Классическое введение в современную теорию чисел
Аннотации
ПРЕДИСЛОВИЕ РЕДАКТОРА ПЕРЕВОДА
Теория алгебраических чисел возникла во второй половине XIX в. из целого ряда не связанных друг с другом задач теории чисел. Первое место среди них занимали задачи о диофантовых уравнениях, таких, как уравнение Ферма или вопросы о представимости чисел квадратичными формами. Другой не менее важный круг идей, стимулировавший развитие алгебраической теории чисел ? теория делимости и законы разложения простых чисел в кольцах целых алгебраических чисел. Впрочем, отделить друг от друга конкретные факты, идеи и конструкции, приведшие к созданию теории алгебраических чисел, вряд ли возможно. Классический период теории завершается созданием теории полей классов, описывающей абелевы расширения полей алгебраических чисел и законы разложения в них.
Существует много учебных изложений теории алгебраических чисел. Предлагаемая вниманию читателя книга отличается элементарностью и насыщенностью конкретными фактами и примерами. Ряд вопросов, например, кубический и биквадратичный законы взаимности излагаются в учебной литературе с такой степенью подробности, пожалуй, впервые. Помимо основ теории авторы включили в книгу ряд глав, излагающих более современные достижения, связанные с применением методов алгебраической геометрии к диофантовым уравнениям. Сюда относятся определение дзета-функций алгебраических многообразий, гипотеза Римана?Вейля для многообразий над конечными полями, связь группы рациональных точек на эллиптической кривой с ее дзета-функцией. Подробно разобранные частные случаи являются хорошим введением в общую теорию, с которой читатель может познакомиться по сочинениям более общего характера (см. библиографические указания в конце глав).
Последние годы принесли теории чисел заметное оживление: доказана гипотеза Морделла о рациональных точках на кривых рода больше 1, первый случай теоремы Ферма решен для бесконечного числа простых показателей, найдены первые примеры эллиптических кривых с конечной группой Шафаревича. Можно не сомневаться, что книга Айерлэнда и Роузена будет ценным подспорьем для начинающих математиков, желающих принять участие в дальнейшем развитии теории чисел.
А. Н. Паршин
Collections
- Libgen [81666]