6

00559=—11:—1—T—§«7 97 11P 71—3——7—9P3
-3.Lp,
= B—§ R B
coa 66==13 1f§562789121 TERG
=05 5 oy B B B o B,
=91 2= g5 B a1 B g B
°°S79=‘15—121 436 89110111‘)3 10P
‘111".‘;47'('3"5)8"110 3.5, ; b “Ef.;’g &
=535 B= f17 B E?Ps—fsfi;
con B0= =17 == :;L g 7. 9101112:'1.3141,) 77 I3
. - g
_131‘.:4 . SJ 1101 113 SRR ”SJ ?12.13])*
"55.7.8;’.1’11)2_7%91)“
o d1. Y G». .87%1101.?1123..'11?—..1167.719 L
_13“1’.34..?..;..1]{).'1132.71];'17P"113 Gf 1110 11: 15 15
;820 .. 1

=P, P

= WA IR T [
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32768 3072 128 16 3 ..
=1o155 02~ 24313_%_5})5'1(31)8'771)“

2.4.6.8.10°.12.14.16.18

c0s100=—21 5 —9== 5 11.13.15.17.10. 20 L »
e e et
‘133.5.67'.89'.11012:122:11‘i 7 fe—? 7 1?11123‘1‘) i
x
'57.9.1?1.13132_ 9 111 7
~Toits0 P sttt B Toag o= 1001 B o0 B
— s T

21. The present will be a convenient opportunity for
investigating the development of sin € in a series of zonal

harmonics. Sinee sin 0 = (1 — u?)3, it will be seen that the
series must be infinite, and that no zonal harmonic of an odd
order can enter. Assume then

sm=C, P+ C,P,+...+ C.P+ ...
¢ being any even integer.

Multiplying by P, and integrating with respect to p
between the limits — 1 and + 1, we get

! 2
f_lﬂs1116¢7y Slear C;

Q) 1
2 Ci=~—l,+1f P sin 0du

=“2+1f P sin* 8 d6,

supposing P; expressed in terms of the cosines of 6 and its
multiples

='L:1 P, (1 — cos 26) d6.
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Hence, putting ¢=
00_4f (1 —cos20) d6="

e

Putting ¢ = 2, and observing that P,= + E cos 26,

474
T 5] — iy
Oz:Zf +3(:os,.6;(1 cos2¢9)d0
5 [ 3
=Ef 1 +2cos 20— (14cos4d) dbf
0 -~
5

For values of ¢ exceeding 2, we observe, that if we write
for P; the expression investigated in Art. 18, the only part

of the expression j "P,- (1 —cos 20) d which does not vanish
0

will arise either from the terms in P; which involve cos 26, or
from those which are indepeudont of . We have therefore

2041 " L) 1.8, (1-3)
e N R L

+{§ Le “;1)}] (1 — cos 26) d6

_2%+1 1.3...(6-1)1.3...(=3)
- et e (=2
f"(gl ““zcosoe)(l—cosoe)de
0
_2+11.3...(¢-1)1.3... (- 3) (z_—*_»z:l-hl)
=T 24.. i 2.4..6-2"\ 7 T2

. 2@'-}-11_.3... (f=1) 1.3... (#=3)
=g By (i 4+2) 2.4, (E—2)¢

Hence sin():Z_Po_g:’;pz_
_(2+1) w1, 3 . ((-1)1.3. (2'—:3)_ .
2 2.4 0@E+2) 2. 4. (=27 T

¢ being any even intefrer




04

ZONAL HARMONICS. by

22. Tt will be seen that ég being a rational and integral

function of ™%, w™®..., must be expressible in terms of
IR AR To ‘determine this expression, assume

P,
Ofm O P+ 0 Pyt ot OuP + ...

then multiplying by 2, and integrating with respect to u
from -1 to +1,

fP"' G —Cf i "m+10
And f fdp Pl’,—fPiT"‘d
Now, since 7> m,
fP, "’d,u 0;

w[ BSE du=(pRP-(RPY =2,

since either m or ¢ must be odd, and therefore either P, or
P=—1,when p=—1;

5}
S 2="—C,0r C =2m+1;

2m+ 1 n

fl%= Z-1)P_ +2t=3) P+ (20=9) D+ ...
dP, dP -

Hence 76 = d# =(2¢-1) P_.

23.  From this equation we deduce
1
P-P,=-(i-1)[ P
s

the limits x and 1 being taken, in order that P, — P, , may
be equal to 0 at the superior limit.
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Now, recurring to the fundamental equation for a zonal
harmonie, we see that

1 o AP,
j i1 &) i(i—l)(l_'u) d#ly

201 dP

-1

=) 1-p) =, »

- G'FF—I_I)( #) dH

. 1)5—-Pi-2=_

24, We have already seen that f P.P,du=0, v and m
being different positive integers. Suppose now that it is
l

required to find the value of f PP, du.
®

We have already seen (Art. 10) that

(-w) (P 25 - 1)

(@—m) @T+m+1)

[ PPudu=
®

And, from above,

: _t(+1) ]
A-p) 7 ==y Pea=Ld;
_ 8P, _mm+l) p
(A=) e~ 2m+1 (Ponss = Poy)-
. i _ 1 (m-]-l) _
..f“RPmdu—(———i_m) (z.——+m+1){2m+1 P, (P, —P..)

+1
7’2(:'-]- l) Pm (PH»I 1-—1)}‘
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25. We will next proceed to give two modes of ex-
pressing Zonal Harmonics, by means of Definite Integrals.
The two expressions are as follows:

©omlo {p (e~ 1) cosH}
Po=y [ {pt (=D cos g ay

™

These we proceed to establish.

Consider the equation

1 ay 1
0o a— a — b cos S (- b’ﬁ

The only limitation upon the quantities denoted by a
and b in this equation is that 0® should not be greater than

a® Tor, if I* be not greater than a? cos % cannot become

equal to g while & increases from 0 to 7, and therefore the

expression under the integral sign cannot become infinite.

Supposing then that we write z for a, and ¥/=1p for b,
we get

1~ (ZS’ _ 1
wlo 2=V "1pcosd (2 +p)}

We may remark, in passing, that

P » [ >

0 z—V—1pcosy Jo z+N—1lpcosH
" zdYy
_fo 2+ p’cos’y’

and is therefore wholly real.

Supposing that p*=2a’+ 3, and that &'+’ + 2" =" we
thus obtain
J i ay 1

mJoz——1pcosy T
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Differentiate ¢ times with respect to z, and there results
G d_‘f” & 21
wdid)o z—N—=1pcosy de'r

et —1Y g [ ay
Bl st .(2 3).1 dz' fo z2—N—=1pcosy
R dYy
- _fo (z—=V—=1pcos¥)*’
In this, write pur for z, and (1 — p®)} 7 for p, and we get
1~ NS
Fo= o {w— (/bz—].)TiéOSS}i+i ’

which, writing 7 — & for ©, gives

_L . .
= (—1)y1.2.8...%.

B fr s
P o ot (= 1) oy

26. Again, we have '
1 L[~  dy
(=8t "7 )y a—Dbcos v’
In this write 1 — p for @, and + (u* — 1) & for b, which is

admissible for all values of % from 0 up to p— (’ —1)5 and
we obtain, since ¢® — b* becomes 1 — 2uh - 1%

1 b dyr
(1 —2ph +1° é_;r o 1—uh T (42 =1)% L cosyr

_1fr dor
Tl l—{ut (W —1)tcosY b

A1+ Ph+ .+ PR
=71J A [1+{p £ (= 1) cos ¥} b+
0 ¢
F{pt =12 cos Y} +...].
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Hence, equating coefficients of 2%,

1 s
;=;rf0 {wt (p?—l)%cos«p}‘d\p.

The equality of the two expressions thus obtained for P, is
in harmony with the fact to which attention has already
been directed, that the valuc of P is unaltered if — (¢ + 1)
be written for <.

.

27. The equality of the two definite integrals which
thus present themselves may be illustrated by the following
geometrical considerations.

Let O be the centre of a ecircle, radius @, € any point
within the cirele, > C@) any chord drawn through C, and let

0C=b, COP=%,C0Q=+. Then CP*=a’+ - 2abcos ",
CQf=d"+ 10— 2ab cosy. Hence

(@ + 0* = 2ab cos V) (¢® + b* — 2ab cos ) = («’ — b*)?;

sinydy  sinyrdyr
@+ 0 —2abcosy T @f 4 U — 2abeosy
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Again, since the angles OPC, 0QC are equal to one
another,

sin@ _sin OPC_sin 0QC sinvr

P00 T 0C T 0@’
. sin ¥ sin
T (@b~ 2abcos)E T (aF + b — 2ab cos )t
whence a3y o =0,

(@ + b* — 2ab cos ©)} - (a* +b* — 2ab cos )
(a® — e
(@ + b*— 2ab cos H)*

Yy
(@*+ 0" — 2ab cos )™

= (a*+b* — 2ab cos ¥)'* 5

(a‘z - bﬂ)?iﬂ

=— (a’ + b"— 2abcos )’ d.

In this, write o’ 4+ b*=p, 2ab=F (&*— 1)}, which gives
a’—b*=1, and we get

dS— 1
ht (F— Dfcosapm = lw t (1) cos gy

We also see, by reference to the figure, that as & in-
creases from 0 to 7, ¥ diminishes from 7 to 0. Hence

" ay ™ - ;
-[0 (Wt (u*— 1)15 cos S} =j0 {pt (@=1)cosY}'di.

28. From the last definite integral, we may obtain an ex-
pansion of P, in terms of cos 6 and sin . Putting u = cos 6,
we get

]’;=2—17‘J:[{cos 6+~ —1 cos Y sin O)}*
+ {cos § — N =1 cos Yr sin 6}] dyr

-1 [ teos 0y =20 1) cost 4 (cos 0 (sin )" ...
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It (_ l)mi (7: - j;).2(7’_22;:” + 1) (COS 1Pz)m (COS 6)6—25: (sin g)sm

+ .} dy

)

t(t—1)...0—2m +1) Zm —1) (2m—3)...1
1.2...2m 2m (2m —2)...2

t(i=1)...(s —-2m+1)

And

= (cos 0)' — i 5 1) (cos 6)"* (sin 6)* +

SCES (z) 4(1 7,§;n * D) (cos ) (s € +...



CHAPTER III.

APPLICATION OF ZONAL HARMONICS TO THE THEORY OF
ATTRACTION. REPRESENTATION OF DISCONTINUOUS
FUNCTIONS BY SERIES OF ZONAL HARMONICS,

1. W= shall, in this chapter, give some applications of
Zonal Harmonics to the determination of the potential of a
solid of revolution, symmetrical about an axis. When the
value of this potential, at every point of the axis, is known,
we can obtain, by means of these functions, an expression
for the potential at any point which can be reached from
the axis without passing through the attracting mass.

The simplest case of this kind is that in which the
attracting mass is an uniform circular wire, of indefinitely
small transverse section.

Let ¢ be the radius of such a wire, p its density, & its
transverse section. Then its mass, M, will be equal to 2mwpck;,

and if its centre be taken as the origin, its potential at any
M

A
Now, this expression may be developed into either of the
following series :

;‘_[{1 e Lea

point of its axis, distant z from its centre, will be

_-,___i_ -
c 2¢® ' 2.4

a 12, 1.3¢ 1.3...(%-1)c*
?{1_éé2+2_4;‘-... R D e RN S Y

We must employ the series 1) if z be less than ¢, or
if the attracted point lie within the sphere of which the ring
is a great circle, and the series (2) if 2z be greater than c,
or if the attracted point lie without this sphere.

= (=1 '3_45“'@;32;4- }.(1),
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Now, take any point whose distance from the centre is 7,
and let the inclination of this distance to the axis of the
ring be 6. In accordance with the notation already em-
ployed, let cos § = p. Then, the potential at this point will
be given by one of the following series :

My 1. 2 1.3
:ﬂ“’zﬂ§+fz &~
1.3.5..20~1) , ) .
N g ety (1),

M 1.¢ 1.3_.¢
;{R"QRF+§AR?*

1.3.5...(2/-1 ,
+("1“'_z.4.(5(...2i—)132' whe }"'(2)'

For each of thesc expressions, when substituted for T
satisfies the equation V*V =0, and they become respectively
equal to (1) and (2) when @ is put =0, and consequently
r=2z. The expression (2') also vanishes when 7 is infinitely
great, and must therefore be employed for values of » greater
than ¢, while (1) becomes equal to (2') when » =¢, and will
therefore denote the required potential for all values of »
less than c.

Thesc expressions may be reduced to othm forms by
means of the expressions investigated in Chap. 2, Art. 23, viz.

P, —'»J‘ (w4 Jp' =1 cosD)' dY,

or P, = f (1 + 1" = 1 cos ) dopr,

Substitute the first of these in (1') and (observing that
pr=z) we see that it assumes the form
M [~ - 1{z+(s" —72)1’00‘3%}
wC Jy ‘) ¢t

1.3 {z4 (2* =1} cosH]*
R 6

- } asy,
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which is equivalent to
x » |
7)o [¢+ 2+ (& — 1)t cos O

The substitution of the last form of P, in the series (2')
brings it into the form

mT 1 1 ¢
;fo {z+(z2—7"2)5cos% 2 {24 (& — )P cos D)

4

1.3 ¢
-+ 2.4 {z + (22 B 7,2)}5005%}5 o ....}d%"

which is equivalent to

M f " I
w Jo [{z+ (& — %)= cosH* + ¢4

2. Suppose next that the attracting mass is a hollow shell
of uniform density, whose exterior and interior bounding
surfaces are both surfaces of revolution, their common axis
being the axis of z. Let the origin be taken within the
interior bounding surface; and suppose the potential, at any
point of the axis within this surface, to be

A+ dz+ A28+ ..+ A+ ...

Then the potential at any point lying within the inner
bounding surface will be

AP+ APr+APr +...+ AP +...

For this expression, when substituted for V, satisfies the
equation V2V'=0; it also agrees with the given value of
the potential for every point of the axis, lying within the
inner bounding surface, and does not become infinite at any
point within that surface.

Again, suppose the potential at any point of the axis
without the outer bounding surface to be

B, B B B
et i T etk RTE
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Then the potential at any point lying without the outer
bounding surface will be

%? aa+ga+ +§£+“

For this expression, when substituted for V, satisfies the
equation V*}'=0; it also agrees with the given value of the
potential for every point of the axis, lying without the outer
bounding surface, and it does not become infinite at any
point within that surface.

By the introduction of the expressions for zonal har-
monics in the form of definite integrals, it will be found that
if the value of either of these potentlals for any point in the
axis be denoted by ¢ (z), the corresponding value for any
other point, which can be reached without passing through
any portion of the attracting mass, will be

;;‘J'o ¢ (2 + (2 — ) cos O} d.

3. We may next shew how to obtain, in terms of aseries of
zonal harmonics, an expression for the solid angle subtended

by a circle at any point.  We must first prove the following
theorem.

The solid angle, subtended by a closed plane curve at any
point, is proportional to the component attraction perpendiculur
to the plane of the cwrve, exercised upon the point by « laming,

of uniform density and thickness, bounded by the closed plune
curve.

For, if dS be any element of snch a lamina, # its distance
from the attracted point, @ the inclination of  to the line
perpendicular to the plane of the lamina, the elementary
solid angle subtended by dS at the point will be

dS cos 6

7,’4

And the component attraction of the element of the
lamina corresponding to dS in the direetion perpendicular
to its plane will be

pk (ff cos 0,
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p being the density of the lamina, % its thickness. Hence,
for this element, the component attraction is to the solid
angle as pk to 1, and the same relation holding for every
element of the lamina, we see that the componeént attraction
of the whole lamina is to the solid angle subtended by the
whole curve as pk to 1.

Now, if the plane of zy be taken parallel to the plane
of the lamina, and ¥ be the potential of the lamina, its
component attraction perpendicular to its plane will be

-—% . Now since V'is a potential we have V?*V=0, whence

iz—V”V:O, or V* (d—V> =0. Hence A is itself a potential,
dz dz dz

and satisfies all the analytical conditions to which a potential
is subject. It follows that, if the solid angle subtended by
a closed plane curve at any point (x, 7, 2) be denoted by
w, o will be a function of @, 7, 2, satisfying the equation
vio=0. Hence, if the closed plane curve be a circle it
follows that the magnitude of the solid angle which it sub-
tends at any point may be obtained by first determining
the solid angle which it subtends at any point of a line
drawn through its centre perpendicular to its plane, and
then deducing the general expression by the employment
of zonal harmonics.

Now let O be the centre of the circle, § any point on the
line drawn through O perpendicular to the plane of the
circle, Z any point in the circumference of the circle. With
centre (), and radius QO, describe a circle, cutting QL in L.
From L draw LN, perpendicular to @O.

Let OE=c, 0Q=vz.

z 1
Then BL = (¢+)} =5, ON =i oy (¢ £}~

Z‘l

= e — .
(G422}
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And the solid angle subtended by the circle at O
ON

=47 -
2

=27T{1—2——2‘%}.
(¢ + 2%

To obtain the general expression for the solid angle sub-
tended at any point, distant » from the centre, we first
develope this expression in a converging series, proceeding
by powers of z.  This will be

i - 2i+1
27{1_§+1i_ﬁ§ LB @i }

2¢  2.4¢° 2.4...2t ¢
if z be less than ¢, and
1¢4 1.3¢ 1.3...2:—1) ¢*
27"{3?2"ﬂ—4 -1 —= 4( o 2;4“ }

if 2 be greater than c.

Hence, by similar reasoning to that already employed,
we get, for the solid angle subtended at a point distant »
from the centre,

Pr 10, 1 3Lz
P - .
{ c + 2 c‘ 4 T
a TeBhme B— 1) Fy 174
N Ty e e

if 7 be less than ¢, and
I/&E Al 8726 w1.3..(20=-1) D, ¢"
5 ‘)'2 —'2.A£—7T+...—('— 3 ol -

P

9

if » be greater than c.

4. We may deduce from this, expressions for the potential
of a circular lamina, of uniform thickness and density, at an
external point. For we see that, if 17 be the potential of
such a lamina, % its thickness, and p its density, we have for
a point on the axis,

dvV ( 2
R e
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whence V'=2mpk {(c*+ 7Y% — 2}
M
U+ 2t —2,
if M be the mass of the Iamma.

Expanding this in a converging series, we get

M 122 1.12* 1.1.32°
V=?={G‘Z+%z'a—ﬂcs+2‘4‘6as‘
1. 1 3.. (22—‘3) z* }
—(_1) 4.6.. Czi-1+""

if z be less than ¢, and

SHIC S S e 9_
2z 2.42° 2.4.67 7

V=
1.1.3...(2—8) ¢ }
T ey T
if z be greater than c.
Hence we obtain the following expressions for the po-

tential of an uniform circular lamina at a point distant »
from the centre of the lamina :

1 2 . 4
T B S
2 ¢ 2.4 ¢
1.1

if 7 be less than ¢, and

M(1Pg 11Pc 1.1. 3.P400
|2 r 4.*')"3 '

V=

if r be greater than c.
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It may be shewn that the solid angle may be expressed
in the form
T a4 (F=1)cosd
o [ +{z+ (&F =)} cos G)]E
and the potential of the lamina in the form

M2~ 1 My
— — 2 f 22._. 3“‘5 272 —_——,
E L [+ {2+ (2* — %) cos 0)"]* dO pe

2 — 2

J

5. As another example, let it be required to determine
the potential of a solid sphere, whose density varies inversely
as the fifth power of the distance from a given external point
O at any point of its mass.

It is proved by the method of inversion (see Thomson
and Tait's Natural Philosophy, Vol. 1, Art. 518) that the
. . . 2 ”
potential at any external point P’ will be cqual to Y7 ,5)—, , 0
being the image of O in the surface of the sphere, and 3
the mass of the sphere. We shall avail ourselves of this
result to determine the potential at a given internal point.

Let C be the centre of the sphere, O the given external
point. Join €0, and let it cut the surface of the sphere in A,
and in C4 take a point @, such that CO. 00 = C4*% Then
0’ is the image of O.

Let P be any point in the body of the sphere, then we
wish to find the potential of the sphere at L.

Take O as pole, and OC as prime radius, let OP =r,
POC=6. Alsolet Cd=a, CO=c.

Let the density of the sphere at its centre be p, then its
5
density at P will be p %5 . Hence

M= 27rffp %r’ sin 8 dr d6,
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the limits of r being the two values of » which satisfy the
equation of the surface of the sphere, viz.

7 4+ ¢ —2crcos 0 =d’,

and those of 0 being 0 and sin™ -

Hence, if 7,, 7, be the two limiting values of 7, we have

. 5 in—lg
M f (l——l)smede

2 0 7 '2 1

N 1 3 .‘chos€< 1)
ow por e St P
7'2 ’I'l cC —a 7'2 'rl
Also l +_1- = ?f COS?,
v, r, ¢—d
1 _ 1__
rr, ¢ —da’’
. (l _1) -9 {c? cos’(‘)_(ci:a)}’:
A\, oy E—a
(a® — *6
(=gl
-

2mpc’ 2 2 3
2 M =222 _2__3,2_ . zfsm cos @sin 8 (>~ ¢* sin’6)? 46

= (0%77p20)2fsm ¢ cos @ sin 8 (u® — ¢*sin® 6)2 O
- 0
4

Now, if V be the potential at I, we have (see Chap. 1.
Art. 1)
(Z‘Z (r Ir) 1 d (%’n 9d1j> 477'(3( .

dr +si119 o T
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This is satisfied by V= —:23 7——;%2.

Assume then, as the complete solution of the equation,

=__§7T7P° (A " )p +(Ar+B)Zi+...

+ (A,.7"+—J—,Z~"‘)R+
7

It remains to determine the coefficients 4., 4,. 00l
B,...B, so that this expression may not become mﬁnlte for
(my value of r corresponding to a point within the sphere,
and that at any point £ on the surface of the sphere 1t may
be equal to (ﬂi” where O'P: OP :: a:c, and therefore, at
the surface,

Ve ﬂlc 1 4 77[7(75([2_ i
T e UL 3 (¢ —ayr

And, at the surface, we have

= 2ercosf+cF—at=0;

.-14 mpc’a’ _2 wpc:" i = il BN~
Gt

S (F=d)r 3 —d

4 wpda 2 mecd®
Hence S Al 2—,=(_.—),Czi z+]’)o>Pn'

and B, B,,..B,... 4, A,...4, all =
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Hence since P =1,

and D, =

whence we obtain, as the expression for the potential at any
internal point,

Ve 2 @pc® 3(12—02_’_% mpc® cos@ 2 mpc®
3(—d)* r 3cfF—«* ¥ 3 7

6. We shall next proceed to establish the proposition that
if the density of a spherical shell, of indefinitely small thick-
ness, be a zonal surface harmonic, its potential at any internal
point will be proportional to the corresponding solid har-
monic of positive degree, and its potential at any external
point will be proportional to the corresponding solid Larmonic
of negative degree.

Take the centre of the sphere as origin, and the axis of
the system of zonal harmonics as the axis of z.  Let b be the
radins of the sphere, 60 its thickness, U its volume, so that
U=4708D. Let CP, be the density of the sphere, P, being
the zonal surface harmonic of the degree ¢, and € any con-
stant.

Draw two planes cutting the sphere perpendicular to the
axis of z, at distances from the centre equal to § &+ d¢
respectively. The volume of the strip of the sphere inter-

cepted between these planes will be (;7{,' U, and its mass will be

20
d
&y
Now &= bu, bence d¢ = bdy, and this mass becomes

C‘L Pdp.
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Hence the potential of this strip at a point on the axis of z,
distant z from the centre, will be
cUu B
"9 2, 72 : 1 dp,
2 (248~ 2bzp)*
which may be expanded into

cU .
oF P(P +BI+.. +P‘bi+ )dy1f~<b,

02UP (P +P b+ 4P sy )it s>

To obtain the potential of the whole shell, we must inte-
grate these expressions with respect to u between the limits
—1and +1. Hence by the fundamental property of Zonal
Harmonies, proved in Chap. 11. Art. 10, we get for the po-
tential of the whole shell

cU 2 . .
5T 1im at an internal point,

U ¥
o1

and

an external point.

From these expressions for the potential at a point on
the axis we deduce, by the method of Art. 1 of the present
Chapter, the followum expressions for the potential at any
point whatever :

@ - . .
V,= 5 +U_1 Ib—)ilzi at an internal point,
U Pi
V,=% ¢ —=; at an external point.
2041 1°%

From hence we deduce the following expressions for the
normal component of the attraction on the point.

Normal component of the attraction on an internal point,
measured towards the centre of the sphere,
dv, Py

ST dr T T ..¢+1 g bt



56 APPLICATION OF ZONAL HARMONICS

Normal component of the attraction on an external point,
measured towards the sphere,
_drv, i+1 Pl
dr ~—2i+1 Pk

In the immediate neighbourhood of the sphere, where r is
indefinitely nearly equal to b, these normal component at-
tractions become respectively

) P, i+1
IS A ¥ 20+1 OU b"’

and their difference is therefore

P,
cU B

And writing for U its value, 4m0°6, this expression be-

comes
478h . CP,.

Or, the density may be obtained by dividing the alge-
braic sum of the normal component attractions on “two p01nt<;
one external and the other internal, indefinitely near the
sphere, and situated on the same normal, by 47 X thickness
of the shell.

7. It follows from this that if the density of a spherical
shell be expressed by the series

cLl,+CP +CP,+...+CP+...,

0y, G, C, ... C;... being any constants, its potential (T)) at
an internal point will be’

U inf‘o_}_l CPr 1C,Py 2+ oy C,.ng_l_ )
(o s +5°% 5741 o T
and its potential (V) at an external point will be
OGP 10Ph 101 1 0Py
(S et e e

In the last two Articles, by the word “density " is meant
“volume density,” i.e. the mass of an indefinitely small
clement of the attracting sphere, divided by the volume of
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the same element. The product of the volume density of
any element of the shell, into the thickness of the shell in
the neighbourhood of that element, is called “surface den-
sity.” We see from the above tha,t if the surface density
be expressed by the series

o P+ o, P +o,P,+...+ P +..
the potentials at an internal and an external pomt will seve-
rally be

P, 1oPr lo,P, 1 &P
M’z(ab +’35()r+301,3r+"+ +1Ub‘“rJr )

(0,0 1o, Ph lo'Pb 1 o P}V >
4«776(7‘-{-37' +3 T
This variation in surface density may be obtained either
by combining a variable volume density with an uniform
thickness, as we bave supposed, or by combining a variable
thickness with a uniform volume density, or by varying both
thickness and density.

8. We have seen, in Chap. 11, that any positive integral
power of u, and thercfore of course any rational integral
tunction of u, may be expressed by a finite series of zonal
harmonics. It follows, therefore, that we can determine the
potential of a spherical shell, whose density is any rational
integral function of u.

Suppose, for instance, we have a shell whose density
varies as the square of the distance from a diametral plane,
Taking this planc as that of wy, the density may be ex-

pressed by pu’®, or pZ—;. We have scen (Chap. 11. Art. 20)

that

. 1
p= 3 (1 + QI)::)’

Hence, by the result of the last Article, the potential
will be
p g (b + g 1;3 ) at an internal point,
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U(L, 2P
Pe\r 574
-1, 37—

)

2
) at an external point;

or, since Py’ = , We obtain

p g G + % gib ) for the potential at an mternal point,

2 2
p -g] {% + % (— ?1—3 + 37“5)} for that at an external point.
9. Asan example of the case in which the density is re-
presented by an infinite series of zonal harmonics, suppose we
wish to investigate the potential of a spherical shell, whose
density varies as the distance from a diameter. Taking this
diameter as the axis of z, the density will be represented
by psing, or p (1 — ,u) ‘We have investigated in Chap. 11.
Art. 21, the cxpansion of sin € in an infinite series of zonal
harmonics. Employing this expansion, we shall obtain for
the potential
mpU 1y _ 1 P 7 13.(-1) 1.3.(-3) , 7'
) {5 0716720 T 204 4(0+2) 240 (520 B )
or

'n-UlP,,l b 13(@1)1‘3(1‘%) }
2P {Q r 1672 T 2.4, z(z+“’) 2.4, .(1=2)3 " M)
according as the attracted point is internal or cxtornal to the
spherical shell, 7 being any even integer. All these expres-
sions may be obtained in terms of surface density, by writing,

instead of p U, 47c’e.

10. We may next proceed to shew how the potential of
a spherical shell of finite thickness, whose density is any solid
zonal harmonic, may be determined. Suppose, for instance,
that we have a shell of external radius @, and internal radius
«', whose density, at the distance ¢ from the centre, is
-]ii,. P, b being any line of constant length.

Dividing the sphere into concentric thin spherical shells,
of thickness de¢, the potential of any one of these shells, of
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radius ¢, at an internal point distant r from the centre will

be obtained by writing ¢ for b, ’;i for O, 4wc’dc for U, in
the first result of Art. 6. This gives
P 4c’de P‘.c‘7 AT p
Biel o % Gyl
To obtain the potential of the whole shell, we must inte-
grate this expression, with respect to ¢, between the limits
« and a. This gives
2r pl;
U+1 W
Again, the potential of the shell of radius ¢, at an external
point, Cwill be
p 4mc*de I, c* dm p "
W21 o o1t L
Integrating as before, we obtain for the potential of the
whole shell,

(@ —a”) 7,

» 4:_” P_ i ‘(az.ﬁs_a_"z_ﬁs)
(2E+1)(204+3) M0 i

Suppose now that we wish to obtain the potential of the
whole shell at a point forming a part of its mass, distant s
from the centre. We shall obtain this by consulemw sepa-
rately the two shells into which it may be dluded the
external radius of the one, and the internal radius of the
other, being each ». Writing » for ¢« in the first of the fore-
going results, we obtain

2w
"L—i—lp/‘ (@ =%

And writing r for @ in the other result, we obtain
477_ PP 72¢+3 ’2I+3
(H+D)Ri+3) K ')‘“
Adding these, we get for the potential of the whole
sphere

4r PP {a —p? g2t _ aw-s}

P’ +
2+l T2 T i)
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Tt is hardly necessary to observe that the corresponding
results for a sohd sphere may be obtained from the foregoing,
by putting a’= 0.

If the density, instead of being ]pl P, be ﬁ,,]’ ¢", similar
reasoning will give us, for the potential of the thin shell of
radius ¢ and thickness de at an internal and external point
respectively,

i+m+2

dm  p D i it dm p
% 41 ]m] de, and ——— St h"‘P e de.

And, integrating as before, we obtain for the potential of
the whole shell,

4 p ; . .
—_— oo e Pla T — ") 3t gt an Internal point
i+ m—7+2) " ) PR
4 o P am+1‘+3 — a’?}H‘H‘S

(m*) {772/ ;l-_Z_-i-—:'T)WPi —TH—I» —— at an external pOlllt.

And, at a point forming a part of the mass,

4 pP, (a'm—ﬁz_p‘m'—iﬁ . ot _ a‘/m+i+3 1 )
QH4+1 W

e e

m—i+2 m+i+3 r

11. Suppose, for example, that we wish to determine, in
each of the three cases, the potential of a spherical shell
whose external and internal radii are a, @', respectively, and

whose density varies as the square of the distance from a
diametral plane.

Taking this plane as that of xy, the density may be ex-

2 —P?;—l. Hence the

pressed by 8 2%, or -]~,c,u Now p’=

density of this sphere may be expresscd as

2p 2
3 Dy f0
The several potentials due to the former term will be,

2
writing 2 for ¢ and multiplying by 3
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4mpPy 12 ymyye 8T p pdi—a’ 8ol (-7, =)
157 @O eh T B ( s "t )
And for the latter term, writing 0 for 7, and 2 for m, and

multiplying by % D

A7 p i gy e o—a’ dmp (a‘—f - “"")
e s e sl E T )
32% —9* .
And, since Pp®="=_—, we get for the potential at an

internal point

T )

P 2_7" 2 L2 o2 KL
B {15 (@®—a®) (32 r)+3(a a g
at an external point

p (dmad—a? ., . 47 o’ —a”
h“{l(){) =R C AR S TR E

at a point forming a part of the mass

dr (@*— 1 P —d 47 (at—r* 7'5—(1"")}
h{ (—2“+ )C;”_ +3<4 T N

12. We may now prove that by means of an infinite serics
of zonal harmonics we may express any function of x what-
ever, cven a discontinuous function. Suppose, for instance,
that we wish to express a function which shall be equal to
A from p=1 to u=xA, and to D from p=N\ to p=—1.
Consider what will be the potential of a spherical shell,
radius ¢, of uniform thickness, whose density is equal to 4
for the part corresponding to values of p between 1 and A,
and to I3 for the part corresponding to values of u between N
and — 1.

Divide the shell, as before, into indefinitely narrow strips
by parallel planes, the distance between any two successive
pl-mes being edye.
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We have then, for the potential of such a sphere at any
point of the axis, distant 2 from the centre,

for the first part of the sphere

1
P
A (2P —2c2p)*

and for the latter part

27 Bc*dc f ——dﬂ——-, .
1 (4 2= 2zcu)?

These are respectively equal to
27 Ac?é
ch cj‘ (p 4+ P, +P2 ,+ .+ P ,+ )dy,,

27 Bc*dc f 2
c

-1

2z z* 2

(Po+1’1 S+ P, S+ e+ PS5+ ) du,
é ¢ ¢

at an internal point; and to

3
i‘ip_s_(’f (P, +P + +P,.Z—,.+....>d,u,

o 2 N i

Sgle Scf <P0+P1 y...+PZy ) d,
z 'y z z

at an external point.

Now it follows from Chap. 1L (Art. 23) that if ¢ be any
positive integer,

8 1
A = =— -, A — /2 !
f}\ -Pi],u‘ 2% +1 {P-n(?‘) 1).-1(7\%’

1
whence, since f Pdu =0, it follows that

[ Pau= g5 Ps) =P
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1 A
Also f Pod,u=1—)»,f Pdp=1+A.
A -1

Hence the above expressions severally become :

For the potential at an internal point on the axis

277(;’80[11(1 7»)+B(1+7\)_:4_3_B{ PN — P(?\"Z
-4 P = R 5
A-B
— i1 Pl = PO} 5 - ] :

and for the potential at an external point on the axis

[A (=0 +B(1+y)_A- p

mede 2,0 - S

]

-4 B{P(x) P,(x)}i—u-...
A-D
—2L+1{ .+1(7\) =R 1(7\')} e ]

Hence the potentials at a point situated anywhere are
respectively

:’Tz@ [{A 1=2)+B(L+N)} P,
_A-B Dp).r
3 (B =R
A—-D P(u) e

i _-5—{[)3()‘)—1)1(7\')} - e

=D P )
— a1 P = P} AT - } ,

at an internal point;
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and

Omiie [{A (1= + B+ Zo(8)
~A=B p oy~ P
LA=Bpoy- P
AN SR M L AL

at an external point.

Now, if we inquire what will be the potential for the
following distribution of density,

LA =N + BL+A) = (A= B)(P,0) — PO)IB(w)
— (4 = B{BM) - POYE, () = -
— (A= B){Py) ~ P 0IP) ~ - ],

we see by Art. 6 that it will be exactly the same, both at
an internal and for an external point, as that above in-
vestigated for the shell made up of two parts, whose densities
are 4 and D respectively.

But it is known that there is one, and only one, dis-
tribution of attracting matter over a given surface, which
will produce a specitied potential at every point, both ex-
ternal and internal.  Hence the above expression must
represent exactly the same distribution of density. That is,
writing the above series in a slightly different form, the
(‘Xl'rtﬁ*“lLfll
A+ Do

e 5
= =

Z p + {20~ PV Bw)
et P ) = PLOVIBL) + -

J)T AN
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is equal to 4, for all values of x from 1 to A, and to B for all
values of p from A to —1.

13. By a similar process, any other discontinuous function,
whose values are given for all values of g from 1 to — 1, may
be expressed. Suppose, for instance, we wish to express a
function which is equal to 4 from p=1to p =2, to B from
p=X topu=»n,and to Cfrom p=A, toy,——l This will
be obtained by addmg the two series

A-B_A-Bh (B0 P, ()IEE) + -

+ {I)iu()“x) - 'Pt-lo\’x)}Pd(/") + ])
[7“ +{P )"'Po (X‘z)}Pl(ll')-l-"'
+ {'Pi+1(>‘2)— 'Pl-x(xz)}l)t(/‘") + "']‘

For the former is equal to 4 —DB from p=1 to u=2x,,
and to O from p= 7\ to w=—1; and the latter is equal to
B from p=1 to u=2,, and to O’from,u, A top=—1.

B+O’BC
2

By supposing 4 and C each=0, and B=1, we deduce a
series which is equal to 1 for all values of p from p=2, to
# =2, and zero for all other values. This will be

%)‘[)"1 - A’z 7 {on\'x) - 1)2()\‘2) - 0(}\’1) - O‘ )}P (:”‘)
=t {I)H_x()‘—l)jptﬂ(}"z) O\ )= -—1 A, }1) (/") +.. ]

This may be verified by direct investigation of the
potential of the portion of a homogeneous spherical shell,
of density unity, comprised between two parallel planes,
distant respectively ¢\, and ¢n, from the centre of the
spherical shell.

14. In the case in which A, and A, are indefinitely nearly
equal to each other, leta, x and )» =A+dr We then
have, ultimately,

P‘O“x) - P-‘O\'z =

dP;(\)
5 dn.
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Hence P, i) — g i+1(>‘2) =P, () - £ ()
— dl)iﬂ(k') dP 6—1()') :
1" " P
= (20 + DPN)dn.

Hence the series

N 1432, ()P, (0) + SEO)P, ) + ..

2
+ @ +1) POYP()+ ...

is equal to 1 when p=2X (or, more strictly, when u has any
value from A to A +d\) and is equal to O for all other values
of p.

We hence infer that

1+ 3P,MB W) + .. + (2 + DEMPE) .

is infinite when w =2, and zero for all other values of .

15. Representing the series

3L+ BPMNPG + .. + 2+ DPO)PL) + ..

by (1) for the moment, we see that pp(N)dr is equal to p
when p=2, and to zero for all other values. Hence the

expression »
() +p,$(0) + .. JdA

is equal to p, when gs=2A, to p, when p=2x,... Supposing
now that A, A,... are a series of values varying continuously
from 1 to —1, we see that this expression becomes

[ sptan,

p_being any function of A, continucus' or discontinuous.
Hence, writing $(X) at length, we see that

ﬁ{ f pd\+ 3D(4) f PPN+ ...
+(2i+1)P(w) f pP (N + }

is cqual, for all values of p from —1 to +1, to the same
tunction of u that p is of A,
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16. The same conclusion may be arrived at as follows:

The potential of a sphencal shell, whose density 1s P
and volume U, at any point on the axis of z, is

-[ 1(c* +2 —-27&(;:;)!I
which is equal to g«U pd)\-}-—f pP, (\)dx + ...
¢l el

i rn
+5 f—lpP‘(X)dK+ }

for an internal point,
1 1
and to —g{lf pdx+%f pP, (M)A + ...
“ =1 % -1

'3 1
+ f pPi(N)dx + }
-1
for an external point.

It hence follows that the potential, at a point situated
anywhere, is

{ pin+ DL f PPN+ ..

o L f PPN+ ..,
for an internal point,

TP Pl f
andto o {; f_lpd)\.+ B2 pRaA+..

UL prgys.),

for an external point.

And these expressions are respectively equal to those
for the potentials, at an internal and external point re-
spectively, for matter distributed according to the following
law of density :

52
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1 1 1

L { [ pn+32,00 [ pP.0IN+..

“ V- -1

1
+ @+ 1)B| pBMIN+ }
-1
Tt will be observed, in applying this formula, that if p be
a discontinuous function of A, each of the expressions of the
1
form f pP(A)d\ will be the sum of the results of a series of
=1

integrations, each integration being taken through a series of
values of A, for which p varies continuously.



CHAPTER IV.

SPHERICAL HARMONICS IN GENERAL, TESSERAL AND SEC-
TORIAL HARMONICS. ZONAL HARMONICS WITH THEIR
AXIS IN ANY POSITION. POTENTIAL OF A SOLID NEARLY
SPHERICAL IN FORM.

1. WE have hitherto discussed those solutions of the
equation V*¥V'=0 which are symmetrical about the axis of z,
or in other words, those solutions of the equivalent equation in
polar co-ordinates which are independent of ¢. We propose,
i the present Chapter, to consider the forms of spherical
harmonics in general, understanding by a Solid Spherical
Harmonic of the ¢ degree a rational integral homogeneous
function of =, y, 2, of the 2™ degree which satisfies the equa-
tion V*¥V'=0, and by a Surface Spherical Harmonic of the
¢™ degree the quotient obtained by dividing a Solid Sphe-

i
rical Harmonic by (2" + 3"+ 2%)*. Such an expression, as we
see by writing z=7sin8 cos ¢, y =7rsin sin¢d, z=rcos ¥,
will be of the ¢ degree in sin @ cos ¢, sin fsin ¢, cos ; and
will satisfy the differential equation in Y,

1l & 7. ,d Y,) 1 d&'7,
sin 6 df (sm 4 9] 5o de*

or, writing u for cos 6,
d N 1 'Y,
w0 G e
It will be convenient, before proceeding to investigate the

algebraical forms of these expressions, to discuss some of
their simpler physical properties.

+i([+1)Y,=0,

+i(E+1) Y,=0.

2. We will then proceed to shew how spherical har-
monics may be employed to determine the potential, and
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consequently the attraction, of a spherical shell of indefinitely
small thickness.

We will first establish an important theorem, connecting
the potential of such a shell on an external point with that
on a corresponding internal point. The theorem is as follows:

If O be the centre of such a shell, c its radius, P any in-
ternal point, P' an external point, so situated that P’ lies on
OP produced, and that OP.OP =c’, and ¢f OP =r, OP' =7,
then the potential of the shell at P s to its potential at P’

as c to r, or (which is the same thing) as r' to c.

For, let 4 be the point where OP' meets the surface of
the sphere, @ any other point of its surface. Then, by a
known geometrical theorem,

QP : QF . AP: AP uzc—7r: 7 —e.
c—r __er—1" or—r*

And = =

! =3 = = =
r—¢C¢ Tr —cCcr oc -—cr

Again, considering the element of the shell in the im-
mediate neighbourhood of @), its potential at P is to its
potential at P as QI” is to QP, that is, as ¢ to r, or (which
1s the same thing) as 7’ to ¢, which ratio, being independent
of the position of (), must be true for every element of the
spherical shell, and therefore for the whole shell, Hence
the proposition is proved.

3. Now, suppose the law of density of the shell to be
4
such that its potential at any internal point is F (u, ¢) %
1
%mF@@%
Hence F'(u, ¢) must be a surface harmonic of the degree 1.

Let us represent it by Y,

must be a solid harmonic of the degree 7.

By the proposition just proved, the potential at any
external point, distant 2 from the centre, must be
, ci+1

X, gL
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Hence, the component of the attraction of the sphere on
the internal point measured in the direction from the point
inwards, i.e. towards the centre of the sphere, is

i—l

_zy_ﬁ

And the component in the same direction of the attraction
on the external point, measured mwards, is

(+1) 7,

Now suppose the two points to lie on the same line
passing through the centre of the sphere, and to be both
indefinitely close to the surface of the sphere, so that r and #'
are each indefinitely nearly equal to c.

And the attraction on the external pomt exceeds the
attraction on the internal point by

@i+1) 2.

Now, supposing the shell to be divided into two parts,
by a plane passing through the internal point perpendicular
to the line jolning it w ith the centre, we see that the at-
traction of the larger part of the shell on the two points will
be ultimately the same, while the component attractions of
the smaller portions, in the direction above considered, will
be equal in magnitude and opposite in direction. Hence the

: . . W
difference Letween these components, viz. (274 1) —;‘, will be

equal to twice the component attraction of the smaller
portion in the direction of the line joining the two points.
But if p, be the density of the shell, éc its thickness, this
component attraction is 2mp,8c.

Hence 20+ 1) Y = 4mp, ¢,
L
2t+1

or Pi= 4rede

i
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~
o

And, if o, be the corresponding surface density,

20+1
;= -TG— :Y;-

It hence follows that ¢f the potential of a spherical shell,
of indefinitely small thickness, be a surface harmonic, its
potential at any internal point will be proportional to the *
corresponding solid harmonic of positive degree, and its po-
tential at any external point will be proportional to the
corresponding solid harmonic of negative degree.

That is, the proposition proved for zonal harmonics in
Chap. 111, Art. 6, is now extended to spherical harmonics in
general.

4. The spherical harmonic of the degree i will involve
21+ 1 arbitrary constants.

For the solid spherical harmonic, 7*Y;, being a rational
integral function of @, 7, z of the 7 degree, will consist of
(z+1) (¢ +2)

2
rational integral function of a, 3, z of the degree ¢ — 2, will

terms. Now the expression V*V, being a

’ ,—1 ol :
consist of (7'—2£ terms; and the condition that it must be

((—1)4
2

coefficients of these terms, leaving

relations

=0 for all values of 2, g, 2, will give rise to
among the (Z—+—1)2(i—+2

C+1)E+2)  (=1)s
9 2

, or 2¢ +1, independent coefficients.

5. We proceed to shew how the spherical harmonic of the
degree ¢ may be arranged in a series of terms, each of which
may be deduced by differentiation from the Zonal Harmonic
symmetrical about the axis of z. The solid zonal harmonic,
which, in accordance with the notation already employed, is
represented by 7° 2, (u), is a function of z and 7 of the degree %,
o A A |43 0
d T dy® tEs

Now, if we denote this expression by 2, (z), we see that

satisfying the equation V* V=0, or
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since it is a function of z and 7, it is a function of the dis-
tance (z) from a certain plane passing through the origin, and
of the distance (r) from the origin. Further, if we write for z

the distance from any other plane passmg through the origin,
d"‘V av
leaving r unaltered, the equation I o a7 d ¢ =0 will

continue to be satisfied.

Now z+a(z+J—1y), a being any quantity whatever,
represents the distance from a certain plane passing through
the origin, since in this expression, the sum of the squares
of the coefficients of z, z, ¥ is equal to unity. Hence

Plz+a(@+J—=1y)] is a solid zonal harmonic of the

degree 1, its axis being the imaginary line §= —\/—_Z'
Therefore the equation

v dv dav

@Yoy T =0

is satisfied by V=P, {z+a (z++ —1y)}], that is, expanding
by Taylor’s Theorem, it is satisﬁed by

P,(3) +a(o+V=Ty) 2, 2 IR B il T
o (@ +v—1 17/)‘d‘P (2)
TS| dzt

Jfor all values of a.

_ Hence, since the equation in V is linear, it follows that
it 1s satisfied by each term separately, or that, besides Z, (z)
itself, each of the ¢ expressions,

(@t 15 L, (o v Ty 1D

satisfies the equatmn V=0.

dﬂp (z) (V=1 y) ﬂf;;fz-) ,

By similar reasoning we may shew that each of the ¢ ex-
pressions,

(o-v=1p) L0, @2y LEO, | ov=Tyy P

satisfies the same equation.

dP (z)
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Now each of the 2¢ solutions, thus obtained, is imaginary.
But the sum of any two or more of them, or the result
obtained by multiplying any two or more by any arbitrary
quantities, and adding the results together, will also be a
solution of the equation. Hence, adding each term of the
first series to the corresponding term of the second, we ob-
tain a series of ¢ real solutions of the equation. Another
such series may be obtained by subtracting each term of the
second series from the corresponding term of the first, and
dividing by ¥—1. We have thus obtained (including the
original term P;(z)) a series of 2/+ 1 independent solutions
of the given equation,’which will be the 27 4 1 independent
solid harmonics of the degree 2.

6. We may deduce the surface harmonics from these by
writing rsin 8 cos ¢ for @, rsin @ sin ¢ for y, rcos @ for z,
and dividing by .. Then, putting cos § =g, and observing

: D
e s R R R R o

dz du
lowing series of 2¢+ 1 solutions :
L (w),

AP . e &P L dP)
cos¢sm6—d# , cos2¢ sin®f dut Cos 2¢p sin Gd—#‘,,
AP oy PG o B
sing sind TR sin 26 sin 9—-d#, , ... Sin7Hsin’d s

Expressions of the form

. ad°P
Ccos o sin® 0 “dur

: N A
or S'sin o sin e—d_,uﬁi’
or their cquivalents,

Ccos o (1 — p?)® @ F(w)

du’
7 d°P, ()
dus

~

Ssin o (1 —p?)
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(C and S denoting any quantities independent of 6 and ¢)
are called Tesseral Surface Harmonics of the degree ¢ and
order . The particular forms assumed by them when
o =1 are called Sectorial Surface Harmonics of the degree <.

. (]
It will be observed that, since df;‘ ("U’ ) is a numerical constant,

Sectorial Harmonics only involve 8 in the form

i
sin‘g, or (1 —p’)*

The product obtained by multiplying a Tesseral or
Sectorial Surface Harmonic of the degree 7 by # (that is,
the expression directly obtained in Art. 5) is called a Tesseral
or Sectorial Solid Harmonic of the degree <.

7. We shall denote the factor of a Tesseral or Sectorial
Harmonic which is a function of 8, that is sm"b’ an iﬂ' ) ,

(1—p9)? d_"gb_(;_/.) by the symbol 7,9, or, when it is necessary

to partlcu]arlze the quantity of which it is a function, by
T,@(u) or T (cos 6).

It will be convenient, for the purpose of comparison with
the forms of Tesseral Harmonics given in the Mécanique
Céleste, and elsewhere, to obtain T<") in a completely de-
veloped form.

t
Now, since P,(u) = —,l———.d (M—-——> , We see that

20.1.2,3...7  dy
PG _ 1 dre(woly
due ~ 2.1.2.3...¢ dwte
1 dite 7 ’
2*.1.2.3'...z'd,ﬁ'f‘v{ fopeT
NOW d:;«{/"“_i w2y (1 ?1) 24 _ }

=2 (2i—1)...(d—a+1) ui-9

¢ -“‘1) 24—4
a3
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2 . . . o
-3 (20 —2) (26 —3)...(t—o—1) pfmo-2

=D @i ) @i 5).fi- o = Bpios

......

(f=ea)(f—0c—-1)

=2{(2=1)...(i—c+1) {,u‘—c L

(f=0)(f—=0—-1)(i—0—-2)(t—0=3) .
* 2.4 (%-1) 2i-93) & 4"'"}'

And therefore

20(2i-1)...(i=o+1) 1 23 o (=0)—o=1) , .
(0) = N0~/ NT TN (1 — u) te@__ N\ M) i =2
TO="g 12300 O#) ¥ @iy ¢

(i=0) (=0 =1) (i~ (== ;s ,,_
+ 2.4 (2i—1) (2i—3) p }

The form given by Laplace for a Tesseral Surface Har-
monic of the degree ¢ and order o is (see Mécanique Céleste,
Liv. 3, Chap. 2, pp. 40—47)

e it =) e =T o, }
A1 -ph) {/.L 9 @i= ) I +....rcos o,
4 being a quantity independent of 6 and ¢. The factor of
this, involving u, 1s denoted by Thomson and Tait (Natural
Philosophy, Vol. 1, p. 149) by the symbol ©). Thomson
and Tait also employ a symbol $,©, adopted by Maxwell in

his Treatise on Electricity and Magnetism, Vol. 1, p. 164,
which is equal to

=7 1.2..0 o doP, (1)
e S R s =g

5E 1.2...0

AU =5 g ; ()
& (z+o-)(z+o-—1)...(?.—a'+1)T‘ '




TESSERAL AND SECTORIAL HARMONICS, 77

Heine represents the expression

3 % -0 ('5—-0‘) (7’.—0—'—1) i-a-
=1 {f‘i - eicn M
(i=0) (—o=1) =0 —~YG=0=3)
+ 2.4.2—1) (2-3) o _}

or (=1)* ®f), by the symbol P;(u), and calls these expres-
sions by the name Zugeordnete Functionen Erster Art (Hand-
buch der Kugelfunctionen, pp. 117, 118) which Todhunter
translates by the term “Associated Functions of the First
Kind,” which we shall adopt.

Heine also represents the series

(f—0)(f—0a—1)
- 2(2—1)
(t—a)(t—c—1)(i—0—2)(t—0~—38)

2.4 2—1)(2i-3)
by the symbol 33, (), (p. 117).
The several expressions, 7}, O, 8, P;, 33}, are con-
nected together as follows :
o o BoBookl
= (©) = @ [o)

FE-D.Gi—orD =

_ 29 (i=1)...(c+1)

T @+ao+1l)(ttot+2)...2

F'i-a imo=2

-+

i-o-4
wm

S0 = (=1)* Pr= (1- )" P

8. It has been already remarked that the roots of the
equation P,= 0 are all real. It follows also that those of the

t i=0 dzp—() real al Hence we ma,
i Sl sl GRG0 S
arrive at the following conclusions, concerning the curves,
traced on a sphere, which result from our putting any one
of these series of spherical harmonics = 0.

By putting a zonal harmonic=0, we obtain ¢ small circles,
whose planes are parallel to one another, perpendicular to
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the axis of the zonal harmonic, and symmetrically situated
with respect to the diametral plane, perpendicular to this
axis. If ¢ be an odd number this diametral plane itself
becomes one of the series.

By putting the tesseral harmonic of the order ¢=0, we
obtain 7—g small circles, situated as before, and o great
circles, determined by the equation cosep=0, or sinocdp =0,
as the case may be, their planes all intersecting in the axis
of the system of harmonics, the angle between the planes of

. . . ™
any two consecutive great circles being — .
g

By putting the sectorial harmonic =0, we obtain ¢
great circles, whose planes all intersect in the axis of the
system, the angle between any two consecutive planes being
o

P
9. The tesseral harmonic may be regarded from another
point of view. Suppose it is required to determine a solid
harmonic of the degree 7, and of the form Yz such that Y
shall be the product of a function of y, and of a function of ¢,
which functions we will denote by the symbols 21,, ®,, respec-
tively. The differential equation, to which this will lead, is
e d o dM, M, IO,
PG+ @+ - @ g T

Now this will be satisfied, if we make M and P, satisfy
the following two equations:

0.

P d ndi) o
@(@+1)M+d7{(1—#);,§}—‘1i;zMu
&,
3(52—=~0‘2q)‘.

The latter cquation gives
@, = Ccosop+ (' sin o¢p.

And, taking o as an integer, positive or negative, the
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4 ito
former is satisfied by M, = T, i.e. (1— y’){%) 1-p?,
as we proceed to prove.
"+ We know that
df ~dP) ...
Jﬁ'{(l —#)3—;}+z(z +1) P,=0.

Differentiate o times, and we get

detl

d°P,
d,u"'“{(l l“‘z)d }+’L(z+1)r=0'

whence, by Leibnitz’s Theorem,

(l—ﬂ’)%—wﬂ)p%%—(&+1)a”§ﬁ
+z(z+1)(—flf—a—0,

or

(=) =2 o4 ) u ) Fr = o)+ +1) =0,

and, multiplying by (L —p2),

1-w 2oy pa -

+ (=) (o) (1~ ,f)zdp_o...(n.
Now, putting (1_#)":1{1’_1,‘(0’
we get
dg;iq;(l—#’);%:ﬂ —op (- ::,

. a7 _ w21 d7 D &L
- (1 /")_d[‘(l"“) P ek G #) P
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d AT T dot2P,
d { 2) d i’ /") ndr+2

de 1P, 71 d° P,
Bt (e (i e
o (Z P ¢"dcr+Il_Pi
— (= 2)“1’"—0?{—2(04-1)”(1 w* da
o5 2 doP
forna-@F-oa-m T
"dP

And @G+ T =i(@+1)(1 - ,u’)zd ‘

j}b{( e }+z'(z'+ 1) T

—+d L2 ‘;d 1P,
=(1-u ‘d e — 2@+ p Q-4 dutt
X AP, wg1d7P,
+(@—-0)(f+o+1) (1 —p)" du* S+ ot (1—-p)? d
2;"dP
=o"(1—p)’ ibY()
=) S e (o')
1- ,u.T

Hence the equation above given for M7 is satisfied by
M, =T, and the equation in Y is satistied by

Y, =0T cosop+ C'Tsinad.

10. InChap.11. Art.10 we have established the fundamental
property of Zonal Harmonics, that if ¢ and m be two unequal

£ om

positive integers, f PP, du=0. This is a particular case

of the general theomm that if Y, Y,, be two surface har-
monics of the degrees ¢ and m respectively,

j f 7YY, dud = 0.
-1/90
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For, let V,, V,, be the corresponding solid harmonics, so
that V,=r'Y, V,=r"Y,. Then, by the fundamental pro-
perty of potential functions, we have at every point at which
no attracting matter is situated,

2 2 2
and therefore
2 2
P+ G ) - "ZZ +G) =0
or, in accordance with our notation, V,¢*V, — V, . ¢*V,=0.
Now, integrate this expression throughout the whole
space comprised within a sphere whose centre is the origin

and radius @, a being so chosen that this sphere contains no
attracting matter. We then have

ﬂ[(V‘VQVm" V,.v'V) dzdydz=0.

But also, when the integration extends over all space
comprised within any closed surface, we have

[[[ve .= Vw7 avayas= [[(v. 4~ 7.4 as=o,
dS denoting an element of the bounding surface, and =
differentiation in the direction of the normal at any point.

Now, in the present case, the bounding surface being a
sphere of radius a, and V;, V,, homogeneous functions of the
degrees 7, m, respectively,

av, .. av,
2 e id Y =1 — m‘l 7
dS = d’duddg, gn =@ )%y i =ma ¥
and, the integration being extended all over the surface of
the sphere the limits of ware — 1 and 1, those of ¢, 0 and 2.
Hence

ff( =T ar) as=m-d @[ [TV, duig,
6
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whence, f m — 1 be not =0,
1 rom
f f Y, Y, dud=0.
-1/ 0

The value of f ' f % Y dud$ will be investigated here-
-1
after. : ’

11. We may hence prove that if a function of p and ¢
can be developed in a series of surface harmonics, such de-
velopment is possible in only one way.

For suppose, if possible, that there are two such develop-
ments, so that

Pl )= Y+, 4.0+ Y% .o
and also
Flp, o)=Y + Y/ +...+ X +...
Then subtracting, we have
0=Y,-Y/ +Y,—-Y/'+ ..+ Y,— Y/ +... identically.

Now, each of the expressions ¥, - Y/, ¥, - Y/...Y, = Y/
being the difference of two surface harmonics of the degree

, 1, oot 1s itself a surface harmonic of the degree
0,1, ...7.... Denote these expressions for shortness by
Zyy Ly vuv Zyuoo 50 that

0=2Z,+ 2+ ...+ Z +... identically.

Then, multiplying by Z; and integrating all over the
surface of the sphere, we have

o[ [ i

That is, the sum of an infinite number of essentially
positive quantities is =0. This can only take place when
each of the quantities is separately = 0. Hence Z, is identi-

cally =0, or Y/ =Y, and therefore the two developments
are identical.

We have not assumed here that such a development is
always possible. That it is so, will be shewn hereafter.
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12. By referring to the expression for a surface har-
monic given in Art. 4, ‘we see that each of the Tesseral and
Sectorial Harmonics involves (1 — )% or some power of
(1 — a3, as a factor, and therefore is equal to 0 when p=%1.
From this it follows that when p=+1, the value of the
Surface Harmonic is independent of ¢, or that if ¥ (x, ¢) repre-
sent a general surface harmonic, Y (+ 1, ¢) is independent of
¢, and may therefore be written as ¥ (£ 1). Or ¥ (1) is the
value of ¥ (u, ¢) at the pole of the zonal harmonic P (u),
Y (—1) at the other extremity of the axis of P, (u).

‘We may now prove that
2
[ Tdp=2m7,(1) B ().
For, recurring to the fundamental equation,

d + dY, I B
G- G rop g riG DT

Now, if we integrate this equation with respect to ¢,
between the limits 0 and 27, we see that, since

and the value of ¥, onlyinvolves ¢ under the form of cosines
or sines of ¢ and its multiples, and therefore the values of

7.%7‘ are the same at both limits, it follows that
2w 2 Y‘
—.d = O.
[, s

Hence
| % {(1 ) (f: y‘d¢)}+i (+1) O:"Kd¢)=0.

2
Hence f Y. d¢ is a function of p which satisfies the

{lundamental equation for a zonal harmonic, and we therefore
ave

6—2
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2w
[ Tag= org,
C being a constant, as yet unknown.
To determine O, put p=1, then by the remark just made,
Y, becomes Y,(1), and is independent of ¢. Hence, when
=1, fzfr Ydp=2mY,(1). AlsoP,(u)=1. Wehave there-
0 ‘
fore 2rY,(1)=C,
2w
o [ Tap=2m T, Piw).
0
It follows from this that

1 2 4 -
[ [ e anas= 5775 T
13. 'We may now enquire what will be the value of

f fﬁvYZd #
b L ‘Jb,

Y., Z, being two general surface harmonics of the degree 7.
Suppose each to be arranged in a series consisting of the
zonal harmonic P, whose axis is the axis of z, and the system
of tesseral and sectorial harmonics deduced from it. Let us
represent them as follows:
Y,= AP,
+CT®cosp+ CTcos 2¢+ ... + C, T, cosa + ...
+ CT cos i
+ 8, TWsin¢p+ 8,7 sin 2¢ +... + S, T, @ sinop + ...
+ 870 sin i
Z= al,
¢, T® cos p+¢, T cos 2 + ... + ¢, T cosap + ...
ce T cos i
+5, 70 sin ¢ + 5,7 sin 2 +... + 5,7 sin o + ...

+ 8, T, sin 7¢p.
~ Hence the product Y, Z, will consist of a series of terms,
m which ¢ will enter under the form cos o cosa’¢p, or
cosog sino'dp.  This expression when integrated between
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the limits 0 and 27 vanishes in all cases, except when
a - X4 and the expression consequently becomes equal to
cos’ o, orsinta¢. In these cases we know that, ¢ being any
Ppositive integer,

f " cos? cpdp= J’Eﬂ sin® epdp = 7.
0 0

Hence the question is reduced to the determination of the
value of

1
[z
Now T} = (1 —pu?)?® %{i
I ag @7 (= 1)
ST T o s TR T

But, by the theorem of Rodrigues, proved in Chap. 11
Art. 8, we know that
g Ot S W ind ()
d:u'i+cr _(—1) Lz_o.( —l‘b) d/.l/‘ T ¢

Hence 7, may also be expressed under the form
SN L LR e et V5
GV gie s sz—‘( “) Cdp

whence 1t follows that

(T@)=(=1) (2: . ;. — ) LZ + 7 dito (u? —1)i A1 (u?— l)i.

LZ —0 d#z-l-a d,bi -

. Now, putting (u*—1)'=M for the moment, and inte-
grating by parts,
fdzwﬂ[ dio M, ditei M dice M
dpite dui-e NPT guive-1 qui-o
dite-d Mdireti M
“duite-l dpimo+t G
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The factor (il :_]l[ vanishes at both limits, hence

1 di+o'Mdi o'][[ 1 dz-l-o' lﬂ[ dz-—c-i-lM
IW dpi=° o= f dpive-T quiot1 (it
1 Jito~2 Jf Ji~ot2 Jf
= (-1)" _1 dpivo-2 T quimote My

by a repetition of the same process.
And by repeating this process ¢ times, we see that
L Mdi'“.M J‘ (d‘M)
e 1) e )
f—l d/.l:i+°' d#t—c ( ) d,u,‘ 7]
=(-1)v(2*.1.2.3...¢)2f Prdu
-1
2
L (-—- 1)‘7 (2‘. 1 .2.3...%)2’2—i°ﬁ.
[ t+o 2
(,,)\2
Hence f (TN dp = [i—o 2t S

and therefore

1 2w s 2w
f f (1,2 cos op)? dpdep = f f (T sin o)* dudd
-1Jo -1J0
[ i+0 o
Ti—o 2i+1°
It will be observed that this result does not hold when
g =0, in which case we have

f fp’d#&# 4"
Hence fl f Y., Z dudp
-1Jo

4
=il

* In this case f:” cos? cpdep =j;)27r sin? e dp =2,
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W I T St g
1+ o
t—0

X ‘_|_1 .+2
= {L‘—:—_l (O + 88) + LE2 (Gt 85) + ..

+

(Guto+ Su5)+ o+ (20 (Gt S0}

14. We have hitherto considered the Zonal Harmonic
under its simplest form, that of a “ Legendre’s Coefficient ” in
which the axis of z, 1.e. the line from which 8 is measured, is
the axis of the system. We shall now proceed to consider it
under the more general form of a “Laplace’s Coefficient,”
in which the axis of the system of zonal harmonics is in any
position whatever, and shall shew how this general form may
be expressed in terms of P, (x) and of the system of Tesseral
and Sectorial Harmonics deduced from it.

Suppose that ¢, ¢ are the angular co-ordinates of the
axis of the Zonal Harmonic, i.e. that the angle between this
axis and the axis of z is ¢, and that the plane containing
these two axes is inclined to a fixed plane through the axis
of z which we may consider as that of zz, at the angle ¢'.
In accordance with the notation already employed, we shall
represent cos 8 by u'.

The rectangular equations of the axis of this system
will be

& _ y - E
sm @ cosd’ sin6sing’  cosf”

Hence the Solid Zonal Harmonic of which this is the axis
is deduced from the ordinary form of the solid zonal har-
monic expressed as a function of z and r by writing, in place
of z, sin @ cos ¢’ +y sin 6’ sin ¢’ + z cos §'.

To deduce the Surface Zonal Harmonic, transform the solid
zonal harmonic to polar co-ordinates, by writing rsin 6 cos ¢
for «, 7sin @ sin ¢ for y, r cos 8 for z, and divide by 7',

The transformation from the special to the gemeral
form of surface zonal harmonic may be at once effected,
by substituting for u, or cos 6, cos@cos' +sinfsin & cos(p—¢).

Now, in order to develope

P, {cos 0 cos & +sin O sin & cos (¢ — ¢')}
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in the manner already pointed out, assume

P, {cos O cos @ +sin O sin & cos (¢ —¢')}
= AP, (w) + (CWcos ¢+ SWsin ¢p) T®
+ (C® cos 2¢p + 8@ sin 2¢) T® + ...
+ (C9cosap+ SO sinod) T +...
+ (CD cos i + S¥ sin i) TO,

the letters 4, ... 0, S ... denoting functions of x' and
¢, to be determined.

To determine C©@, multiply both sides of this equation
by cos ¢ 7/7) and mteglate all over the surface of the sphere,
ie. between the limits —1 and 1 of u, and 0 and 27 of ¢.
We then get

f ' f 2”I" {cos @ cos 0' + sin O sin 6’ cos (¢ — ¢')} cos ap T( dudep
-1J0

2
=C (G)/j / (cos o T) dudd

[_z+a 9
lz—o-‘)z+1

It remains to find the value of the left-hand member of
this equation.

O,

Now cos o 71 is a surface harmonic of the degree 7, and
therefore a function of the kind denoted by Y;in Art. 12,

And we have shewn, in that Article, that

[P Yuas = 7 v,

that is, that if any surface harmonic of the degree i be multi-
plied by the zonal harmonic of the same degree, and the product
integrated all over the surface of the sphere, the integral s

47
equal to 53T wto the value which the surface harmonic

assumes at the pole of the zonal harmonic.
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Hence

[ f P, {cos O cos ' + sin 0 sin & cos (¢ — ")} Y, (u, ) dud
=5 T, §),
and therefore

f ] j : ’ P, {cos 8 cos & + sin @ sin §' cos (¢ — ¢')} cos cpT @ dudep

= —‘—ilr-— cosaop T '

2t+1
Hence
4 [t+o 27
(o) il 4 ()]
5ir1 cosa<[>T (W) = [f—s o-%+10

or C@=2 l;;;cos o' T (w).
1+ 0o

sin oy’ T ().

Similar] S 2Lfi_—<r
imilarly =2
And to determine 4, we have

1 (2r

| fo P, {c0s 0 cos & + sin Bsin & cos (b — )} P, () dudsp

-1

—Af [Ty duas;
-z+1P( f= ’z+1’

G AP
Hence, P, {cos 8 cos 6 + sin 8 sin 6’ cos (¢ — ¢')}

=L D) +2 LZ—}; cos (¢ — &) 70 () T, (k)

) — 2
+2LZ.— 508 2(p—¢) IO (u) TO () + ...

ke
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42 Li P2 conr (b= ) 119 (1) T () + o

+2 ggeosi (8= $) 70 (6) 110 (o).

15. We have already seen (Chap.11. Art.20) how any
rational integral function of u can be expressed by a finite
series of zonal harmonics. We shall now shew how any
rational integral function of cos @, sin 6 cos ¢, sin 6 sin ¢,
can be expressed by a finite series of zonal, tesseral, and
sectorial harmonics.

For any power of cos ¢ or sin ¢, or any product of such
powers, may be expressed as the sum of a series of terms of
the form cos o, or sin o, the greatest value of o being the
sum of the indices of cos ¢ and sin ¢, and the other values
diminishing by 2 in each successive term. Hence any
rational integral function of cos 6, sin 8 cos ¢, sin € sin ¢, will
consist of a series of terms of the form

cos™ 0 sin® @ cos o or cos™ 6 sin” sin o,
where # is not less than o.

If n be greater than o, n — o must be an even integer. Let
n— o = 2s, then writing sin"@ under the form (1 — cos*8)? sin°6,
we reduce cos™  sin” 6 cos o to the sum of a series of terms
of the form cos? @ sin” 0 cos o, or, writing e€os 6= p, of the

form p? (1 —p?)*cos o.
Similarly cos™ @ sin® 6sin o is reduced to a series of
terms of the form w? (1 — p*)sin o¢b.
1 d°
P = . +o
=i pto—1) ..+ D

and pP*e can be developed in a series of terms of the form
of multiples of Pyiq, Ppig-2.... (Chap. 11 Art. 17.)

Hence u? can be expressed in a series of the form

Now

de
C_i/.z; (AO Pp+o- + A2 Pp+o‘—2 + -..),
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4,, 4, representing known numerical constants, and therefore
o

@ (1 — u?)?* assumes the form

(4, TS, + 4, ;'2,_2 £ i}
consequently mult1p1y1ng these series by cos o or sin o, we
obtain the developments of

pP (1 —p?)? cosop and p? (1 — u?)?sin o
in series of tesseral harmonics.
16. We will give two illustrations of this transformation.

First,suppose it 1s required to express cos® § sin*6 sin ¢ cos
1n a series of Spherical Harmonics.

Here we have sin¢cos¢p= 1sm 2¢.

c g 1 0 g
Hence cos® 0 sin 8 sin ¢ cos ¢ = cos® § sin” § sin 2¢.

Comparing this with cos™ @ sin” 8 sin o, we sce that n is
not greater than o.

Hence cos® 0 sin’ 8 sin ¢ cos = % p (1 — p’) sin 2¢.

G R
And /L_4.3d#2P:
and /L‘=§,R,+$P2+}P
,__(i@]i_*_lhfl’)
12\35 dp* 7 dp’
2 d&'P, 1dP,

=105 dur T2l dut
:. cos’ @ sin® 0 sin ¢ cos ¢
1(2 &P, 1 dP
= {10 (1 ,L)sm2¢+‘,1d2(1- )m2¢},

{10, e + T‘”} sin 2¢.
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Next, let it be required to transform cos®dsin®6 sin ¢ cos’d
into a series of Spherlca.l Harmonics.

Here sin ¢ cos® ¢ = § sin 2¢b cos ¢ = % (sin 3¢ + sin o).

Now cos® @ sin® sin 3¢ =’ (1 — *)isin 3¢
1 & N
=6.5. 403#3 p. (1 —p’)" sin 3.
Also cos® Osin® fsin = p® (1 — ) (L —p?)isin
= (4= ) (L= )} sin
1d 1d A
= (1@#4—3@ /1'6> (1—pEsin ¢.
Also (Chap. 11, Art. 17)

By, tp,l
#—3,P+?P+ .P,
L 1
w =31 L 17P+ 1P2+?P°‘

Hence cos® 8 sin® § sin 3¢
1 /16 &P, 24d°P) N
=120 (231 di +T7d,?) (1= @) sm 3¢

T® + ~~T‘“’} sin 3¢b.

‘{3405 385
And cos® §sin® O sin ¢ =— (Ggsddl; +,;’7 ‘;f %éd%
- Z AR L) (- g
(5955~ 55 a5~ %‘é—?) (-4t sing

8
=‘<093 7 bDT(U——T 1)) sin ¢
1

3) (3% 51
{6930T '+ 1540 14 }3“134’

2 1 | =
— {(-SSTS T~ =5 70— s Tz\ll} sin ¢.

. cos’dsin®0 sin¢p cos’p =
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17. The process above investigated is probably the most
convenient one when the object is to transform any finite
algebraical function of cos 6, sin 6cos ¢, and sin 8 sin ¢, into
a series of spherical harmonics. For general forms of a
function of w and ¢, however, this method is inapplicable,
and we proceed to investigate a process which will apply
universally, even if the function to be transformed be discon-
tinuous.

We must first discuss the following problem.

To determine the potential of a spherical shell whose
surface density is F (i, ¢), F denoting any function whatever
of finite magnitude, at an external or internal point.

Let ¢ be the radius of the sphere, * the distance of the
point from its centre, &, ¢' its angular co-ordinates, V the
potential. Then w being equal to cos 8

V=f‘ fz" F(u, ¢) ¢ dudd '
10" [r*—2¢r' {cos 6 cos @'+ sin B sin 6’ cos (p— ')} + ¢*]*

N
The denominator, when expanded in a series of general
zonal harmonics, or Laplace’s coefficients, becomes

1 7 7" 7't
B REACLES AL AP LA

1 2 i
R DL+ P ) St B ) St ]

i

for an internal and an external point respectively, P, (u, ¢)
being written for

P, {cos O cos & +sin 6 sin 8 cos (¢ — ¢)].

Hence, V, denoting the potential at an internal, ¥, at an
external, point,

Vo=l [ [T 9 duas [ [0 6) P08y dudy

toet [ [P ) o ) ),
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2 Iy c 1 pom
V= A PG e 5 [P T 8 duds

++7-f—ff:1>(p ) P, ¢) dyd¢+...}.

It will be observed that the expression P (u, ¢) involves
wand g symmetrically, and also ¢ and ¢'. Hence it satisfies
the equation

d o AP i L s P _
-G T o+ G D R=0

And, since p and ¢ are independent of x' and ¢, this
differential equation will continue to be satisfied after F; has
been multiplied by any function of x and ¢, and integrated

with respect to w and ¢. That is, every expression of the
form

[ 26 & Pl ¢ duds

is a Spherical Surface Harmonic, or “Laplace’s Function”
with respect to u’ and ¢’ of the degree 7. And the several
terms of the developments of V] are solid harmonics of the
degree 0, 1, 2...7... while those of V, are the corresponding
functions of the degrees —1, -2, —3... —(¢+1),... And
these are the expressions for the potential at a point (', ¢/, ¢')
of the distribution of density I (u', ¢') at a point (¢, 4, ¢').

Now, the expressions for the potentials, both external

and internal, given in the last Article, are precisely the same
as those for the distribution of matter whose surface density is

- {[ f :”F(n, &) duddp + 3 fl /:"P,@, ) F(u, &) dudd+ ...

+ @) [ [P ¢) Bl ¢) dudg+ }

or, as it may now be better expressed,

o | L] 7 8) duag
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+3 f f cosecos9'+smesm6'cos(¢ ~&) F(u, ¢) dud

+(2i41) f fo P cosBcos O +sin Osin &'eos($—) Pl ) dp A .. ] .

And, since there is only one distribution of density which
will produce a given potential at every point both external
and 1internal, it follows that this series must be identical
with F'(u, ¢). We have thus, therefore, investigated the
development of F (x4, ¢') in a series of spherical surface
harmonics ¥,

The only limitation on the generality of the function
F (i, ¢') is that it should not become infinite for any pair of
values comprised between the limits —1 and 1 of g, and 0
and 27 of ¢.

18. Ex. To express cos 2¢ in a series of spherical har-
monics.

For this purpose, it is necessary to determine the value of

2c+ l)f f s (cosd cos ' +sinf sin ' cos (p—¢')} cos 2pduddp.

Now P, {coscos 0 + sin @ sin &' cos (p — )}
= P, (cos ) P,(cos 6"

2 . ,dP,(cosf) . AP, coqﬁ
+m$ln —tgpl_—)sul ( ) (q_’) qS)
2 .
MG RS T3 R
PP.(c038) . 30 &P (c05 & ,
d(cﬁs) in*@ d(;('): )cos2(¢-—¢)+...

o
Now f cos o (¢ — ') cos 24 dp =0,
0
for all values of o except 2.

* In connection with the subject of this Article, see a paper by Mr G. H.
Darwin in the Messenger of Mathematics for March, 1877,
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And f ZWCOSQ(qb—gb') cos 2¢ dp = cos 24,
, _

Also

con @ 1 a_ 1y 40 (W=1)
fsmed_,fd”"ei.l.z.a...if(”‘,1) W
And

d 1 d*(w -1

Jor -1 EED gy -y LT

dt (ut -1
-2 f d T g ) dy,

f diﬂ 1)1 _ dt ('u’ 1)6 _ di—l (/"' 1)(
d/.b’ﬂ ,u, d/"‘ -1
. dit (u2—=1)*
=2.1.2.3...uP, —%ﬂ—l.

Now when u =1,

(#”—1)@7(;5——1)1:0 wp=1, LD
/J'ﬁ'l 2 2

dpi™

And when p=-1,

it (/“2 - 1)1

. ] . dit (w2 —=1)¢
(#_1)_—&/.—4‘3“—:0’ #P«=("1)“, —(/-L—)

d ,u.i_l =0.

Hence

G dP 2 1 i+1
f-!smﬁ ddp= gy 201.2.80 (1= (- 1)}

=4 or 0, as ¢ is e¢ven or odd ;
j f o L ("OS LE(CO86) o0 (b — &) co8 265 dpudds
-1

=47 cos 24) or O, as ¢ is even or odd ;
", cos2¢’

T 2 2y P, (cos 0) ;
”E{‘)l.fz 0 —#——»7005296

T 42— 4sint g TLaC089)

576 i 7 cos 2¢”



TESSERAL AND SECTORIAL HARMONICS. 97

2  AVE cos@)
+l3m431n d 7 cos 2¢
S coo00a
T(Q) T(?) 1‘; T(‘Z)
M2lcos2s (1 S o

Hence the potential of a spherical shell, of radius ¢ and
surface density cos 2¢, will be
oyt PP it T
Smeos 28 (1353 vt 555 ot 568 o0 )
and

T @) CS T (2} 05 TH(Q) c7
Smogs2g (1 3347 34,567 56.7.87" " )

at an internal and external point respectively.

19. We will now explain the application of Splierical
Harmonics to the determination of the potential of a homo-
geneous solid, nearly spherical in form. The following
investigation is taken from the JMécanique Céleste, Liv. 111
Chap. 1I.

Let » be the radius vector of such a solid, and let

r=a+a(qY +a,Y,+...+aY,+..),
a being a small quantity, whose square and higher powers
may be neglected, a,, a,,...a,.. lines of arbitrary length, and
Y, %,,...Y,... surfuce harmonics of the order 1, 2,...7... re-
spectively.

The volume of the solid will be ?;77‘&3

For it is equal to

jrf J’Qﬁr’drd/&ckﬁ
PR

1 2w
%f f (@ +3a%a(0,V,+a,V,+ ... +a, T, +...) dudp
-1v0
_ 4
3

7a’, since [l {gﬂ):d;;dn;b:O,

-140
for all values of 7.
F. H.

~1
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Again, if the centre of gravity of the solid be taken as
origin, ¢, = 0.

Forif z be the distance of the centre of gravity from the
plane of zy,

T r1 2
:1‘ ra35=f f [ »*udrdudd
3 o)1l
1 ror
- 1 [Tat+4a% (@, Tk, Vbt o o4 ) dudds
~-1.0
1 o
=4a’s q, " {0 p Y dudp.
Jpd
Similarly

ri

4 r2m
 rdE= 100 o [ 70wy oos ¢ Y, dudg,
(3] -1/0

4 - = .
§ 'y = 4t af [~ w2 sin ¢ ¥, dudg.
[3 -1J0
Now Y is an expression of the form
Au+B(1—piteosp+ C(1 —,uf")'}z' sin ¢,
and therefore all the expressions x, 7, z cannot be equal to 0,
unless @, = 0.
We may therefore, taking the centre of gravity as origin,
write
r=a+a(a,V,+...+aY,+..),
as the equation of the bounding surface of the solid.
Now this solid may be considered as made up of a homo-
geneous sphere, radius ¢, and of a shell, whose thickness is
a(a,V,+...4+a, X +...).

The potential of this shell, at least at points whose least
distance from it is considerable compared with its thickness,
will be the same as that of a shell whose thickness is aa, aud
density

(I @y 3
ro ( FEiy o il

7 « y
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p, being the density of the solid. Therefore the potential,
for any external point, distant R from the centre, will be

LY, & A )

477‘0" 5 "R—*’+""+Zz+1R‘“+

a,
30 + 4mpaa’ (
The potential at any internal point, distant B from the
centre, will be made up of the two portions

p, [V + 27p, (a® — R*) or 2mp ( P — 1—32) ,

for the homogeneous sphere,

Y, I? aY, R
47rp°'xu(a a3+ +)H_1a,ﬂ+ )

for the shell, and will therefore be equal to

iy o5, B @Y, I“
27p, ( ) + dmpaa’ ( o L = +2);+ L ) )

20. If the solid, instead of being homogenecous, be mude
up of strata of different densities, the strata being concentrie,
and similar to the bounding surface of the solid, we may

deduce an expression for its potential as follows. Let 7 be

the radius vector of any stratum, p its density, » lxavmg the
same value as in the last Article, and p being a functiou
of ¢ only. Then, é¢ being the mean thickness of the stratum,
that is the ditference between the values of ¢ for its inner
and outer surfaces, the potential of the stratum at an ex-
ternal point will be

8

4mpc*éc doc ¥, ¢ & ¥, ¢
o times ( - 1:""“*' et

e O >
o1t (1)

To obtain the potential of the whole solid at an external
point we must integrate this expression with respect to ¢,
between the limits 0 and @, remembering that p 1s a func-
tion of c.

7—2
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Again, the potential of the stratum, above considered,
at an internal point will be

2 )7 Z}z 7 !)B
47pcde + dmp2 —80 (a 5 +a51 i
a,Y, I’
= 9
g B +) ........ (2).

To obtain the potential of the whole solid at an internal
point we must integrate the expression (1) with respect to ¢
between the limits 0 and R, and the expression (2) with
respect to ¢ between the limits £ and a, remembering in
both cases that p is a function of ¢, and add the results
together.



CHAPTER V.
SPHERICAL HARMONICS OF THE SECOND KIND, *

1. WE have already seen (Chap. 1. Art. 2) that the
differential equation of which F; is one solution, being of
the second order, admits of another solution, viz.

du
f ey

Now if p between the limits of integration be equal
to + 1, or to any roots of the equation P, =0 (all of which
roots lie between 1 and —1), the expression under the
integral sign becomes infinite between the limits of inte-
gration. We can therefore only assign an intelligible
meaning to this integral, by supposing u to be always be-
tween 1 and o, or between —1 and —w. We will adopt
the former supposition, and if we then put C=-1, the

. C ] 1 . .
expression 4, (1= (1. e pr @2—_—5) will be always posi-
i i
tive. We may therefore define the expression

@ dl‘, .
> 4 f N TP R
® P Az -1)
as the zonal harmonic of the second kind, which we shall

denote by @, or @, (u), when it is necessary to specify the
variables of which it is a function.

It will be observed that, if u be greater than 1, P is
always positive. Hence, on the same supposition, @, is
always positive.

1 p+1
_'510('

We see that @, =f Z T

WLy 2
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_#f
pb+1

log
2" -

P

-1

And, in a similar manner, the values of @Q,, @,,... may
be calculated.

2. But there is another manner of arriving at these -

functions, which will enable us to express them, when the

variable is greater than unity, in a converging series, with-
out the necesmty of integration.

This we shall do in the following manner.

Let U= = v being not less, and p not greater, than
unity.
Then (_ZU:= - __1_ @:. 1
v (v—p)”’ du — (v—p)*’
dU_ /-1 dU 1-4*
1S 2o, :
S o Ll P Y
{ U} v\ —1 2”_ __2ﬁ>_21-—;w
dv d (V——,u) v—p T (w-p®’

d 1—w 2 2 1 v
L 1 P (__,,/‘ e Ve =4
dﬂ{( #) dp} (u~#)2 1—p +V—#) (v—p)’

- G = la-m gl

1 :
Now, let be expanded in a series of zonal harmonics
o

L (w), P,(u)...P;(n), so that
U2 = 6,6) Puli) + ,(0) D)+ oo ,05) Pli)

vV—pu

d au . .
mm@&hmu3=mﬂaﬂmmnw+m
by the definition of P (u).
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o s gﬁ{a-uﬁ)d—U};“ {(1— *)d""m} Pu) +

And these two expressions are equal. Hence, equating
the coetficients of P, (u),

Sla-n®Ol— i s,

Hence ¢,(v) satisfies the same differential equation as I’
and @, But since U=0 when v=w, it follows that ¢, (u)-—()
when v=o0. Hence ¢,(v) is some multxplg of Q,(v)=4Q,(v)
suppose. It remains to determine 4,

Now, ¢,(v) may be developed in a series proceeding by
ascending powers of , as follows.
We have - ~-1—=—1~+ E;+ cer l‘.’}l+
vV—p v v v
andalse = §,(0) Py() +$,0) B () oot 8, (0) B()+...

Now, by Chap. 1. Art. 17, we see that, if m be any
integer greater than ¢, the coefficient of P, in u™ is

. (m—i+2)(m—7+4)...(m—1)
iRl (m+i+1)(m+i—1)...(m+4) (m+2)
(m—i4+2)(m—i+4)..
(n+i+1) (m+i—1).. (m,+&) (1n+1)

if 7 be odd,

and (27 + 1) if 2z be even,

m—1 bcmg always even.
Hence, writing for m successively ¢, ¢ +2, 7 + 4, ... we get
. 2. 4..(i=1) 1
=(2 b
$ilr) = (2 +1) {\2z+ 1) (2 - 1)...G+2) v
4y, 651} 1
()L+ 3) 2+ 1)...C+4) "

6.8...+3) 1 .
zz“ )(F)L-l-,_) (;+()) y”s +....} lf ) be Odd,
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2.4...7 1
(2i+1) (2 —1)...(c+ 1) »™
4.6...1+2) 1
TR @i+ D).+ B)

8...(0 +4) 1 e
+(2i+5) (204 3)...(Z+ ) l+u+----}> if ¢ be even.

Now, recurring to the equation

and =(2¢+1) {

0)=P0) [ 53—,
v B(w)* (W =1)
we see that, if Q,(») be developed in a series of ascending

powers of =, the first term will be ———, where C
14

1
C+1)v
is the coefficient of x4 in the development of 2, (u);

"7 P
(0 ) ““4) & e o)

thatis C=>- 3 4. i=1)
_@E+1) ('L+'3)(z+3) (27-1)
and = 9 4.6, if 7 be even.

Hence the first term in the dcvelopment of @, (v) is
B 2.4.6...6-1)
T (@+2) @+ 4)...(2 — 1) 2+ 1)
2.4.6..
and =5 (’]:Ti-T(’l:i.i_r 3) (G)L o 1) (97, + ) ]f (2 be even,
which is the same as the first term of the development of

- 1l
> ¢
P,v), divided by i1

if 7 be odd,

Hence 4=2¢+1, and we have

1 "
v~ Q) Po(w) +3Q,() P, () +5Q,() By () + -

3. The expression for @, may be thrown into a more
convenient form, by introducing into the numerator and de-
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nominator of the coefficient of each term, the factor neces-
sary to make the numerator the product of ¢ consecutive
integers. We shall thus make the denominator the product
of 7 consecutive odd integers, and may write

1 2.8.4 1, 3.4.5.(+2) 1
Q)= (t+l)v'“+3.' T 20+ 3)
5.6.7.(6+4) 1
5 7.9...(2+ 5) ¥®
(2 +1) (2 +2)...(i+28) 1
(2k+1) 2k +3)...(2i+ 2K+ 1) e T
whether 7 be odd or even.

-+

4. We shall not enter into a full discussion of the pro-
perties of Zonal Harmonics of the Second Kind. They will be
found very completely treated by Heine, in his Handbucl der
Kugelfunctionen. We will however, as an example, investi-

. do, .
gate the expression for d—i)‘ in terms of @, Q...

Recurring to the equation
1
F’= Qo (¥) Py(m) +3Q,(v) P () +
+ (2 +1)5Q,0) B(u) + ...

we see that

d 1 (ZI (;L)

duv—p= Q0"

'3@()‘7“‘)

dP. (/1. d P,u (u.)

+2+1) 5005 e

+@i+3)Qu, () ——
Now we have seen (Chap. IL. Art. 22) that

dP('u') =(2{—2) P, (_;1,)-}-(21:—5)1)‘3\,”‘)'*‘

,” (u)

Hence

=(20+1) Bi(p) + (20=3) Dy () +
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dp, . \
Dol 214 5) Ly + @i+ 1) B+
dp,,, - - S
Losll) — @0) P 6) + (264 5) Paoe)
+(20+1) P(w) +
And therefore the coefficient of P,(u) in the expansion
1 .
of Jyv— is
(2i41) {(2043) Quy () +(204T7) Qo (0)+(20411) @y, () +...}.
Again,

d 1 _dQ, do,(
dvv—p ,%55})_]30(#) e ;d!,}}{} A+
+(@+1) % oy,
v d 1 d 1 _
Lo o BV G
Hence, comparing coeflicients of P, (u),

d_.%(g) == (24+38)Q.,, ()~ (2 +7) Qu, ()
- (20+11)Q,,, () -

Hence it follows that

L) 40l (o0, 1),

and therefore that
= 1
[ @0u6) dv =55 10.0)-Qu )}

5. By similar reasoning to that by which the existence of
Tesseral Harmonics was est’tbhshed we may prove that there
1s a system of functions, which may be called Tesseral Har-

monics of the Second Kind,

derived from 7@ in the same
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manner as @, is derived from P,. The general type of such
expressions will be

(o) E i,
70 |, gt

and this when multiplied by cos o¢ or sine¢, will give an
expression satisfying the differential equation

{(1 — 0}3 Ut {iE+1) (L= ) — o'} U=0,

and which may be called the Tesseral Harmonic cof the
second kind, of the degree ¢ and order a.



CHAPTER VI

ELLIPSOIDAL AND SPHEROIDAL HARMONICS.

1. THE characteristic property of Spherical Harmonics
is thus stated by Thomson and Tait (p. 400, Art. 537).

“A spherical harmonic distribution of density on a spheri-
cal surface produces a similar and similarly placed spherical
harmonic distribution of potential over every concentric
spherical surface through space, external and internal.”

The object of the present chapter is to establish the ex-
istence of certain functions which possess an analogous pro-
perty for an ellipsoid. They have been treated of by Lamé,
n his Legons sur les fonctions inverses des transcendantes et
les fonctions isothermes, and were virtually introduced by
Green, in his memoir On the Determination of the Lwterior
and Interior Attractions of Lllipsoids of Variable Densities,
(Transactions of the Cambridge Philosophical Society, 1835).
We shall consider them both as functions of the elliptic co-
ordinates (as Lamé has done) and also as functions of the
ordinary rectangular co-ordinatcs; and after investigating
some of their more important general properties, shall pro-
ceed to a more detailed discussion of the forms which they
assume, when the ellipsoid is a surface of revolution.

2. For this purpose, it will be nccessary to transform

the equation
d2V+ v, av
@t ap T

into its equivalent, when the elliptic co-ordinates ¢, v, v’ are
taken as independent variables. If @, b, ¢ be the semiaxes
of the cllipsoid, the two sets of independent variables are
connected by the relations

=0, or v'V=0,
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w’ y‘l 22 1 x! y 3
a,"+e+b”+e+c‘+e—1’ a"+v L + + v =0
w? J2 2 _
a,+v'+b" '+c*+v—1'

Thus a®+ ¢, 5* + ¢, ¢*+ ¢ are the squares on the semiaxes
of the confocal ellipsoid passing through the point z, , 2

@ +v, U+ v, ¢+ v, the squares on the semiaxes of the
confocal hyperboloid of one sheet.

@+ v, V¥ + v, ¢+, the squares on the semiaxes of the
confocal hyperboloid of two sheets.

Thus, e is positive if the point z, 9, 2 be external to the
given ellipsoid, negative if it be internal.

And, if a® be the greatest, ¢* the least, of the quantities
o, b, c",
¢ will lie between — ¢* and o,

2 2

v 2 » -0 » —C,

’ 2 2

v » » -a '_b'
170 T A A 2

3. Now =t dy i 0 is the condition that

D)+ Y )

taken throughout a certain region of space, should be a mini-
mum. In the memoir by Green, above referred to, this
expression is transformed into its equivalent in terms of a
new system of independent variables, and the methods of the
Calculus of Variations are then applied to make the resulting
expression a minimum. We shall adopt a direct mode of
transformation, as follows :

Suppose a, B, v to be three functions of x, y, z, such that

Va=0, v'8=0, vy=0...cccccueu.. (1),
such also that the three families of surfaces represented by
the equations a = constant, B = constant, ¢ = constant, inter-
. sect each other everywhere at right angles, i.e. such that



110 ELLIPSOIDAL AND SPHEROIDAL HARMONICS.

dB dy d3d7+@@§Y 0 d'ydz_'__c_lzc_l_x_’_dr)_ldz_o
de dz dydy dzdz 7 dedr dydy dzdz

dxdB  dxdB dde_ .
cTz-_d.i—*—ZZTv/ZiTy-*_d;dz—O ............... (&)
Then

dV dV da dl’g{§+iIfdry
T dade " dBde” dyds’
(l"T' A*V (da\*  d*V dB cl'y)
=7 ( ) +’d3‘(dx) *‘dy <d¢
d*V dBdy 2£V§1{Z~z+ d*V dadp
dBdy dodze™ “dydadede” = dadf de de
dVdia dVd'B  dVdy
dada T dBds T dy det
d{}/V and 6—ilgfbeinor similarly formed, we see that, when the

three expressions are added together, the terms involving
d V. dVv 4V

CdB’ dy
v arv. av
dBdy’ dydx’ dxdB

7= () + (@) + (&)}
o {(zz) +(ig) (@)}

AV (rdp\t sy dv\H)
+ dy? {(d.c) [ (([//) i <a’z> )
4. Now, let

.
Je @+ ) O+ ) (4 W)

+

will disappear by the conditions (1), and those

involving by the conditions (2). Hence
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gre [ o ,
v @@ @
e f i
Tl @ @@
All these expressions satisfy the conditions (1), for « is
the potential of a homogeneous ellipsoidal shell, of proper

density, at an external pomt and B and 5 possess the same
analytical properties.

Again, « is independent of v and v/, and is therefore con-
stant when e is constant. Similar tly B is constant w hen v is
constant, and « 1s constant when v’ 1s constant. Ilence a, 83,
v satisty the conditions (2).

Now
da\® | (da\' | (day?
(d%) + (dy) o (dz)
{ (76 + ((16)
(a, +e€) \l)‘ +e)(c+ e) dz
And 5 2 £

a’fe br+e+ :-_e

(oAt 7* }(le
@t et (b’+e) (c +e) dte’
with similar expressions for ZZ and Z;. Hence, squaring
and adding,
2 2 2

{@'* ot Tea T e)‘} {Go) * («%) " (%)

But from the equations

a° Y 2 2’ 7 z*
—_— e =] - = < =1,
u‘+e+b‘+e+c‘+e cf+v'b"’+u+c'+u

* Bis a purely imaginary quantity. We way, il we please, wrile \'—Alﬁ’
for 8.
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2 2

Yy 2
w +v'+b’+v +c”+v =1,
we deduce
1 x? s 2 (=€) (o —v)(0—1)

“Fto Tre Fie wid) et ate)
o being any quantity whatever. For this expression is of
0 dimensions in o, € v, v, it vanishes when o =¢, v, or v/,
and for those values of ® only, it becomes infinite when

w=—a’ — ¥, or — ¢, and for those values of  only, and it is
=1 when o = .

From this, multiplying by e’+ o, and then putting
w=—a’, we deduce
e+ @) (v ) (0
(av‘l . bﬁ) (a‘l - c'&) 2>

a result which will be useful hereafter.

Again, differentiating with respect to », and then putting
w=¢,

a’ s 2* (e —v) (e—)

(@ +e) (b‘+e)2+(c tef (e+d) (€40 (e+c)’
o (G (2 4 (e et O e D) (e+¢)

de dy dz (e—v) (e =0 ’
- (%) = (3) = (3) o u)ie o
U= (v="7)( v4—e) e—v){v——v)fzf (= )Zgﬁl:y
+o-aGr}

The equation V?J'= 0 is thus transformed into

IV VvV av
(=) g F (=) e+ =€) (2 =0,
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or (V' -v) [{(e+a2) (e+0) e+ %]217

+ (e~ V) |:{(u +a) (w+b) v+ ) C%]?V

+@=9 [+ e+ et 1| 7

5. A class of integrals of this equation, presenting a close
analogy to spherical harmonic functions, may be investigated
in the following manner. Suppose £ to be a function of ¢,
satisfying the equation

[{(e +a®) (e 48 (e +cN)}E- } V=(me+r) E,
m and r being any constants.

Then, if [ and /I’ be the forms which this function
assumes when v and o are respectively substituted for e,

the equation V?V =0 will be satisfied by V=FHH".

6. We will first investigate the form of the function
denoted by 2, on the supposition that I is a rational integral
function of € of the degree n, represented by

SR (n—l)]

€ +npe + JNCHIE SO

We see that

[(erar ermreren s [evmet G0 pe

o +p,
=n [(71—1) (e+a®) (e+ V") (e+ %) {e"‘2+(n—9)p,e"_3
n—2)n-— -
S IR
2
Gl) e+C)+(€+C)(e+a +(e+u (e+7;)(“+(n_ Dp e
(n—]) n—’\ —

1, J5E, b}
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Hence writing
(e+a’) (e + ") (e+¢") =€+ 3f€ + 3fe + f,,

we see that

n [(n —1)(€+ 3/, +3f,e+ 1) {e"““ +(n—2)pe®

—9)(

ﬂu(nﬁ1 L=t "‘4+...+pn-2}
3 - ,. n—1)(n—2
@) et o perty DO o

ean]

n—1
= (me+7) {e +np " + (1 5 )pz ”‘2+...+pn}.

Hence, equating coefficients of like powers of ¢, we get

n n+1)—
(r+3)=m,

n [(n—l){(n— )P+ 3} + = {(7,— p,+ "f}]:nmpl+ 7,

v @-n{=20=Dp 309 1, 437

3((n=1)(n— )
+2{ 1.2

2 (1= g, +1,) |

_nn-—1)
-T— mp, + nrp,

se0ssesss T cevnanses

3
n {(n o l)f?])n—z + ‘Z_);.f:z])n—l} = T_pu’

or, as they may be more simply written,

1
n (n + 5) =1m,
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n {(n -1) (n——)p, i 3nf} nmp, +r,

n( - )mpl+n7pl

3
n {(n e l)f;pn-z + 2f;pn—1} = rp"'

It thus appears that p, is a rational funct1on of » of the
first degree, p, of the sccond, p, of the n® and when the
letters p,, p,...p, have been elimin: wted, the resulting equa-
tiou for the detormination of 7 will be of the (n+1)" degree.
Each of the letters p,, p,...p, will have one determinate
value corresponding to cach of these values of »; and we

have seen that m=n (n + %) There will therefore be (n + 1)

values of E, each of which is a rational integral expression
of the n™ degree, n being any positive integer.

Lyd

7. But there will also be values of Z, of the n™ degree,
of the form

— -9
G"—2+ (-n— z) (-’;2 _‘-)-]::e"_s-*-' Y '+Qn—ll"

(e+ b2)5 (e+ cz)-’:{e"" +(n—1)q, )

We thus obtain

(le+a)(e+ B)(e 4 LT

= (e+a? (e+bz)(e+c)/n—1){"""+(n— 7.8

hn—=2n—-3) )
rz - s 4+~-'+Y,._?)"§

§—2
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d 2
. [{(e+aﬂ) (e+ b’)(e+02)}§d—€:| E

= {(e+a) (e + 1) (e + )]} [{“ﬁm) (e + e (e+c)

2 (eta)?
et a0} =) ferr (0=2) g
+(7Z—- 1) (;L 3) ”—4+---+q::.2}

+ (e+0")* (e+8Y) (e+¢) (n—1) (n—2) {6"'3+(n—3) 7.

PR 1)(;_) "‘5+...+g,,_3}:|.

Hence
{1 (457 (e+¢) + (e +a") (e +¢) + (e + ) (e+w}

—)(n—3) ..
(n—1) {e” + (n—2) ¢, + KLI)—.(QL) 7€ o+ gM}

+ et @) (64 ¥) (+) (1=1) (1= D+ (1= 3) g™
+ (n——:i)a—(g =) 0.+ F gn_s}
= (me+ 1) {e"" +(n—1)qe™"

-Dn-2) ., )
+%)g26 +...+q,,_l},

~(n-1) (g-{-n—ﬂ) =m,
(n=1) {20+ 50048 3 (0= 24}
+=1) (=D @+ 4+ (1= 3) ) = (1= 1) mg, + 7,
(n - 1) {(b +a’c® + azbz) Gug T (n - ) a’l’e’ Qn—a} =Tqny-
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By a similar process to that applied above, we shall find
that r is determined by an equation of the n™ degree, and

that m= (n—1) (n—%), and that each of the letters ¢,,

7;---q,_, is a rational function of ». Thus, there will be »
solutions of the form

(e+8)i(e+ R (7 + (n—1) g™ + ... + ¢,_)-

There will also be n solutions of a similar form, in which
the factors (¢ +¢%)¥ (e +a®)?, (e + a®)} (e + 1*)} are respectively
involved. Hence, the total number of solutions of the nt*
degree will be 4n + 1.

8. We may now investigate the number of solutions of
1 . e .
the degree n+ , n being any positive integer. These will

be of the following forms: three obtained by multiplying a
rational integral function of e of the degree n by (e + a*)%,
(e+ b, (e+6M?, respectively, and one by multiplying a
rational integral function of e of the degree n—1 by the
product

{(e+a") (e+1) (e + M)

An exactly similar process to that applied above will
shew us that there will be n+ 1 solutions of each of the
first three kinds, and n of the fourth. Hence tlhe total number
of such solutions will be 3 (n+1)+n, or 4n+3, that is

)
4(n+s)+ 1L
(n+2 +
To sum up these results, we may say that the total
number of solutions of the n'™ degree is 4n +1, n denoting

either a positive integer, or a fraction with an odd numerator,
and denominator 2.

Similar forms being obtained for 77, II', we may proceed
to transform the expression E/H" into a function of x, 7, z.

9. Consider first the case in which
n(n—1)

E=¢+npe™ +— T P o+ P
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Write this under the form
I=(—-w)(e~w,)...(e—w).

Then H=v-0)v-0)..(v-,),
H={V-0)V~-0,)..0—-,).

Hence

ElMH =(e—w,) (v-—0) (¥ —0)..(e~0,) (v-0,) V —0o,).
Now we have shewn (see Art. 4 of the present Chapter)
that (e— w)(v—w) (V' — )

2

=046 @0, + ) (0,4 &) (po et i+ .7 1)
1 1 f @+, b'4e, " o, ’

Each of the factors of EHII" being similarly transformed,
we see that EHIT' is equal to the continued product of all
expressions of the form

(0+a") (0 +7) (04" <~£—+J’2— +-—zg— —1)
d+eo Vt+o dto ’
the several values of @ being the roots of the equation
w1, m(n—1)
1.2
As this equation has been already shewn to have (n + 1)
distinct forms, we obtain (n+1) distinct solutions of the

equation V?V=0, each solution being the product of n
expressions of the form

o" 4+ np,w

PO 4+ p, =0,

PN
¢d+w VP4+o 4o

-1

That is, there will be n+1 independent solutions of the
degree 2n in z, y, 2, each involving only even powers of the
variables.

10. To complete the investigation of the number of solu-
tions of the degree 2n, let us next cousider the case in which %

! —1) (n—2
= (e+b“)% (e+¢%) { €+ (n-1) ple"""+(n—11) (g—> P .+p,,_l}.
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The object here will be to transform the product
(e+ ¥+ )W + )Y e+ N v+ DV + D),

since the other factors will, as already shewn, give rise to the
product of n — 1 expressions of the form

x? y? 2*
(—L?+_w+bT-iTm+02+w

-1

Now, by comparison of the value of 2’ given in Art. 4,
we see that

(e4+0%) (w+8) (W + V) (e+c®) (v+ ) (' +¢%)
= (bz — 02) (Z)Z — a2) (02 - a‘l) (02 _ b’.‘.) ‘7/222.
Hence, we obtain a system of solutions of the form of
the product of (n— 1) expressions of the form

w2

<+ o

¥ .2 _
+b2+w+c“+w L
multiplied by yz. Of these there will be n, and an equal
number of solutions in which zx, xy, respectively, take the
place of yz.

Thus, there will be 4n 4+ 1 solutions of the degree 2n in
the variables of which n+1 are cach the product of n
expressions of the form

m? y2 22
— — k=1,
e PreT dte
n are each the product of (n—1) such expressions, multiplied
by yz,
zx,
xy.

11. We may next proceed to consider the solutions of the
degrec 2n + 1 in the variables z, y, =.

Consider first the case in which

n.(n—1)
&

E={(c+a?) {e" +np et +—

- 1
1.2 € +...+pn).



120 ELLIPSOIDAL AND SPHEROIDAL HARMONICS.

Here the product (e + a*)* (v + a*)? (v + a?)? will, as Jjust
shewn, give rise to a factor  in the product LI,

Hence we obtain a system of solutions each of which is
the product of » expressions of the form

LY B
+o VF+o Fto
multiplied by 2. Of these there will be n+1, and an equal

number of solutions in which %, z, respectively take the
place of the factor .

=1

Lastly, in the case in which
E=(e+a)t (e +0)t (e + o)} {e"'l +(n—1) pe

n—-1)nm-2) .
\ 1)2 )p2€ 2+~"+pn-x}’

we see that in ZIIIT" the product
(e+a)! (v+a?)t (V +a?)t (487! (w407} (v +19)% e+ )}
(vt (U +6)

-+

will give rise to a factor ayz.

Hence we obtain a system of solutions each of which is
the product of (n— 1) expressions of the form

x’ - s - 2
4o +o d+o
multiplied by zyz. Of these there will be =.

Thus there will be 4n + 3 solutions of the degree 2n + 1
in the variables, of which

= <9

(n+1) are each the product of n expressions of the form
2 2

LU Y i a =
Zio Frte  dte 1 multiplied by ,

(n+1) are each the product of » such expressions, multiplied
by g,
(n+1) z,
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n_are each the product of (n—1) such expressions, multi-
plied by zy-.

12. Now an expression of the form C.ZEHII, C being
any arbitrary constant, is an admissible value of the potential

@y 2 o .
at any point within the shell i c—,=1. But it is

not admissible for the space without the shell, since it
becomes infinite at an infinite distance. The factor which
becomes infinite is clearly %, and we have therefore to
enquire whether any form, free from this objection, can be
found for this factor. We shall find that forms exist, bearing
the same relation to Z that zonal harmonics of the second
kind bear to those of the first.

Now considering the equation
2
[{(e +a) (e+70%) (e 4+ )} %:l U=(me+1) T

which we suppose to be satisfied by putting U= E, we see
that, since it is of the second order, it must admit of another

particular integral. To find this, substitute for U, I [vde,

we then have
[+ @) e+ ) e+t ]
= [{(e +0%) (e+0%) (e + 7))} (;lejl E.f@de
(e %) (e+8) (e + N Ev;
[ leray ) oy v

~[terarerm eren 2] m.
+ (e+a”) (e +8? (s+c’)%].v
+%{(e+ ) (e+¢) + (e+¢*) (e+a) + (e+0a®) (e+ 0%} Ev

+(et+a?) (e+ 1) (e + ) (%ng:gé)
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Now, since by supposition, the equation for the determi-
nation of U is satisfied by putting U=Z, it follows that

whén E fvde 1s substituted for U, the terms involving f'vde

will cancel each other, and the equation for the determina-
tion of v will be reduced to

Ed€+{ de+2(6+a1+e+b”+e+cz>E}v—0,
ldv 2dE 1/ 1 1 1
. 5dg+ﬂde+ (e+a2+€+bz+e+c) 03

whence log v + 2log & + log {(e +a®) (e 4+ 1% (¢ + )}
=log v,+ 2 log E,+ log abc,

v, and %, being the values of v and E, corresponding to e=0.

E> abe .
B {(e+a) (e+b) e+
de
{(c+a) e+ ) e+t
We may therefore take, as a value of the potential at
any external point,

V =u,E} abe LHH']

Hence Y=

Efva’e=voE02abc.EfE2

de
B {(e+a) (e+) (c+F

For this obviously vanishes when e=w. It remains so
to determine v, that this value shall, at the surface of the
ellipsoid, be equwl to the value C. LHH already assumed
for an internal point. This gives

o de
=v,. K ab .
c Y, -Eo a Cfo E"{(E-I-a‘l) (€+/)2) (€+02)}§

Hence, putting v,. L. abc =V, we see that to the value
of the potential

V, EIIH’ f

de
E* {(e + a®) (e + 0%) (e + ¢*)}F°
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for any internal point, corresponds the value
de
(e+a) (e +2) (e + A

EOH f )
£ . B

for any external point.

13. We proceed to investigate the law of distribution of
density of attracting matter over the surface of the ellipsoid,
corresponding to such a distribution of potential. '

Now, generally, if &n be the thickness of a shell, p its
volume density, the difference between the normal compo-
nents of the attraction of the shell on two particles, situated
close to the shell, on the same normal, one within and the
other without will be 4mpdn. This is the attraction of the
shell on the outer particle, minus the attraction on the ¢nner
particle.

But the normal component of the attraction on the outer

particle estimated inwards 1s — dn”
n

And, if V' denote the potential of the shell on an in-
ternal particle, the normal component of the attraction on
. g . . V'
it estimated inwards is — ((lin c

av: dv

Hence 4mpdn = Tn T dn
dV dVdx dV dy dVdz

Now s B e

And @f is the cosine of the inclination of the normal at

dn

the point z, 7, z to the axis of , and is therefore generally
equal to eﬁ”ﬁ-—e’ e denoting the perpendicular from the

centre on the tangent plane to the surface

‘T‘.! + “:’/2—.+ Z? B
a+e V+e C+e
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And we have shewn that

2 (@®+¢) (@’ +v) (a®+ V)
- (az_bz) (&2_02) H

2 de 1
whence =
zde a + e
or T _odz
a‘+e de’
Ldr_ o de
tdn T e

.. dy dJ dz dz
Similarly dn=2e . =9 —

_dv Oe<dde dVdJ dde) o, dV

T \dr de Tdyde T dz de) =¥ @
oo av: v’
Similarly T 2e Te
Now V'=I{,.EHH’]°° U
L {(e+d*) (e + %) (e +0")}
_av dE e
=V, m° f :
S de deJo B {(e+0) (e+8) (e+ )k
de
Awd V=7, EHH f ;
! B {(a*+e) (0 +¢) (¢ +e))t
therefore, generally,
av de
* v, HIT f ,
de de Je B {(a*+€) (0 +¢) (¢*+ )}
_V,.EHI' !

F{@+@+e@teft

But, when the attracted particle is in the immediate
nelahbourhood of the surface, e=0. Hence, the first line
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4

of the value of %z—/ becomes identical with the value of g dlg’

and we have
dv’' av_ ., HH 1
“de  de ' ° E, abe’
I, denoting the value which % assumes, when e=0.
2 L
abe”
But &n, being the thickness of the shell, is proportional to

Hence, 4mpdn = 2eV,—

e, and we may therefore write gf—z = 8%’ 8a being the thick-
ness of the shell at the extremity of the greatest axis;

V,a 1 HH'
= 97 Sa abe Eo “

and this is proportional to the value of V corresponding to
any specified value of ¢, since I1/{' is the only variable
factor in either.

Hence functions of the kind which we are now considering
possess a property analogous to that of Spherical Harmonics
quoted at the bcumnlnv of this Chapter. On account of
this property, we propose “to call them Ellipsoidal Harmonics,
and shall distinguish them, when necessary, into surface and
solid harmonics, in the same manner as spherical harmonics
are distinguished. They are commonly known as Lamé’s
Functions, having been fully discussed by hin in his Legons.
The equivalent expressions in terms of «, y, z have been con-
sidered by Green in his Memoir mentioned at the beginning
of this chapter, and for this recason Professor Cayley in his

“Memoir on Prepotentials,” read before the Royal Society
on June 10, 1875, calls them “ Greenians.”

We may observe that the factor

1l e 1
47 Sa alc
1

i 1
is equal to — Trbosa’ and therefore also to - a8b By =l
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Hence, it is equal to
1

%7_;— (beda + cadb + abde)

1

O volume of shell g

and the potential at any internal point

I de

0 B*{(@*+ ) (B +¢) (¢ + )}
and the potential at any external point

=4 volume of shell x EEo-Pf S de y
« B*{(a*+ o) (P +e) (@ + o)t

where for p must be substituted its value in terms of v and v/

=} volume of shell x EZE, . p

14. We will next prove that if V,, V, be two different
ellipsoidal harmonics, dS an element of the surface of the

ellipsoid, f e V,V,dS =0, the integration being extended all
over the surface.

We have generally
. 2 _ av,_pdv,
[[[7527.- vev) asayae= [[(v S 2= 7% as

1 7
=2ffe(v,%’— V;%}d&

And throughout the space comprised within the limits of
integration, V*V, =0, V*V,=0. Hence

dv, av, _
JJe(r e -m5) as=e.

Now it has been shewn already that V,, V, are each of

the form ZHII', where & is a function of € only, I the same
function of v, I’ of v'. 'We may thercfore write

L FACTACOYACHE
and similarly V,=1.(e) f2(v) f, ).
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£ (9
Hence V1 de VV_);()

dTV_ fl(e)

Vg =TV s g
AL ﬂf FACINAC;
R4 SV SRARLGE ﬁ(e)}'

Now, all over the surface, e=0. Hence

[Jo v (B0 E O g

£1.(0) _ f,(0) -
Hence, unless 22—~ — SO _ =0, which cannot happen
FAUNNAU o
unless the functions denoted by f£, and f, are identical®, or
only differ by a numerical factor, we must have

ffe V.V, d8=0.

Now ¢ is proportional to the thickness of the shell at
any point. Calling this thickness 8¢, we have therefore

fSeVlVZdS=0.

Hence, adding together the results obtained by integrating
successively over a continuous series of such surfaces, we get

| [, dwiyaz=o;

V,, V, now representing solid ellipsoidal harmonics, and the
mtematmn extending throughout the whole space comprised
within the ellipsoid.

* This may be shewn more rigorously by integrating through the
space bounded by two eonfocal cllipsoids, defined by the values A and wof e
We then get, as in the texs,

7 R N RO o
/f P2 T A A RN T
Now the factor within {} cannot vanish for all values of X\ and u, unless the

functions devoted by f; and f, be identical, or only ditfer by a numerical
factor.
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15. It will be well to transform the expression

ffeV,v;ds

to its equivalent, in terms of v, o'

For this purpose we observe that if ds, ds’ be elements of
the two lines of curvature through any point of the ellipsoid,

dS=dsds'.

Now,
ds® is the value of da’ + dy® 4+ d2* when € and v’ are constant,
ds”® eand v
2 2
and 2 (e+a})ﬁ(u+a)(v +a)’
(0 —a’) (¢
therefore if € and v’ do not vary,
"dn dv
z  vta’
cdz==2 gy
P
Similarly dy = 1 dv de=%—"— dv;
z b ) 6) A + v 3

uw—t

2 2
o B A5 2 2 Z 1 2
LA =da*+ dy + de* = { Tt b‘-l-v) + o O

Again, differentiating with respect to o the expression

. z '’ 2?
obtained for 7T + b2‘—/|— o e 1, we get
z A 2* (v—o) (V — )

@+l Tror T T rer” (@tw) 0+ o) (¢ +w)

o @@ m) (=) b=a) 0~ o)
(@+o)((+o) (@ +to)  (@+o0)l+o) (@ +o)

600§
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therefore, putting o = v,

' v 2 (W —v)(e—v)
@a+v)”+(b”+u)"+(c”+v)” (@ +v) B +v) (¢ +v)’
s dst= 1 (W =v)(e—v) dir.

4 (@+v)(B*+v) (C+v)

A similar expression holding for ds*® we get

"‘—_l, W —J))i(i_v)_(f_v) 27 12
e 16 (a*+v) (P +v) (+v) (@’+ V) P +0) (F+v )(Zv L
; ST
Agam, 3 = (ag +—6)2+ (bz T 6)2 + (62+ 6)2
(e—v)(e—v)

T @t te (Cre)’
writing e for w in the expression above ;

- edSi=— 1 (a® +5) (b*+¢€) (c+e) (v _U)z

16 (@*+v) (bd+v) (c*+v) (a* +U)(b‘+u) T +v) dv'dv®.

It has been shewn that, integrating all over the surface,
the limits of v are — ¢* and —&, those of v/, — &% and —d”.

Hence, V,, V,, denoting two different ellipsoidal har-
monics

f j‘ V.V, (V' —v) dudv —0.
v ) -at {(a+v) O+ v) (P+v) (&P +V) ) (B ) (P+V)

The value of the expression f j V?dxdydz, or its equiva-
lent
abcf j' V? (V' —v) dvdv
-a? (a +v) (b*+v) (c +v) (@ 4+ V) (0 +v) (¢4 v) )
in any particular case, is most conveniently obtained by
expressing Vas a function of z, Y, 2
F. H. 9
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16. Before proceeding further with the discussion of ellip-
soidal harmonics in general, we will consider the special case
in which the ellipsoid is one of revolution. We must enquire
what modification this will introduce in the quantities which
we have denoted by a, 38, v, viz.

[ b
o (@Yt @)
i y
v (@Y O @Y
B —
-t (o + )% (O +97)* (¢ + )
and in the differential equation

NV, v av
) gt _e)ﬁﬁi-l'(e—”) Ey_"=0'

o =

(v—2

We will first suppose the axis of revolution to be the
greatest axis of the ellipsoid, which is equivalent to supposing
0*=¢" To transform « and v, put ¢+ =6, *+e=7’,
«*+ v = o*; we then obtain

I
- 1,64_“2+b‘2 (aﬁ—bz)é b'r)—(a“"_b“’)é’

ymo[ gt 1@ tizw
o F—a'+ 0 (- T (-t
To transform B, we must proceed as follows.

Put ¢ =—c'cos’m —Vsin’w, v=—c"cos’p —b”sin’ ¢,
we then get generally

U+ = (V"= &) cos’m, ¢+ = (-0 sin’*w;
dyr=2 (S~ V) coswsinw dw ;

[ T T
- V—’i-ﬁ(a*—b?)’f(a?_vﬁ’
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d

A 1, 2 o @4
Hence, di= é(n_a—*-b)d_n’
d 1
Gy=a @+
4 _(@=pta
g 2v—=1 d¢’
Also, e=9*—a* v =w’'—a®, v=— "0’ and our differential

. equation becomes

2 £3 2 2 2 2 d 3
(@—1b —w){(n —a+b)d—n} v

+ (772_ a2+b2) {(wa_ a~z+b«z) ddw}z 14

2 2 2 (i’V-
~ @ =) (@ =) G5 =0,
3 2 2 2 ﬂ' 2 d !
or. (0 —a +b){(n —a +b)dT’}V

— (=’ + ) {(w"—a2+b’)(—l%} V

— (@ =) (' = o) s =0.

This equation may be satisfied in the following ways.

First, in a manner altogether independent of ¢, by sup-
posing V to be the product of a function of 7 and the sanie
function of , this function, which we will for the present
denote by 1 (y) or /' (w), being determined by the equation

dfM—a+wd}ﬂm=mmm

o £ {( 41 »ﬂm) mf(w).
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g dv. b . adrv .
econdly, by supposing Fre a constant multiple of V,

= — ¢"V, suppose.

Our equation may then be written
((1)2—(12-}-1)2) ( 2_a2+b2) i [ vV
7 an

(o —at+ 1Y) {(w“’— o+ 1) jw}z v
(@ =) (@ =+ 1) — (= @+ 1)} V=0,

which may be satisfied by supposing the factor of V7 inde-
pendent of ¢ to be of the form ¥ (3) # (o), where

P =+ 1) § L F0) = o (@ =) For) =m (o' =at48) F ),

{(«f-'— @ +8) L }2F(w) —o* (6 —T) Flw)=m ('~ +17) F(w).

The factor involving ¢ will be of the form

A cos o + D sin ap.

Now, returning to the equation

o= Zrw=nr),

we sce that, supposing the index of the highest power of 7
involved in £(n) to be 7, we must have m =1 (¢+ 1).

Now, it will be observed that n may have any value
however great, but that ® which is equal to ¢+ v/, must
lie between «®—0* and 0. Hence, putting o’ = (a* - 0%) u’,
where p* must lie between 0 and 1, we get

o= ph -t i s@ -1t =0,
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Hence this equation is satisfied by f{(a*—")¢pu} = OP,,
C being a constant; and supposing =1 we obtain the
following series of values for f (w),

i=0, f(0)=1
=1, f) =

i=2, flo) =220,
=5, fla) =20t 000,

.................................

Exactly similar expressions may be obtained for f(7), and
these, when the attraction of ellipsoids is considered, will
apply to all points within the ellipsoid. But they will be
inadmissible for external points, since % is susceptible of in-
definite increase.

The form of integral to be adopted in this case will be
obtained by taking the other solution of the differential
equation for the determination of f(7), i.e. the zonal har-

monic of the second kind, which is of the form @, {( nb“ }
—&)

where

s 03=Rtw3w§fp{‘ =

T ‘ (¢ —a +b’)

Or, puttincr nt= (a2 =0, O = (0’ = 1% )»2, we may write

jl’(x) e

17. We may now consider what is the meaning of the
quantities denoted by 7 and w. They are the values of %
which satisfy the equation

2

x J_+z
sty o b
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and are therefore the semi-axes of revolution of the surfaces
confocal with the given ellipsoid, which pass through the
point «, y, 2. One of these surfaces is an ellipsoid, and
1ts semi-axis is 9. The other is an hyperboloid of two sheets
whose semi-axis is .

Now, if 8 be the eccentric angle of the point z, 7, 2,
measured from the axis of revolution, we shall have

&t =n"cos® .

But also, since %% o® are the two values of & which
satisfy the equation of the surface,

7720)2 = (a2 — b?) xﬁ.
Hence o*=(a*—0%) cos® 6,
and we have already put
o= (az - 2)2) i

whence the quantity which we have already denoted by
is found to be the cosine of the eccentric angle of the point
x, y, z considered with reference to the ellipsoid confocal
with the given one, passing through the point z, y, z. We
have thus a method of completely representing the potential
of an ellipsoid of revolution for any distribution of density
symmetrical about its axis, by means of the axis of revo-
lution of the confocal ellipsoid passing through the point
at which the potential is required, and the eccentric angle
of the point with reference to the confocal ellipsoid. For
any such distribution can be expressed, precisely as in the
case of a sphere, by a series of zonal harmonic functions of
the eccentric angle.

18. 'When the distribution is not symmetrical, we must
have recourse to the form of solution which involves the factor
Acosop+ Bsinagp. It will be seen that, supposing F to
represent a function of the degree 7, and putting m =7 (¢+1),
the equation which determines F(w) is of exactly the same
form as that for a tesseral spherical harmonic. For F'(y), if
the point be within. the ellipsoid, we_ adopt the same form,
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if without, representing the tesseral spherical harmonic by

T {( ﬂb”)”} , or T (v), we adopt the form
o — 3

= dan
(@) ..
790 g e

19. It may be interesting to trace the connexion of sphe-
rical harmonics with the functions just considered. This may
be effected by putting &*=a’. We see then that 5 will become
equal to the radius of the concentric sphere passing through
the point, and #* —a’+ 8* will become equal to #°. Hence
the equation for the determination of f () will become

& (o 3) S =i+ 1) f o,

which is satisfied by putting f(n) =»', or n7*". The former
solution is adapted to the case of an internal, the latter to
that of an external point.

With regard to f(w), it will be seen that the confocal
hyperboloid becomes a cone, and therefore w becomes inde-

finitely small. But u, which is equal to ., . , remains
y Iad q (@— bg).&

finite, being in fact equal to % or cos 8. Hence f(u) becomes
the zonal spherical harmonic.

Again, the tesseral equations, for the determination of
F(n), F(w), become

d\? .
(* ) Py =i+ 0
which are satisfied by F'(3) =" or n7*,
And, writing for o*, (@’~0%) p*, we have, putting F(w) =y (u),
d)? T
{1 2 )+ ot =i (41 W=D x ()

which gives x (v) = T, ().
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20. We will next consider the case in which the axis of
revolution is the least axis of the ellipsoid, which is equi-
valent to supposing a’="b". To transform « and B, put
CH+Y =6, F+e=n' & +v=0" we thus obtain

9 i (a? = o)
tan‘M,

e e
A Ny FY A I p

0 dé 2 4 o
A= gj‘.,, F=C+ 6 (a2_02)étan (a* —c?)¥
To transform v, we must proceed as follows :
Put Yr=—a’sin®*w -0’ cos’w, v =—a’sin’p— cos’ P,
we then get, generally,
d+Y=(@*=b)cos’m, U +4=—(a"—-01sin’w,
FHy=c"—a’sin’ p—b’cos’p, dyr=—2(a*~b%) sinw cosw dw.

Hence
7:2-[0 dor l_=___‘%5b - if @ = b2
[ (a2 sin’ar 4 b° cos’w — 02)2 (a” — cz) 2

d = L, 2 2 »d

Hencs, TG
d 1 . d
="l g,
d_ 1., 4.
Zi,;——§(a C) d¢)

also, e=nt=¢,

2
v=w"—c’,
V=—d’

and our differential equation becomes
d 2
2__ 2 2 2__ 2 o @
(@*—¢ +m){(a c +7})dn} Vv

d 2
2 _ 2 2 B_ 8 2y €
—(a®—c +7)){(a c+m)a.m}V

2V
2 2 2 2 _
+ (9" = 0") (¢ —6)‘@)2 =0.
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We will first consider how this equation may be satisfied
by values of V independent of ¢.

We may then suppose V to be the product of a function
of n, and the same function of w, this function, which we will
suppose to be of the degree 7, being determined by the
equation

Fe-cem tlrm=ia+y ra),
o j@-c+a Ll r@=i6n s

On comparing this with the ordinary differential equa-
tion for a zonal harmonic, it will be seen that, on account
of a” being greater than ¢?, the signs of the several terms in
the series for f(n) will be all the same, instead of being
alternately positive and negative. We shall thus have

o n
z=17 =—."
S () @

. M+t —ct

=2, f(n)=’5(a2_’éz)"r

. 5n* + 3 (a® — ¢

i=3, fln=2T3@ =)y
2 (a®—c*)?

. 359  + 30 (* =) n* + 3 (a® = ?)?
7'=4) .}“("7)=—?7 ‘(8(611“}‘22)2——{_———)_;

and generally

Flaym i

T B R 2 2 __ A2)d
@i 2.4 62 dy O T

We will denote the general value of £ (1) by p, {(—2—77 T)';} ;
a’ — ¢):

or, writing 5= (a* — 62)%1’, by p; ().
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For external points, we must adopt for £ (5) a function

which we will represent by ¢, {ﬁ% , or ¢,(v), which will
a’—c")?
be equal to
7 1 [ dé
D {—2 ngf s ’
a’—c¢ 0
( ) n » {@__C_Z)Q (02+ az_CZ)

It is clear that f(w) may be expressed in exactly the
same way. But it will be remembered that #* and w* are
the two values of * which satisfy the equation

2

2 2

PSR

Hence %, as before, is the semi-axis of revolution of the
confocal ellipsoid passing through the point (x, 7, z). But
n'w'=— (a*~¢*)2°, an essentially negative quantity, since
@’ is greater than ¢>.  Hence ® is essentially negative. Now,
if @ be the eccentric angle of the point (z, y, z) measured
from the axis of revolution, we have 2% = 5* cos’d. Hence

70’ = — (@’ — ¢*) n* cos’6,
and therefore o'=— (a*=c%) cos’ 0
= — (a® - ¢*) u*, suppose.

Hence the equation for the determination of f(w) assumes
the form

d L d - _
{00 L @i f@ =0,

the ordinary equation for a zonal spherical harmonic. Hence

Wwe may write
f(w)="D, (/“"):

# being the cosine of the eccentric angle of the point z, 7, 2,
considered with reference to the confocal ellipsoid passing
through it.
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21. We have thus discussed the form of the potential,
corresponding to a distribution of attracting matter, sym-
metrical about the axis. When the distribution is not
symmetrical, but involves ¢ in the form 4 cosa¢ + I sin o,
we replace, as before, P, (u) by T}/? (u), and p,(u) by a
function ¢, (v) determined by the equation

, 2 de
@) =1+ 25 p (),

e dx
and 8 (V) by t‘('f) (V)f 't;.y) ()\.)‘2 (}\2 e 1) 2
s |

22, As an application of these formule, consider the fol-
lowing question.
Attracting matter is distributed over the shell whose
2 2 2
surface is represented by the equation — +*- =L so
(72

that its volume density at any point is P’ (u), u being the
cosine of the eccentric angle, measured from the axis of
revolution ; required to determine the potential at any
point, external or internal.

The potential at any internal point will be of the form

ORI (V). .. R Mo o B 1),
and at an external point, of the form
CRENANEN .. . . e o (2),

where (a* =)}y =the semi-axis of the fignre of the con-
focal ellipsoid of revolution passing through the point (g, ).

Now the expressions (1) and (2) must be equal at the
surface of the ellinsoid, where v = %1 .
: (@ = 6}

Hence

PP = OR 0 0 -
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But generally
%010 pryey
Hence
{(a bZ)%} P{(a“’fb“)"ﬁ}f._“ P:__d? —)’

(ar-b2)}
® dr
P {Ta—f”}=0' { T } PO 1)
RSt -0 f(a ST -D

We may therefore, putting 0’ = AP, {—(_"‘_QF} , write

O=4a {m}

and we thus express the potentials as follows :

AP, (p) P, (v) Q, {( 7 1} at an internal point,

w) Q; (v) P, { 7 } at an external point.

Or, substituting for @, its value in terms of P

_ PEYMLIN | S S
P=ARW RO B 5 f( o
at—b%)*

at an internal point,

V,= AP,(s) B,() {

— Jf 20" ()J 1)

at an external point.

Now, to determine 4, we have, 8a being the thickness
of the shell at the extromlty of the axis of rev olutlon
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1 «a <dV dV)
n=a

P= 4z 8a.q g \dnp dn
_la 1 ‘ZZJE)
_41r%a,2—b2(dv dv "=

= %w S%Zlfb el {( = b")"} X {(cf (—L If’)"-’}

-t

Hence, if p = P, (), we obtain

A =47 .b_ju = 47Hdb,

And we thus obtain

~00

V,= 47 b3b P, (u) P.(v) {(T_“ b?)s} | dx

—'}i,;)s 1;1 (lez (7\'2 o l)

a®—

= 4mwbdh P, (k) I, (v) €, { b’)ﬁ}
V, = 4rbsb P, () P, {(aj—m%} £l f v BN -1)
= 4mb3b L, (1) Q: (v) D {( : ab?) }

If the shell be represented by the equation

d+yt oz
- _t'/’ +=5=1,
@
it may be shewn in a similar mauner that we shall have
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Vo= strada B 20 {2 )

¢
V,=4mada I, (1) ¢.(v) p, { m} .
23.  We may apply this result to the discussion of the
following problem.

If the potential of a shell in the form of an ellipsoid of
revolution about the greatest point be inversely proportional

to- the distance from one focus, find the potential at any
tnternal point, and the density.

If the potential at P be inversely proportional to the
distance from one focus S, and 77 be the other focus, we have,

HP+ SP=2y, HP— SP=2w,
oo SP=9—ow.

Hence if M be the mass of the shell, ¥, the potential at
any external point,
v, = M
7—
S Ve
(@ =) v—p
M

= mz (2i+1) L, (g) Q;(»).

Now, by what has just been seen, the internal potential,
corresponding to £ () ¢; (v), 1s

@

@ {(a‘z YRR
G
(= b

Hence, if 7, be the potential at any internal point,

P,(x) P,)
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o=
(a*—= b
IT__Q_.__)__ P, () P, (v).
‘ {(a - 62)5}
And the volume density corresponding to P, () Q, (v) is
rAQ)

4b8h P, {( b)é}.

Hence the density corresponding to the present distri-
bution is

4 .
s=m2(2z+1)

M U P, (p)
e <] 2 1 ————————
4o (a — B2 18D G ).P { a }

(o~ 09}

If V, had varied inversely as HP, we should have had

__J[ )
4w’

p:

a0 S

and our results would have been obtained from the foregoing
by changing the sign of w, and therefore of u.

24. Now, by adding these results together, we obtain
the distributions of density, and internal potential, corre-
sponding to

9
¥ w2

A= =]
N—w Ntw 7 —w

2

or, in geometrical language,

. M M _ . SP+HP
Vi=gptup= 5p up

= M multiplied by the axis of revolution of the confocal
ellipsoid, and divided by the square on the conjugate semi-
diameter. We may express this by saying that the potential
at any point on the ellipsoid is inversely pruportlona.l to the
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square on the conjugate semi-diameter, or directly as the
square on the perpendicular on the tangent plane.

Corresponding to this, we shall have, writing 2k for 4,
since only even values of ¢ will be retained,

ol
a

oM
Vi= "> S (4k+1 P, (u) P, (v),
(@ — 1 ( )Pm{“ wl} (u) Py (v)
a — 2
P el 2(4k+1)——P2*("

" 4 (" — 0)300h = { a }
. 2k (a2 _ bz)é
k being 0, or any positive integer.
Again, subtracting these results we get
v 9
M M _q 2o

n1—0 7+tow "—w

V,=

2

= M multiplied by the distance from the equatoreal plane,
and divided by the square on the conjugate semi-diameter.

This gives, writing 2k + 1 for 4,

Q2k+1 {—a__f}
oM b
V= g S e ) Py () Py ),
o {((f - b“’)‘5}
2M P, (v
—y e S N N I .
P™ i (@ —b7)h08b ol 9 {_a }
241 (alg_ bg)é

25. In attempting to discuss the problem analogous to
this for an ellipsoid of revolution about its least axis, we see
that since its foci are imaginary, the first problem would re-
present no real disteibution. But if we suppose the external
potential to be the sum or difference of two expressions, each
mversely proportional to the distance from ome focus, we
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obtain a real distribution of potential—in the first case
inversely proportional to the square on the conjugate
semi-diameter, in the latter varying as the quotient of the
distance from the equatoreal plane by the square on the
conjugate semi-diameter.

It will be found, by a process exactly similar to that just
adopted, that the distributions of internal potential, and
density, respectively corresponding to these will be:

In the first case

oM = {2—071»}
= S (D ﬁ Pa(u)pa ®)

i (/“)

{(a 2)*‘} ’

oM

— S (4k+1
4o (@* — ¢*)? ada ( )

p=

% being 0, or any positive integer.

In the second case

oM {(a f }
g ehE) il (GRS P () P ),

G Do {(az—c)f}
S— J:)%a (45 +3) f{??g

% being 0, or any positive integer.

26. We may now resume the consideration of the ellip-
soid with three unequal axes, and may shew how, when the
potential at every point of the surface of an ellipsoidal shell
is known, the functions which we are considering may be
employed to determine its value at any internal or external
point. We will begin by considering some special cases,

F. H. 10
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by which the general principles of the method may be made
more intelligible.

97. TFirst, suppose that the potential at every point of

the surface of the ellipsoid is proportional to @ = YZ:E suppose.

In this case, since =z when substituted for V, satisfies the
equation y* V=0, we see that Vog will also be the potential

at any internal point. But this value will not be admissible

at external points, since # becomes infinite at an infinite
distance.

Now, transforming to elliptic co-ordinates
J- fesl )
T (a* =) (@*—=¢) )
And the expression
¥, ((ea?) (o) (a3 ay
Wi . et rormaran

. f _dy
o (Pt ) (Yt a) (G +0) @t o))

satisfies, as has already been seen, the equation v'V=0,is

equal to Voi—z at the surface of the cllipsoid, and vanishes

at an infinite distance. This is therefore the value of the
potential at any external point. It may of course be written

Ve j ” dr
a ) (prad) (g + @) o+ 0) [+
d\[r

' f W+ (F +0) (P +8) (P + )]
93. Next, suppose that the potential at every point of

e
2

the surface is proportional to yz= Voy(jj’ suppose. In this
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case, as in the last, we see that, since yz when substituted
for V, satisfies the eqnation y'V =0, the potential at any

internal point will be ¥, :Zg, while, substituting for 4, z their
values in terms of elliptic co-ordinates we obtain for the
potential at any external point
Voye f‘” dyr
be Je (f+0) (v + &) (¥ +0) (b +8) (P +6)2

- f N dyr
o (P+8) (P +) (¥ +0) (P +5) (f+)

29. We will next consider the case in which the po-
2

tential, at every point of the surface, varies as 2’ =7V, e

suppose. This case materially differs from the two just con-
sidered, for since #* does not, when substituted for V, satisfy
the equation ¢*¥V'=0, the potential at internal points cannot
in general be proportional to 2% We have therefore first to
investigate a function of =z, y, 2, or of €, v, v" which shall
satisfy the equation ¢*V =0, shall not become infinite within
the surface of the ellipsoid, and shall be equal to a* on its
surface.

Now we know that, gencrally
0+ o) (4 w) 2 + (4 w) (@® + o) ¥+ (@’ + 0) (0* + o) 2°
— (@4 o) (P +o)(to)=(—0)(v-o) (V —o)
And, if'6,, 6, be the two values of w which satisfy the
equation ‘
U +w) (€ +w) + (+o) (@®+o) + (@+o) (P+o)=0...(1),
we see that
V2 (6 - 91) (U - 01) (U’ - 91) =0,
and Vi(e—0,) (v—0) (1 —86)=0.
And, by properly determining the coefficients 4, 4,, 4,,
it is possible to make

'A0+A1(6— 01) (U_ex) (U"— 01) +A2 (E— 92) (v— 92) (U'_ 93) ooc (2) :
= l:z?— when 0’¢%* + '’y + 'z — a’b’¢’ = 0.

10—2
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Hence, the expression (2) when 4,, 4,, 4, are properly
determined will satisfy all the necessary conditions for an
internal potential, and will therefore be the potential for
every internal point.

Now, we have in general
@+ 0)(E+6,)a"+(c+6,) (*+0)y + (a” +0)V*+6) 7
~ (@ +6) (1" +6) (+6) =(e=0) (v=6) (' = 6)
(lf+9)(c +0)+(+6)(@*+6,) v+ (a +0,) (0*+0,)
— (@ 6) (P 4+0) (4 6)=(e—0) (v— 6,/ — 6)
and, over the surface
V’c’x® + a’y’ + @’ — a’b° = 0.
Henee, ¥ being any quantity whatever, we have, all over
the surface,
G +NEE+Y) 2+ P+ (@ +Y) 7+ @ +9) (0P +9)
—(@*+ ) PP+ V) +Y)

(O -06) )
=G =0 "= -0
6 !
,52 ((Z:Hl)) (e=0)(v—06)(V-0)-%(N—-0)(N-0),
and therefore, putting & = — o,
(a’+6
(@ =) (= ¢ a"= Z((;";‘_"_Q (e=6) (v—0) (v ~0)
o (a*+0)

g (=0 (1= 8) (= 6) +* (@ +6) (@ +0).

Hence, the right-hand member of this equation possesses
all the necessary properties of an internal potential. It
satisfies the general differential equation of the second order,
doeq not become infinite within the shell, and is proportional
to «* all over the surface.

We observe, by equation (1), that
(0 +0) (¢ +w) + (+o) (@+ ) + (@ + o) (0+0) =3 (6,—w) (6,~)
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dentically, and therefore, writing — o for o,
(@*=0b")(a®—c)=3(a*+6) (@ +86,).

Hence, over the surface of the shell,
Z

36, (0,— 6, (@ +e)( ROl

w?

2

22
30 (0—9 ( +9)(e 0}.)(”'_ 2)( 02)4‘ 3°

and we therefore have, for the internal potential,

(e—0,) (v—0,) (v—6) (e 9)(1} 3)(v )
{"0‘(9 e, (a,+01) 0, (0,-0) (a*+0,) +1}

173
This is not admissible for external points, as it becomes

infinite at an infinite distance. We must therefore substi-
tute for the factor e — 6,

—9 c dy
‘)fe (=0 (¥ +a’) ($+0) <~1r+c)}

[ e
(p— 0 (b + @) (f+ ) (Y + )

with a similar substitution for e —@,, thus giving, for the
external potential,

V- [<e 6)(v- ewv—fnf o dy
3L 0000w +0) o (r=0) (gt )y ) e
_[ dyr
(= 0. (¥ + @) (§ + 1) (3 + )

- (e ) (u— 9)(v—9)J‘ dyr
0, (9 —0,) (¢*+0 (Y=0,) (f+0) (P +) (p 4+

_f (I\{r ‘
(V 02)2 \P"{‘ (LZ) (‘\!I‘-{- b‘llt\ +C ,‘~_-

E _dyr Ay
+-L (Y+a) P+0) (P4} f (Yr+a) (Y+0%) (3 +cﬂ)}J :
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. The distribution of density over the surface, correspond-
ing to this distribution of potential, may be investigated by
means of the formula

Sl

P=on da(de de /o=’

or its equivalent in Art. 18 of this Chapter. We thus find that
_*lﬁ»lfo_ —_ (U—el) (v,_en)

P= or da3abe | T 07 (0, — 6) (@ + 6,

- f o
o (p=0) {(y+a) (¥ + ) (P + )}
_____ . / dyr
0,(0,—0) (@+6,) " Jo (=6, (Y + @) (Y+b%) (Yt}
N dyr -
[ 1.
+1] ((F+a) (F+ ) wr+c"nj

(v—0,) (v'-6,)

30. The investigation just given, of the potential at an
external point of a distribution of matter giving rise to a
potential proportional to @* all over the surface, has an in-
teresting practical application. For the Earth may be re-
garded as an ellipsoid of equilibrium (not necessarily with
two of its axes equal) under the action of the mutual gravi-
tation of its parts and of the centrifugal force. If, then,
V denote the potential of the Earth at any point on or with-
out its surface, and Q the angular velocity of the Earth’s
rotation, we have, as the equation of its surface, regarded as
a surface of equal pressure,
av dVv av
(d:E +sz> dz + (@ + .Q”y) dy-}-vdz- dz=0,

~V+ 1 QO (#* + y*) = a constant, IT suppose.

Hence, if a, 0, ¢ denote the semi-axes of the Earth, we
have, for the determination of V, the following conditions :
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av d’V av
Ft ot — (1| R T (1),
V'=0at an mﬁmte distance......ceueeenn. (2),

V=11 -—; 0 (&* + %) when

a? y 22
z+bz

The term II will, as we know, give rise to an external
potential represented by

I ) & .
J {w»+a><~1r+ff (¥+0)) i+, {<\1f+a2><4f+bw+c’>}

The two terms —%Q 2, — 5 Q ? will give rise to terms
which may be deduced from the value of V, just given by
successively writing for V, — .Q“a“ and -5 Q%°, and (in
the latter case) putting 4* for o* throughout “ e thus get

Sfn-le@en) [ A
v={r-so el e e

A e e By Lo
o {(Y+ @) (V) (P} 6 \a 40, 6,
(e=6) (v=90,) (v'—H)jm ¥
p, (6,—6,) (xp 0, {(¥ +a°) (Y + %) (Y + )}
f” _o (a e lei‘,)
(-6, {<~zr+cf><xp+b*>w+d)} 6 \a*+6, " b4+0,
(e=0,) (v— e)@—e)J dyr
0,(6,—0) (P=0{(¥+a) (P+1%) (P+6)}
= =
o (P =0 (Y @) (Y1) (Y o))
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31. Any rational integral function ¥V of @, ¥, z, which
satisfies the equation y*FV =0, can be expressed in a series
of Ellipsoidal Harmonics of the degrees 0, 1, 2...7 in @, y, 2.
Forif V be of the degree ¢, the number of terms in V will
be (Z+1) (£+2) (7 +3)

6 .
equivalent to the condition that a certain function of @, g, z
of the degree 7— 2, vanishes identically, and this gives rise

o (= 1)3 (i +1)
6
pendent constants in V" is

E+1) (E+2) (+3) E-1)3@E+1)
6 6 g

Now the condition ¢*V'=0 is

conditions. Hence the number of inde-

or (¢+ 1)2. And the number of ellipsoidal harmonics of thg
degrees 0, 1, 2...% in &, y, z or of the degrees 0, —12—, 1, g%
in € v, v, 1s, as shewn in Arts. 6 to 10 of this Chapter,

S5 S LS e XL

or (¢41)>. Hence all the necessary conditions can be satis-
fied.

32. Again, suppose that attracting matter is distributed
over the surface of an ellipsoidal shell according to a law of
density cxpressed by any rational integral function of the
co-ordinates. Let the dimensions of the highest term in this
expression be 7, then by multiplying every term, except those
of the dimensions ¢ and ¢ — 1 by a suitable power of

x% + :1/2 + 22
aﬂ b2 c‘z b

we shall express the density by the sum of two rational inte-
gral functions of @, y, z of the degrees ¢, ¢ —1, respectively.
The number of terms in these will be

(G+1) (+2) ,i(f+1)
5 +tg— o

r (f+ 1)
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And any ellipsoidal surface harmonic of the degree 4, ¢ — 2...
in z, y, 2, may, by suitably introducing the factor
w! y2 z!

atpta

be expressed as a homogeneous function of @, ¥, z of the
degree 7 ; also any such harmonics of the degree 7—1, 7—3...
in z, ¥, 2 may be similarly expressed as a homogeneous
function of z, ¥, z of the degree ¢ —1. And the total number
of these expressions will, as just shewn, be (¢+ 1)% hence by
assigning to them suitable coefficients, any distribution of
density according to a rational integral function of z, ¥, 2
may be expressed by a series of surface ellipsoidal harmonics,
and the potential at any internal or external point by the
corresponding series of solid ellipsoidal harmonics.

33. Since any function of the co-ordinates of a point on
the surface of a sphere may be expressed by means of a series
of surface spherical harmonics, we may anticipate that any
function of the elliptic co-ordinates v, v' may be expressed by
a series of surface ellipsoidal harmonies. No general proof,
however, appears yet to have been given of this proposition.
But, assuming such a development to be possible at all, it
may be shewn, by the aid of the proposition proved in
Art. 15 of this Chapter, that it is possible in only one way,
in exactly the same way as the corresponding proposition
for a spherical surface is proved in Chap. 1v. Art. 11,

The development may then be effected as follows. De-
noting the several surface harmonies of the degree 7in 2, 7, z,

or % in v, v, by the symbols V,®, V®, . TE+D and by
Ir (z: v') the expression to be developed, assume
F, )=CV,+COVOL 0O VAL OOV ...
+ COVO 4 COV ...

Then multiplying by eV and integrating all over the
surface, we have

f oF (v, ) T dS = O f o (V)2 ds,
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The values of f eF (v, V)V @ dS, and of f e (V) dS must

be ascertained by introducing the rectangular co-ordinates
@, 7, 2, or in any other way which may be suitable for the
particular case. The coefficients denoted by C are thus
determined, and the development effected.



EXAMPLES.

. 8 16 8
1. Prove that (sin 6)* = 15 r, - 31 J2 +35
Why cannot (sin 6)° be expanded in a ﬁmte series of spherical
harmonies %
1 1 1 1 +sin
2. Prove that 1+ 9 D+ 3 P2+1 P +...=log —
sin

2

5

3. Establish the equations

dIz
(,u. —1) d '—71pr n—l’

'll])" = (27?’_ 1) l“Pu—x - (n - 1) Pn—l'
4. Tf p=cos 6, prove that
t+m n
Po(w)=1-i(+1) singg S ED l = (sin’€> % .
L— -
and also that
L) =(=1) + (= 1)* i@ + 1) cos’ g +

— [7+m .0
ity (m) i—m (COS fl) -

5. Prove that, if @ be greater than ¢, and ¢ any odd
integer greater than m,

5 1 9  |i+m ¢
a’ — 2ac. ,U.+Cg (] = = q"‘*‘: =
f ( ) F’ m+lcm ")YIL lT—m “,

6. I’mvetlmt/( >d,u—z(a+1)
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~ drP, i +m (= 1)
7. Prove that, when p==1, = o

5 B oo 48
8. Prove that L

—

is a numerical multiple of

iti-1)

2
= 1)
9. Prove the following equation, giving any Laplace’s co-
efficient in terms of the preceding one:

P
P"+l=ppn+nLPnd])+0,
where Op=pw +J1 -’ JT= 4" cos (0 — ') and C is zero if » be
even, and

55 [n+1

(_1) ou+l{1(n 1)}

s, if # be odd.

10. If 4, 4, % be three positive integers whose sum is even,
prove that

rl
j P‘I)/Pnd”‘
1
3..(j+%k—i-1) 1.3...(k+i—j-1) 1.3...(i+j—k-1)
4. (Grhk=9) T 24 (k+i—j)  2.4..3G+j-k)
4..G+j+H) 1
1.3...(’&‘4—]’4—/‘;_1) i+j+k+1'

Hence deduce the expansion of PP in a series of zonal
harmonies.

11. Express «'y+y’+yz+y+2 as a sum of spherical
harmonics.

12. Find all the independent symmetrical complete harmonics
of the third degree and of the fifth negative degree.

13. Matter is distributed in an indeﬁnitely thin stratum over
the surface of a sphere whose radius is unity, in such a manner
that the quantity of matter laid on an elcment (8S) of the surfuce

is 08 (1 + ax + by + cx + f&* + gy* + I2*),
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where @, y, z are rectangular co-ordinates of the element 3S re-
ferred to the centre as origin, and a, b, ¢, £, ¢, h are constants.
Find the value of the potential at any point, whether internal
or external.

14. If the radius of a sphere be 7, and its law of density be
p = ax + by + cz, where the origin is at the centre prove that its

potential at an external point (&, &) is f 51 (a€+ by+cl) where
Ll is the distance of (£, », {) from the origin.

15. Let a spherical portion of an infinite quiescent liquid be
separated from the liquid round it by an infinitely thin flexible
membrane, and let this membrane be suddenly set in motion,
every part of it in the direction of the radius and with velocity
eqnal to .S, a harmonic function of position on the surface. Iind
the velocity produced at any external or internal point of the
liquid.  State the corresponding proposition in the theory of
Attraction.

16. Two circular rings of fine wire, whose masses are J/ and
I, and radii @ and o, are placed with their centres at distances
b, ¥, from the origin. The lines joining the origin with the
centres are pelpendxcular to the planes of the rings, and are in-
clined to one another at an angle §. Shew that the potential of
the one ring on the other is

7 = 1 4
M 2";)“(’0““ BB, Q,.) ;

where B, =b"— 'n(n ) 20t 4 n(n— 1)(n 2) (n— 3)6"““
2.-1 £.5%.4v1

and 7/ and @ are the same functions of &' and o’ and of cos
and sin § rcspectlvely, and ¢ is the greater of the two quantities

Na*+ 0% and o+ 0%

17. A uniform circular wire, of radius «, char ged with
clectricity of line-density e, surrounds an uninsulated concentric
spherical conductor of radius c; prove that the clectrical density
at any point of the surface of the conductor is

e 1.3 ¢ 1S

lc Sl
- 2{1-5, e = ool U jeu
2c< P 9,‘) gril 13'2.4.(3(&“ +...),

the pole of the p]ane of the wire being the pole of the harmonies.
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18. Of two spherical conductors, one entirely surrounds the
other. The inner has a given potential, the outer is at the
potential zero. The distance between their centres being so
small that its square may be neglected, shew how to find the
potential at any point between the spheres,

19. If the equation of the bounding surface of a homo-
gencous spheroid of ellipticity e be of the form

r:a(l— %el‘z),

prove that the potential at any external point will be

f]_[_g::‘;{p

r 7 b

where ¢ and 4 ave the equatoreal and polar moments of inertia
of the body.

Hence prove that ¥ will have the same value if the spheroid
be heterogeneous, the surfaces of equal density differing from
spheres by a harmonic of the second order.

20. The equation R=a (1l +ay) is that of the bounding
surface of a homogeneous body, density unity, differing slightly
in form and magnitude from a sphere of radius a; a is a
small quantity the powers of which above the second may be
neglected; and y is a function of two co-ordinate angles, such
that

Y=Y+ V4.4t , f=Z+ Db+ Z,...

where Y, Y, ...Z, Z, ... are Laplace’s functions. Prove that
the potential of the Dbody’s attraction on an external particle,
the distance of which from the origin of co-ordinates is 7, is
given by the equation

a’ =

]
@m1"+"'f
i

ccs i

47a’a® @ n+2 o
P e )0 e O
0 { °+2r 7 +~m+27‘" e

47°a®> dwad® (.. a -, '
V——3r—+ = {Io+3711+...+
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21. If M be the mass of a uniform hemispherical shell of
radius ¢, prave that its potential, at any point distant » from
the centre, will be

M 1M 1 2
%*ﬁ@@ﬂ“izfﬁ
o] »° 3.
t a6 T 326,86
a1 c 1 ¢ '
( R W R

3 ¢ 3.5 ¢
to a3 468EF+”)

or -2—'+ M

according as = is less or greater than c; the vertex of the hemi-
sphere being at the point at which p=1,

22. A solid is bounded by tho plane of xy, and extends to
infinity in all directions on the posmve side of that plane.
Every point within the cirele 2* + 7° = @®, =0 is maintained at
the uniform temperature unity, and every point of the plane ay
without this circle at the uniform temperature 0. Prove that,
when the temperature of the solid has become permanent, its
value at a point distant 7 from the origin, and the line joining

which to the origin is inclined at an angle 6 to the axis of z will
be

1 1.3 ¢
=P G+ qPigmr g Digt
i‘l 1 72i+|
-(=1 ; )I’,,,+l g e

if r < @, and

s @ o8 @ 1. 3 ) a’t

A e I
ifr > a,

23. Prove that the potential of a eireular ring of radius ¢,
whose density at any point is cos myy, ¢ being the distance of the
point measured along the ring from some fixed point, is
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2 cos mé (sin 6)" {0—%—
1 &P,
Y9.4.6.@m+2) dp ot

1.3. 5 (2k-1) d P, c™* ]
+ - + ...
204 °(m+.’c dpn g

where 7 is greater than ¢. If » be less than¢, 7 and ¢ must b
interchanged.

24. A solid is bounded by two eonfoecal ellipsoidal surfaces, an«
its density at any point I’ varies as the square on the perpendicula:
from the centre on the tangent plane to the confocal ellipsoic
passing through P. Prove that the resultant attraction of sucl
a solid on any point external to it or forming a part of its mas
is in the direction of the normal to the c¢onfocal ellipsoid passing
through that point, and that the solid exercises no attraction on:
point within its inner surface.

o184
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